(South Bay Water Reclamation Plant) 2009

Total Page:16

File Type:pdf, Size:1020Kb

(South Bay Water Reclamation Plant) 2009 THE CITY OF SAN DIEGO Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant) 2009 City of San Diego Ocean Monitoring Program Public Utilities Department Environmental Monitoring and Technical Services Division THE CITY OF SAN DIEGO June 30, 2010 Mr. David Gibson, Executive Officer Regional Water Quality Control Board San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123 Attention: POTW Compliance Unit Dear Sir: Enclosed is the 2009 Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall, South Bay Water Reclamation Plant as required per NPDES Permit No. CA0109045, Order No. 2006-067. This report contains data summaries, analyses and interpretations of the various portions of the ocean monitoring program, including oceanographic conditions, water quality, sediment characteristics, macro benthic communities, demersal fishes and megabenthic invertebrates, and bioaccumulation ofcontaminants in fish tissues. These data are also presented in the International Boundary and Water Commission's annual report for discharge from the International Wastewater Treatment Plant (NPDES Permit No. CA0108928, Order No. 96-50). I certifY under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry ofthe person or persons who manage the system, or those persons directly responsible for gathering the information, I certifY that the information submitted is, to the best ofmy knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. Steve Meyer Deputy Public Utilities Director SM/tds Enclosures: 1. Annual Receiving Waters Monitoring Report 2. CD containing PDF file of this report cc: Department of Environmental Health, County of San Diego U.S. Environmental Protection Agency, Region 9 Public Utilities Department Library, City of San Diego Environmental Monitoring and Technical Services Division • Public Utilities 2392 Kincaid Rood • Son Diego, CA 92101·0811 Tel (619) 758·2300 Fox {619) 758·2309 Annual Receiving Waters Monitoring Report for the South Bay Ocean Outfall (South Bay Water Reclamation Plant) 2009 Prepared by: City of San Diego Ocean Monitoring Program Public Utilities Department Environmental Monitoring and Technical Services Division June 2010 Table of Contents Credits and Acknowledgements................................................................................................iii Executive Summary ...................................................................................................................1 Chapter 1. General Introduction ............................................................................................7 Introduction ..............................................................................................................................7 Regular Fixed-Grid Monitoring...............................................................................................8 Random Sample Regional Surveys...........................................................................................9 Literature Cited ........................................................................................................................9 Chapter 2. Oceanographic Conditions ..................................................................................13 Introduction ...........................................................................................................................13 Materials and Methods ..........................................................................................................14 Results and Discussion ..........................................................................................................15 Summary and Conclusions ....................................................................................................24 Literature Cited .....................................................................................................................26 Chapter 3. Water Quality ......................................................................................................29 Introduction ...........................................................................................................................29 Materials and Methods ..........................................................................................................29 Results and Discussion ..........................................................................................................31 Summary and Conclusions ....................................................................................................37 Literature Cited .....................................................................................................................37 Chapter 4. Sediment Characteristics ....................................................................................39 Introduction ...........................................................................................................................39 Materials and Methods ..........................................................................................................39 Results and Discussion ..........................................................................................................41 Summary and Conclusions.....................................................................................................46 Literature Cited .....................................................................................................................47 Chapter 5. Macrobenthic Communities ................................................................................51 Introduction ...........................................................................................................................51 Materials and Methods ..........................................................................................................51 Results and Discussion ..........................................................................................................52 Summary and Conclusions ....................................................................................................60 Literature Cited .....................................................................................................................61 Chapter 6. Demersal Fishes and Megabenthic Invertebrates .............................................65 