Spitzer Space Telescope: Observatory Description and Performance

Total Page:16

File Type:pdf, Size:1020Kb

Spitzer Space Telescope: Observatory Description and Performance SPITZER SPACE TELESCOPE: OBSERVATORY DESCRIPTION AND PERFORMANCE Keyur C. Pate1 Spitzer Flight Engineering Office Manager, Jet Propulsion Laboratory Stuart R. Spath Spitzer Observatory Engineering Manager, Lockheed Martin Space Systems Company The Spitzer Space Telescope, the last of the four Great Observatories commissioned by the National Aeronautics and Space Administration, was successfully launched on August 25, 2003 from Kennedy Space Center. The engineering systems for Spitzer were developed by the Jet Propulsion Laboratory, Lockheed Martin Space Systems Company, and Ball Aerospace & Technology Corp. This paper provides an overview of Spitzer, a technical description of all the engineering subsystems, and the associated challenges involved in developing them to satisfy the mission requirements. In addition, this paper describes the performance of the engineering subsystems during the In-Orbit Checkout phase, the Science Verification phase, and the early portions of the Nominal Mission. INTRODUCTION The Spitzer Space Telescope, formerly known as the Space Infrared Telescope Facility (SIRTF), was commissioned by the National Aeronautics and Space Administration (NASA) to collect infrared science data of unprecedented quality and quantity. It was developed as the frnal component of the Great Observatories program, joining the Hubble Space Telescope, the Chandra X-ray Observatory, and the Compton Gamma Ray Observatory. In addition, Spitzer is a scientific and technical comerstone of NASA's Origins program. The project made use of some of the nation's premier technologies in fundamental scientific applications such as the search for other solar systems and studies of the earliest stages in the formation of galaxies similar to our own Milky Way. The immense potential of this mission was built upon the large defense-based investment in infrared detector arrays, with additional development under NASA sponsorship. Although the astronomical community has benefited from the breakthroughs in these arrays, their performance is degraded by factors of 100 to 1000 due to the heat radiation encountered on ground-based telescopes. Only with a cryogenically cooled telescope in space can the full potential for discovery be realized. Infrared observations are important for the following reasons: they reveal cool states of matter, they explore the universe hidden by cosmic dust, they access a wealth of spectral features, and they reach back to the early existence of the cosmos. Although the science capabilities of Spitzer are unparalleled, this paper does not discuss the details of the science instruments nor the science data collected thus far in the mission. Instead, it focuses on the engineering subsystems on- board the Observatory, both in the spacecraft (S/C) and the Cryogenic Telescope Assembly (CTA). The Observatory performance has been nothing short of exceptional. Using a subsystem-by-subsystem approach, this paper describes the design characteristics of the various components. It discusses significant subsystem challenges encountered during the development phase. It also contains a block diagram or schematic for each subsystem, illustrating the important hardware and software components. Finally, this paper documents the in-flight performance of each subsystem. MISSION OVERVIEW Mission Traiectorv. Spitzer was launched into an Earth-trailing solar orbit rather than a more conventional Earth orbit used by the other Great Observatories. The solar orbit was selected for a number of reasons: a) low launch energies allow for significant mass savings, b) the Observatory leaves behind the Earth's trapped radiation environment, c) Earth/Moon avoidance constraints are simplified, d) propellant for station-keeping or trajectory correction is not required, e) deep space tracking is simplified, and f) heat input from the Earth is eliminated, providing a vast improvement in the quality of the infrared observations. Mission Phases. Following launch, the Observatory was initialized and commissioned for routine operations during a 62-day period called In-Orbit Checkout (IOC) phase. The emphasis for the IOC phase was to bring the Observatory on- line safely, verify functionality of the instruments, telescope, and spacecraft, and demonstrate that the facility meets all level-1 requirements. After IOC, there was a 30-day period called the Science Verification (SV) phase. The purpose of the SV phase was to characterize the Observatory in-orbit performance, demonstrate capability for autonomous operations, conduct early release observations, and exercise the ground systems software, processes, and staffing sufficiently to commission the facility for routine