Introduction ...........................................................................................................................65 Materials and Methods ..........................................................................................................65 Results and Discussion...........................................................................................................66 Summary and Conclusions ....................................................................................................74 Literature Cited .....................................................................................................................76 i Table of Contents (continued) Chapter 7. Bioaccumulation of Contaminants in Fish Tissues ...........................................79 Introduction ...........................................................................................................................79 Materials and Methods ..........................................................................................................79 Results and Discussion ..........................................................................................................81 Summary and Conclusions.....................................................................................................87 Literature Cited .....................................................................................................................90 Chapter 8. San Diego Regional Survey — Sediment Conditions .......................................93 Introduction ...........................................................................................................................93 Materials and Methods ..........................................................................................................93 Results and Discussion ..........................................................................................................95 Summary and Conclusions...................................................................................................103 Literature Cited ...................................................................................................................103 Chapter 9. San Diego Regional Survey — Macrobenthic Communities .........................105 Introduction .........................................................................................................................105 Materials and Methods ........................................................................................................105 Results and Discussion ........................................................................................................107 Summary and Conclusions ..................................................................................................116
Recommended publications
  • Scarica Il Notiziario S.I.M
    NOTIZIARIOPubblicazione semestrale della Società Italiana di Malacologia - c/o Museo di ScienzeS.I.M. Planetarie, via Galcianese 20H - 59100 Prato Anno 31 · n. 2 · luglio-dicembre 2013 Supplemento del Bollettino Malacologico vol. 49 n. 2 Vita societaria a cura di Paolo Crovato e Maurizio Forli Sommario Vita sociale molluschi marini del Mediterraneo. Volume V. A cura di P. Crovato 2 In memoriam Mauro Pizzini (13 luglio 1946 - 4 novembre 2013) 16 Salemi M., 2013 Lumache tropicali- Tropical snail. A cura di M. Forli 4 Verbale della riunione del Consiglio Direttivo tenuta in Montesilvano (PE) il 14 settembre 2013 5 Convocazione dell’Assemblea ordinaria dei soci Eventi S.I.M., Napoli, 7.04.2014 17 San Felice Circeo (RM), 7° Convegno Malacologico 6 Elenco delle pubblicazioni S.I.M. disponibili 17 Prato, Mirabilia, Le Conchiglie - Mostra Mercato 7 Nota del Presidente 18 Cambridge 7-11 settembre 2014, 7° Congresso delle Società Europee di Malacologia 8 Segnalazioni bibliografiche 18 Cefalù-Castelbuono, 16-18 maggio 2014, Presentazione libri e recensioni 2° Congresso Internazionale 18 Mostre e Borse 2014 15 Cecalupo A. & Perugia I., 2013. The Cerithiopsidae (Caenogastropoda: Triphoroidea) of Espiritu Santo - Vanuatu (South Pacific Ocean). Varie A cura di P. Crovato 19 Aggiunte e correzioni all’elenco dei soci 15 Scaperrotta M., Bartolini S. & Bogi C., 2013. Accrescimenti. Stadi di accrescimento dei 20 Quote Sociali 2014 In memoriam Mauro Pizzini (13 luglio 1946 – 4 novembre 2013) Vita sociale Mauro Pizzini ci ha lasciato pochi giorni fa. Martedì 5 novembre è arrivata la notizia che in molti temevamo: un’e-mail di sua figlia Chiara annunciava che Mauro era morto il giorno prima.
    [Show full text]
  • Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998
    Tampa Bay Benthic Monitoring Program: Status of Middle Tampa Bay: 1993-1998 Stephen A. Grabe Environmental Supervisor David J. Karlen Environmental Scientist II Christina M. Holden Environmental Scientist I Barbara Goetting Environmental Specialist I Thomas Dix Environmental Scientist II MARCH 2003 1 Environmental Protection Commission of Hillsborough County Richard Garrity, Ph.D. Executive Director Gerold Morrison, Ph.D. Director, Environmental Resources Management Division 2 INTRODUCTION The Environmental Protection Commission of Hillsborough County (EPCHC) has been collecting samples in Middle Tampa Bay 1993 as part of the bay-wide benthic monitoring program developed to (Tampa Bay National Estuary Program 1996). The original objectives of this program were to discern the ―health‖—or ―status‖-- of the bay’s sediments by developing a Benthic Index for Tampa Bay as well as evaluating sediment quality by means of Sediment Quality Assessment Guidelines (SQAGs). The Tampa Bay Estuary Program provided partial support for this monitoring. This report summarizes data collected during 1993-1998 from the Middle Tampa Bay segment of Tampa Bay. 3 METHODS Field Collection and Laboratory Procedures: A total of 127 stations (20 to 24 per year) were sampled during late summer/early fall ―Index Period‖ 1993-1998 (Appendix A). Sample locations were randomly selected from computer- generated coordinates. Benthic samples were collected using a Young grab sampler following the field protocols outlined in Courtney et al. (1993). Laboratory procedures followed the protocols set forth in Courtney et al. (1995). Data Analysis: Species richness, Shannon-Wiener diversity, and Evenness were calculated using PISCES Conservation Ltd.’s (2001) ―Species Diversity and Richness II‖ software.
    [Show full text]
  • Lafayette, LA 70503 Efg21 [email protected]
    E. F. Garcia Cycloscala DaW, 1889 NOVAPEX 5 (2-3): 57-68, 10 juil. 2004 On the genus Cycloscala Dali, 1889 (Gastropoda: Epitoniidae) in the Indo- Pacific, with comments on the type species, new records of known species, and the description of three new species. Emilio Fabiân GARCIA llSOakcrestDr. Lafayette, LA 70503 efg21 [email protected] KEYWORDS. Gastropoda, Epitoniidae, Cycloscala, Indo-Pacific. ABSTRACT. Ail described Indo-Pacific taxa referable to the epitoniid genus Cycloscala Dali, 1889 are listed and evaluated. The type species, Cycloscala echinaticosta (d'Orbigny, 1842) is discussed. Four described Indo-Pacific Cycloscala species, considered valid herewith, are treated: Cycloscala crenulata Pease, 1867; C. gazae Kilbum, 1985; C hyalina Sowerby II, 1844; and C revoluta Hedley, 1899. Three new species are described: Cycloscala armata, C. sardellae, and C. montrouzieri. INTRODUCTION. Scalaria echinaticosta d'Orbigny, 1842, as the type species for the subgenus. Background information. Although the genus Cycloscala was originally treated as a subgenus oï Epitonium by Dali (1889), Clench & This is the third part of a study of Indo-Pacific Tumer (1951), and Abbott (1974), Kilbum (1985) Epitoniidae in which extensions of known considered the species in this group sufficiently geographical ranges of a number of species and the distinct to raise its status to full genus, a treatment that description of new species is reported (Garcia, had been effected earlier by Jousseaume (1912:195). 2003, Garcia, 2004). The présent article deals with DuShane (1990) and Nakayama (2000, 2003) hâve epitoniid species placed in the genus Cycloscala followed Kilbum. Robertson (1994:107) is ambiguous Dali, 1889. The material used in thèse reports was in his treatment.
    [Show full text]
  • On the Raphitoma Pupoides (Monterosato, 1884) Complex, with the Description of a New Species (Mollusca Gastropoda)
    Biodiversity Journal , 2016, 7 (1): 103–115 MONOGRAPH A revision of the Mediterranean Raphitomidae, 3: on the Raphitoma pupoides (Monterosato, 1884) complex, with the description of a new species (Mollusca Gastropoda) Francesco Pusateri 1, Riccardo Giannuzzi-Savelli 2* & Stefano Bartolini 3 1via Castellana 64, 90135 Palermo, Italy; e-mail: [email protected] 2via Mater Dolorosa 54, 90146 Palermo, Italy; e-mail: [email protected] 3via e. Zacconi 16, 50137 Firenze, Italy; e-mail: [email protected] *Corresponding author ABSTRACT In the present work we present a complex of species of the family Raphitomidae (Mollusca Gastropoda) comprising three entities: two have multispiral protoconchs, Raphitoma pupoides (Monterosato, 1884), the less known R. radula (Monterosato, 1884) and a new species with paucispiral protoconch. KEY WORDS Mollusca; Conoidea; Raphitomidae; new species; Mediterranean Sea. Received 02.03.2016; accepted 24.03.2016; printed 30.03.2016 Proceedings of the Ninth Malacological Pontine Meeting, October 3rd-4th, 2015 - San Felice Circeo, Italy INTRODUCTION related species among different genera only based on their larval development (Bouchet, 1990). the family of Raphitomidae is a well supported In the present work we present the results on clade of the Conoidea (Bouchet et al., 2011). the a complex of species comprising three entities: genus Raphitoma Bellardi, 1847 as currently two have multispiral protoconchs, R. pupoides conceived includes, based on our estimates, ca. 40 (Monterosato, 1884), and the less known R. radula Mediterranean species, some of which are still (Monterosato, 1884); the other was discovered undescribed. Propaedeutic to the general revision while revising the materials in the Monterosato of the Mediterranean Raphitoma s.l., we have collection, where a lot (MCZR 16905) included focused on several pairs of species, differing only some specimens with paucispiral protoconch, la- or mostly in the size and shape of the protoconch belled by Monterosato himself “ V.