operations. Following the SV phase, the Observatory began the Nominal Mission phase, which is expected to continue for at least the next 5 years. Udink/Downlink Strategv. During the Nominal Mission phase, commanding is performed primarily by uplinking a new master sequence once per week. The master sequence commands the science observations, the engineering calibrations, and the data playbacks. The sequence prioritizes the playbacks of the various science and engineering data. Spitzer playbacks occur twice per day, and are one hour or less in duration. While the duration can vary, the average playback provides up to 700 Mbytes of engineering and science data. When data is lost during transmission, a ground process is used to create a command file to retransmit the missing data. OBSERVATORY DESCRIPTION AND SYSTEM OVERVIEW The Observatory consists of five primary systems: the Spacecraft (S/C), the Cryogenic-Telescope Assembly (CTA), and three science instruments: the Infrared Array Camera (IRAC), the Infrared Spectrograph (IRS), and the Multiband Imaging Photometer for Spitzer (MIPS). The S/C is comprised of the solar panel, the S/C bus, and various support structures. 'fie SIC bus contains the hardware and software for the following engineering subsystems: Command & Data Handling (C&DH), Pointing Control Subsystem (PCS), Reaction Control Subsystem (RCS), Power Generation & Distribution (PG&D), Telecommunications Subsystem (Telecom), and Thermal Control Subsystem (TCS). The Flight Software (FSW) resides in the flight processor card of the C&DH and provides all the algorithms, parameters, and fault protection required by these subsystems. Baa: SrW . krL1'knl .... I. IJ. 9.. L .I Figure 1. observatory External Conjiguration The CTA is supported by a truss structure that is mounted on the upper deck of the S/C bus. The CTA consists of the outer shell, the 0.85-meter telescope assembly, the cryostat, and the multiple instrument chamber (MIC). The outer shell surrounds the telescope, is shielded from the sun by the solar panel assembly, and radiates heat to cold space in the anti-sun direction. Two intermediate shields isolates heat from the solar panel and the S/C bus. The telescope assembly is attached to the top of the vapor-cooled cryostat vacuum shell. The cryostat is supported by a truss structure that is attached to a base ring within the CTA. The MIC containing the three science instruments is mounted directly to the helium tank, with a high conductivity thermal path. COMMAND AND DATA HANDLING (C&DH) SUBSYSTEM Subsvstem Overview. The C&DH receives, interprets, validates, and executes both stored sequence commands and immediate execution commands. Through these commands, the C&DH coordinates and controls the activities and operations of the other S/C subsystems and the science instruments. In addition, the C&DH receives, collects, and multiplexes the science, engineering, and housekeeping data from the Observatory and provides the data stream to the Telecom subsystem for transmission to the ground. Spitzer uses a dual-string C&DH design to provide full redundancy. The C&DH provides redundant hardware command decoders, Reed-Solomon downlink encoding functions, and a stable clock to correlate data and events. The components of the C&DH are as follows: Flight Processor Card fFPC). The FPC is RAD6000 based and operates at 20 MHz. It contains 128 Mbytes of volatile memory and 3 Mbytes of non-volatile memory. Mass Memory Card (MMC). The two MMCs contain a total of 2 Gbytes of Dynamic Random Access Memory (1 Gbytes each) and are used to store science data and recorded engineering data. Fast Up link/Downlink (FULDL) Card, The FULDL card accepts a serial input command uplink data stream from the Telecom subsystem, and provides a serial telemetry stream to the Telecom subsystem for downlink. The FULDL card supports uplink rates from 7.8125 bps to 2000 bps and downlink rates from 40 bps to 2.2 Mbps. Pavload/PCS Interface Card (PPIC). The PPIC provides serial interfaces for payload use and unique interfaces for the PCS components. It also allows monitoring of the propulsion subsystem pressures and S/C temperatures, and general-purpose digital input/output. C&DH Module Interface Card (CMIC). The CMIC provides Ah3 side selection for both C&DH and PDDU. It implements the reset and select fault protection functions. The CMIC contains memory, power on reset circuitry, the spacecraft clock, and the flight processor test interface. CTA Driver Multiplexer Unit (CDMUL The CDMU provides the control and monitor functions necessary for CTA operations. The internally redundant CDMU operates the CTA components and provides telemetry of the CTA configuration. * 25to20MHz . 128 MBytes DRAM . 3 0 MBytes EEPROM * Custom RS-422 IK) * Custom Serial IO Figure 2. Command & Data Handling Subsystem Block Diagram In-Flight Performance.