    [Show full text]
  • Bathymetry and Body Size in Marine Gastropods: a Shallow Water Perspective
    MARINE ECOLOGY PROGRESS SERIES Vol. 237: 143–149, 2002 Published July 18 Mar Ecol Prog Ser Bathymetry and body size in marine gastropods: a shallow water perspective Kaustuv Roy* Section of Ecology, Behavior and Evolution, Division of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0116, USA ABSTRACT: Spatial patterns of species body size across major environmental gradients are being quantified for terrestrial organisms, but similar efforts are largely lacking for marine invertebrates. Bathymetry represents a major environmental gradient in the oceans, and existing theoretical mod- els predict that species body size should decrease with increasing depth, especially for deep-sea spe- cies. Previous analyses of body size in deep-sea gastropods have shown size to increase with depth and hence contradict model predictions. In this study, I use data for 636 species of gastropods (in 10 major groups) living on the NE Pacific continental shelf to test hypotheses about processes that determine size-depth trends in marine gastropods. Results show that the gastropod family Turridae, a major component of both shallow-water and deep-sea biotas, shows similar size-depth trends in both environments but that predominantly shallow water families may show different patterns. In addition, size-depth trends may differ between clades and between different trophic groups. The implications of these results for better understanding the processes that underlie bathymetric trends in body size are discussed. KEY WORDS: Body size · Bathymetry · Gastropoda Resale or republication not permitted without written consent of the publisher INTRODUCTION relationships in the deep sea suggest that such trends may differ among taxa (see Rex & Etter 1998 for a Body size is considered to be one of the most impor- review).
    [Show full text]
  • Crangon Franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Crangon franciscorum Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Caridea Common gray shrimp Family: Crangonoidea, Crangonidae Taxonomy: Schmitt (1921) described many duncle segment (Wicksten 2011). Inner fla- shrimp in the genus Crago (e.g. Crago fran- gellum of the first antenna is greater than ciscorum) and reserved the genus Crangon twice as long as the outer flagellum (Kuris et for the snapping shrimp (now in the genus al. 2007) (Fig. 2). Alpheus). In 1955–56, the International Mouthparts: The mouth of decapod Commission on Zoological Nomenclature crustaceans comprises six pairs of appendag- formally reserved the genus Crangon for the es including one pair of mandibles (on either sand shrimps only. Recent taxonomic de- side of the mouth), two pairs of maxillae and bate revolves around potential subgeneric three pairs of maxillipeds. The maxillae and designation for C. franciscorum (C. Neocran- maxillipeds attach posterior to the mouth and gon franciscorum, C. franciscorum francis- extend to cover the mandibles (Ruppert et al. corum) (Christoffersen 1988; Kuris and Carl- 2004). Third maxilliped setose and with exo- ton 1977; Butler 1980; Wicksten 2011). pod in C. franciscorum and C. alaskensis (Wicksten 2011). Description Carapace: Thin and smooth, with a Size: Average body length is 49 mm for single medial spine (compare to Lissocrangon males and 68 mm for females (Wicksten with no gastric spines). Also lateral (Schmitt 2011). 1921) (Fig. 1), hepatic, branchiostegal and Color: White, mottled with small black spots, pterygostomian spines (Wicksten 2011). giving gray appearance. Rostrum: Rostrum straight and up- General Morphology: The body of decapod turned (Crangon, Kuris and Carlton 1977).