Recommended publications
  • Michael Garcia Hubble Space Telescope Users Committee (STUC)
    Hubble Space Telescope Users Committee (STUC) April 16, 2015 Michael Garcia HST Program Scientist [email protected] 1 Hubble Sees Supernova Split into Four Images by Cosmic Lens 2 NASA’s Hubble Observations suggest Underground Ocean on Jupiter’s Largest Moon Ganymede file:///Users/ file:///Users/ mrgarci2/Desktop/mrgarci2/Desktop/ hs-2015-09-a-hs-2015-09-a- web.jpg web.jpg 3 NASA’s Hubble detects Distortion of Circumstellar Disk by a Planet 4 The Exoplanet Travel Bureau 5 TESS Transiting Exoplanet Survey Satellite CURRENT STATUS: • Downselected April 2013. • Major partners: - PI and science lead: MIT - Project management: NASA GSFC - Instrument: Lincoln Laboratory - Spacecraft: Orbital Science Corp • Agency launch readiness date NLT June 2018 (working launch date August 2017). • High-Earth elliptical orbit (17 x 58.7 Earth radii). Standard Explorer (EX) Mission PI: G. Ricker (MIT) • Development progressing on plan. Mission: All-Sky photometric exoplanet - Systems Requirement Review (SRR) mapping mission. successfully completed on February Science goal: Search for transiting 12-13, 2014. exoplanets around the nearby, bright stars. Instruments: Four wide field of view (24x24 - Preliminary Design Review (PDR) degrees) CCD cameras with overlapping successfully completed Sept 9-12, 2014. field of view operating in the Visible-IR - Confirmation Review, for approval to enter spectrum (0.6-1 micron). implementation phase, successfully Operations: 3-year science mission after completed October 31, 2014. launch. - Mission CDR on track for August 2015 6 JWST Hardware Progress JWST remains on track for an October 2018 launch within its replan budget guidelines 7 WFIRST / AFTA Widefield Infrared Survey Telescope with Astrophysics Focused Telescope Assets Coronagraph Technology Milestones Widefield Detector Technology Milestones 1 Shaped Pupil mask fabricated with reflectivity of 7/21/14 1 Produce, test, and analyze 2 candidate 7/31/14 -4 10 and 20 µm pixel size.
    [Show full text]
  • REVIEW ARTICLE the NASA Spitzer Space Telescope
    REVIEW OF SCIENTIFIC INSTRUMENTS 78, 011302 ͑2007͒ REVIEW ARTICLE The NASA Spitzer Space Telescope ͒ R. D. Gehrza Department of Astronomy, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, Minnesota 55455 ͒ T. L. Roelligb NASA Ames Research Center, MS 245-6, Moffett Field, California 94035-1000 ͒ M. W. Wernerc Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͒ G. G. Faziod Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 ͒ J. R. Houcke Astronomy Department, Cornell University, Ithaca, New York 14853-6801 ͒ F. J. Lowf Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ G. H. Riekeg Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 ͒ ͒ B. T. Soiferh and D. A. Levinei Spitzer Science Center, MC 220-6, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125 ͒ E. A. Romanaj Jet Propulsion Laboratory, California Institute of Technology, MS 264-767, 4800 Oak Grove Drive, Pasadena, California 91109 ͑Received 2 June 2006; accepted 17 September 2006; published online 30 January 2007͒ The National Aeronautics and Space Administration’s Spitzer Space Telescope ͑formerly the Space Infrared Telescope Facility͒ is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope ͑1990͒, the Compton Gamma-Ray Observatory ͑1991–2000͒, and the Chandra X-Ray Observatory ͑1999͒. Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe.
    [Show full text]
  • Wide-Field Infrared Survey Explorer Launch Press
    PRess KIT/DECEMBER 2009 Wide-field Infrared Survey Explorer Launch Contents Media Services Information ................................................................................................................. 3 Quick Facts ............................................................................................................................................. 4 Mission Overview .................................................................................................................................. 5 Why Infrared? ....................................................................................................................................... 10 Science Goals and Objectives ......................................................................................................... 12 Spacecraft ............................................................................................................................................. 16 Science Instrument ............................................................................................................................. 19 Infrared Missions: Past and Present ............................................................................................... 23 NASA’s Explorer Program ................................................................................................................. 25 Program/Project Management .......................................................................................................... 27 Media Contacts J.D. Harrington
    [Show full text]
  • Semiconductor Detectors and Focal Plane Arrays for Far-Infrared Imaging
    OPTO−ELECTRONICS REVIEW 21(4), 406–426 DOI: 10.2478/s11772−013−0110−x Semiconductor detectors and focal plane arrays for far-infrared imaging A. ROGALSKI* Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00–908 Warsaw, Poland The detection of far−infrared (far−IR) and sub−mm−wave radiation is resistant to the commonly employed techniques in the neighbouring microwave and IR frequency bands. In this wavelength detection range the use of solid state detectors has been hampered for the reasons of transit time of charge carriers being larger than the time of one oscillation period of radiation. Also the energy of radiation quanta is substantially smaller than the thermal energy at room temperature and even liquid ni− trogen temperature. The realization of terahertz (THz) emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. Development of semiconductor focal plane arrays started in seventies last century and has revolutionized imaging sys− tems in the next decades. This paper presents progress in far−IR and sub−mm−wave semiconductor detector technology of fo− cal plane arrays during the past twenty years. Special attention is given on recent progress in the detector technologies for real−time uncooled THz focal plane arrays such as Schottky barrier arrays, field−effect transistor detectors, and micro− bolometers. Also cryogenically cooled silicon and germanium extrinsic photoconductor arrays, and semiconductor bolome− ter arrays are considered. Keywords: THz detectors, focal plane arrays, Schottky barrier diodes, semiconductor hot electron bolometers, extrinsic photodetectors, performance limits.
    [Show full text]
  • The Space Infrared Telescope Facility (SIRTF)
    header for SPIE use The Space Infrared Telescope Facility (SIRTF) James Fansona, Giovanni Faziob, James Houckc, Tim Kellyd, George Riekee, Domenick Tenerellif, and Milt Whittenf aJet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 bSmithsonian Astrophysical Observatory, Cambridge, MA 02138 cCornell University, Ithaca, NY, 14853 dBall Aerospace and Technologies Corp., Boulder, CO 80301 eUniversity of Arizona, Tucson, AZ, 85721 fLockheed Martin Missiles and Space Co., Sunnyvale, CA 94089 ABSTRACT This paper describes the design of the Space Infrared Telescope Facility (SIRTF) as the project enters the detailed design phase. SIRTF is the fourth of NASA’s Great Observatories, and is scheduled for launch in December 2001. SIRTF provides background limited imaging and spectroscopy covering the spectral range from 3 to 180 mm, complementing the capabilities of the other Great Observatories – the Hubble Space Telescope (HST), the Advanced X-ray Astrophysics Facility (AXAF), and the Compton Gamma Ray Observatory (CGRO). SIRTF will be the first mission to combine the high sensitivity achievable from a cryogenic space telescope with the imaging and spectroscopic power of the new generation of infrared detector arrays. The scientific capabilities of this combination are so great that SIRTF was designated the highest priority major mission for all of US astronomy in the 1990s. Keywords: telescope, cryogenic, infrared, astronomy, astrophysics, Great Observatory 1. INTRODUCTION The SIRTF mission has experienced dramatic evolution in both architecture and mission design. Originally conceived as a low Earth orbiting observatory serviced by astronauts from the Space Shuttle, SIRTF passed through a phase in high Earth orbit using first the Titan and later the smaller Atlas launch vehicle, to the current concept of a deep-space mission orbiting the sun, and using the still smaller Delta launch vehicle.
    [Show full text]
  • ASTR 2310: Chapter 6
    ASTR 2310: Chapter 6 Astronomical Detection of Light The Telescope as a Camera Refraction and Reflection Telescopes Quality of Images Astronomical Instruments and Detectors Observations and Photon Counting Other Wavelengths Modern Telescopes Refracting / Reflecting Telescopes 0 Refracting Telescope: Lens focuses light onto the focal plane Focal length Reflecting Telescope: Concave Mirror focuses light onto the focal Focal length plane Almost all modern telescopes are reflecting telescopes. Secondary Optics 0 In reflecting telescopes: Secondary mirror, to re- direct light path towards back or side of incoming light path. Eyepiece: To view and enlarge the small image produced in the focal plane of the primary optics. Disadvantages of 0 Refracting Telescopes • Chromatic aberration: Different wavelengths are focused at different focal lengths (prism effect). Can be corrected, but not eliminated by second lens out of different material. • Difficult and expensive to produce: All surfaces must be perfectly shaped; glass must be flawless; lens can only be supported at the edges. The Best Location for a Telescope0 Far away from civilization – to avoid light pollution The Best Location for a Telescope (II)0 Paranal Observatory (ESO), Chile http://en.wikipedia.org/wiki/Paranal_Observatory On high mountain-tops – to avoid atmospheric turbulence ( seeing) and other weather effects The Powers of a Telescope: 0 Size does matter! 1. Light-gathering power: Depends on the surface area A of the primary lens / D mirror, proportional to diameter squared: A = pi (D/2)2 The Powers of a Telescope (II) 0 2. Resolving power: Wave nature of light => The telescope aperture produces fringe rings that set a limit to the resolution of the telescope.
    [Show full text]
  • Report by the ESA–ESO Working Group on Extra-Solar Planets
    Report by the ESA–ESO Working Group on Extra-Solar Planets 4 March 2005 Summary Various techniques are being used to search for extra-solar planetary signatures, including accurate measurement of radial velocity and positional (astrometric) dis- placements, gravitational microlensing, and photometric transits. Planned space experiments promise a considerable increase in the detections and statistical know- ledge arising especially from transit and astrometric measurements over the years 2005–15, with some hundreds of terrestrial-type planets expected from transit mea- surements, and many thousands of Jupiter-mass planets expected from astrometric measurements. Beyond 2015, very ambitious space (Darwin/TPF) and ground (OWL) experiments are targeting direct detection of nearby Earth-mass planets in the habitable zone and the measurement of their spectral characteristics. Beyond these, ‘Life Finder’ (aiming to produce confirmatory evidence of the presence of life) and ‘Earth Imager’ (some massive interferometric array providing resolved images of a distant Earth) arXiv:astro-ph/0506163v1 8 Jun 2005 appear as distant visions. This report, to ESA and ESO, summarises the direction of exo-planet research that can be expected over the next 10 years or so, identifies the roles of the major facilities of the two organisations in the field, and concludes with some recommendations which may assist development of the field. The report has been compiled by the Working Group members and experts (page iii) over the period June–December 2004. Introduction & Background Following an agreement to cooperate on science planning issues, the executives of the European Southern Observatory (ESO) and the European Space Agency (ESA) Science Programme and representatives of their science advisory structures have met to share information and to identify potential synergies within their future projects.
    [Show full text]
  • (IRAS) Infrared Telescope in Space How Does It Work?
    INSTRUCTIONS ARE ON PAGE 7 Infrared Astronomical Satellite (IRAS) Infrared telescope in space How does it work? http://sciencing.com/infrared-telescope-work-4926827.html Infrared telescopes use the same components and follow the same principles as visible light telescopes; they use a combination of lenses and mirrors to gather and focus radiation onto special detectors and then the data is translated by computer into useful information. The detectors are usually a collection of specialized solid-state digital devices: often the material for these is the superconductor alloy HgCdTe (mercury cadmium telluride). The entire telescope has to be kept to a temperature of just a few degrees above absolute zero because otherwise the telescope itself would emit infrared radiation (heat) which would interfere with the observations. Mission/uses http://coolcosmos.ipac.caltech.edu/cosmic_classroom/cosmi c_reference/irastro_history.html IRAS was successfully launched on January 25, 1983. It revealed that some young stars have disks of minute, solid dust particles, suggesting that such stars are in the process of forming planetary systems. (It can detect the early formation of stars) It has discovered 6 new galaxies It can detect radiation thought to be from the merge of 2 galaxies. Swift satellite Gamma ray telescope based in space How does it work? https://www.reference.com/science/gamma-ray-telescope-work- bcddbfeaa873cdd2# Gamma ray telescopes operate on satellites and carry special detectors tuned to measure high-energy gamma rays at various energy levels. Astronomers aim the satellite at potential gamma ray sources and map the resulting data. Sometimes, the data is filtered to remove low-level gamma radiation and reveal significant emissions.
    [Show full text]
  • UV and Infrared Astronomy
    Why Put a Telescope In Space? • Access to light that does not penetrate the atmosphere • No seeing. A telescope can reach the diffraction limit: 1.22 l/D radians Astronomy in Space. I. UV Astronomy Ultraviolet Astronomy 912-3650 Å (Lyman Limit to Balmer jump) • Continuua of hot stars (spectral types O,B,A) • H I Lyman lines (1-n transitions) • Resonance lines of Li-like ions C IV, N V, O VI • H2 Lyman and Werner bands Normal incidence optics • Special UV-reflective coatings The Far Ultraviolet 912 to 1150 Å • Defined by Lyman limit, MgF cutoff at 1150 Å • LiF + Al reflects longward of 1050 Å • SiC reflects at shorter wavelengths The Astronomy Quarterly, Vol. 7, pp. 131-142, 1990 0364-9229f90 $3.00+.00 Printed in the USA. All rights reserved. Copyright (c) 1990 Pergamon Press plc ASTRONOMICAL ADVANTAGES History OFAN • 9/1/1946: Lyman Spitzer EXTRA-TERRESTRIAL OBSERVATORY proposed a Space Telescope in LYMAN SPITZER, Jr. ’ a Report to project Rand This study points out, in a very preliminary way, the results that might be expected from astronomical measurements made with a satellite • 1966: Spitzer (Princeton) vehicle. The discussion is divided into three parts, corresponding to three different assumptions concerning the amount of instrumentation provided. chairs NASA Ad Hoc In the first section it is assumed that no telescope is provided; in the second a 10-&h reflector is assumed; in the third section some of the results Committee on the "Scientific obtainable with a large reflecting telescope, many feet in diameter, and revolving about the earth above the terrestrial atmosphere, are briefly Uses of the Large Space sketched.
    [Show full text]
  • The Spitzer Space Telescope and the IR Astronomy Imaging Chain
    Spitzer Space Telescope (A.K.A. The Space Infrared Telescope Facility) The Infrared Imaging Chain Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 1/38 The infrared imaging chain Generally similar to the optical imaging chain... 1) Source (different from optical astronomy sources) 2) Object (usually the same as the source in astronomy) 3) Collector (Spitzer Space Telescope) 4) Sensor (IR detector) 5) Processing 6) Display 7) Analysis 8) Storage ... but steps 3) and 4) are a bit more difficult! Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 2/38 The infrared imaging chain Longer wavelength – need a bigger telescope to get the same resolution or put up with lower resolution Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 3/38 Emission of IR radiation Warm objects emit lots of thermal infrared as well as reflecting it Including telescopes, people, and the Earth – so collection of IR radiation with a telescope is more complicated than an optical telescope Optical image of Spitzer Space Telescope launch: brighter regions are those which reflect more light IR image of Spitzer launch: brighter regions are those which emit more heat Infrared wavelength depends on temperature of object Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 4/38 Atmospheric absorption The atmosphere blocks most infrared radiation Need a telescope in space to view the IR properly Fundamentals of Astronomical Imaging – Spitzer Space Telescope – 8 May 2006 5/38
    [Show full text]
  • Stsci Newsletter: 2011 Volume 028 Issue 02
    National Aeronautics and Space Administration Interacting Galaxies UGC 1810 and UGC 1813 Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) 2011 VOL 28 ISSUE 02 NEWSLETTER Space Telescope Science Institute We received a total of 1,007 proposals, after accounting for duplications Hubble Cycle 19 and withdrawals. Review process Proposal Selection Members of the international astronomical community review Hubble propos- als. Grouped in panels organized by science category, each panel has one or more “mirror” panels to enable transfer of proposals in order to avoid conflicts. In Cycle 19, the panels were divided into the categories of Planets, Stars, Stellar Rachel Somerville, [email protected], Claus Leitherer, [email protected], & Brett Populations and Interstellar Medium (ISM), Galaxies, Active Galactic Nuclei and Blacker, [email protected] the Inter-Galactic Medium (AGN/IGM), and Cosmology, for a total of 14 panels. One of these panels reviewed Regular Guest Observer, Archival, Theory, and Chronology SNAP proposals. The panel chairs also serve as members of the Time Allocation Committee hen the Cycle 19 Call for Proposals was released in December 2010, (TAC), which reviews Large and Archival Legacy proposals. In addition, there Hubble had already seen a full cycle of operation with the newly are three at-large TAC members, whose broad expertise allows them to review installed and repaired instruments calibrated and characterized. W proposals as needed, and to advise panels if the panelists feel they do not have The Advanced Camera for Surveys (ACS), Cosmic Origins Spectrograph (COS), the expertise to review a certain proposal. Fine Guidance Sensor (FGS), Space Telescope Imaging Spectrograph (STIS), and The process of selecting the panelists begins with the selection of the TAC Chair, Wide Field Camera 3 (WFC3) were all close to nominal operation and were avail- about six months prior to the proposal deadline.
    [Show full text]
  • James Webb Space Telescope
    JAMES WEBB SPACE TELESCOPE ® Are we alone? How did we get here? The James GO BEYOND WITH BALL. Webb Space Telescope will play an important role in answering our most fundamental questions. As NASA’s next premier observatory, the Webb telescope will study emissions from objects formed when the universe was just beginning. OVERVIEW QUICK FACTS Serving as the premier observatory of the next • Webb’s primary mirror is comprised of 18 decade, NASA’s Webb telescope will revolutionize our hexagonal mirror segments, each 1.3 meters understanding of the cosmos as it studies every phase of (4.3 feet) in diameter our universe’s history, from the first luminous glows after the Big Bang to the evolution of our own solar system. • Each mirror segment weighs about 20 kg (46 lbs.) As the world’s largest infrared telescope, Webb will offer unprecedented resolution and sensitivity from long- • The primary mirror’s total diameter is 6.5 m wavelength visible light, near-infrared and mid-infrared. It (21 feet 4 in.) will detect objects up to 400 times more faint than can be • The primary mirror’s gold coating is highly observed by current ground- and space-based telescopes. reflective over all the wavelengths the Webb has four scientific goals: telescope will see, from visible to mid- • Search for the first light after the Big Bang infrared • Determine how galaxies evolved • Because Webb is an infrared telescope, • Observe the birth of stars and protoplanetary systems the mirrors and actuators must function at temperatures as low as -400⁰ F (33K) • Investigate the properties of planetary systems and the origins of life • Webb is the largest mirror ever flown in space • Webb is the first mirror to deploy in space.
    [Show full text]