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
    August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject.
    [Show full text]
  • Lissocrangon Stylirostris Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Lissocrangon stylirostris Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Caridea Common shrimp Family: Crangonoidea, Crangonidae Taxonomy: Schmitt (1921) described many stylirostris (Kuris et al. 2007). shrimp in the genus Crago (e.g. Crago alas- Cephalothorax: kensis and C. franciscorum) and reserved Eyes: Small, pigmented and not cov- the genus Crangon for the snapping shrimp ered by carapace. (now in the genus Alpheus). In 1955–56, Antenna: Antennal scale the International Commission on Zoological (scaphocerite) short, just a little over half the Nomenclature formally reserved the genus length of the carapace, blade with oblique in- Crangon for the sand shrimps only. Kuris ner margin; spine longer than blade (Fig. 2). and Carlton (1977) designated the new, and Stylocerite (basal, lateral spine on antennule) currently monotypic, genus Lissocrangon longer than first antennular peduncle segment based on a lack of gastric carapace spines. and blade-like (Wicksten 2011). Known synonyms for L. stylirostris include Mouthparts: The mouth of decapod Crago stylirostris and Crangon stylirostris crustaceans comprises six pairs of appendag- (Wicksten 2011). es including one pair of mandibles (on either side of the mouth), two pairs of maxillae and Description three pairs of maxillipeds. The maxillae and Size: Type specimen 55 mm in body length maxillipeds attach posterior to the mouth and (Ricketts and Calvin 1971) with average extend to cover the mandibles (Ruppert et al. length 30–61 mm (male average 43 mm and 2004). Third maxilliped stout (particularly first female 61 mm, Wicksten 2011; size range segment, which is broadly dilated) and with 20–70 mm for females, 15–49 mm for exopod (Kuris and Carlton 1977; Wicksten males, Marin Jarrin and Shanks 2008).
    [Show full text]
  • Marine Mollusca of Isotope Stages of the Last 2 Million Years in New Zealand
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232863216 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) Article in Journal- Royal Society of New Zealand · March 2011 DOI: 10.1080/03036758.2011.548763 CITATIONS READS 19 690 1 author: Alan Beu GNS Science 167 PUBLICATIONS 3,645 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Integrating fossils and genetics of living molluscs View project Barnacle Limestones of the Southern Hemisphere View project All content following this page was uploaded by Alan Beu on 18 December 2015. The user has requested enhancement of the downloaded file. This article was downloaded by: [Beu, A. G.] On: 16 March 2011 Access details: Access Details: [subscription number 935027131] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37- 41 Mortimer Street, London W1T 3JH, UK Journal of the Royal Society of New Zealand Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t918982755 Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia) AG Beua a GNS Science, Lower Hutt, New Zealand Online publication date: 16 March 2011 To cite this Article Beu, AG(2011) 'Marine Mollusca of isotope stages of the last 2 million years in New Zealand. Part 4. Gastropoda (Ptenoglossa, Neogastropoda, Heterobranchia)', Journal of the Royal Society of New Zealand, 41: 1, 1 — 153 To link to this Article: DOI: 10.1080/03036758.2011.548763 URL: http://dx.doi.org/10.1080/03036758.2011.548763 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Lectotype Designation for Murex Nebula Montagu 1803 (Mangeliidae) and Its Implications for Bela Leach in Gray 1847
    Zootaxa 3884 (1): 045–054 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3884.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:2F08C408-528D-405C-92E2-27FFCCA95720 Lectotype designation for Murex nebula Montagu 1803 (Mangeliidae) and its implications for Bela Leach in Gray 1847 SCARPONI DANIELE1*, BERNARD LANDAU2, RONALD JANSSEN3, HOLLY MORGENROTH4 & GIANO DELLA BELLA5 1 Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna University, Via Zamboni 67, 40126, Bologna, Italy 2 Naturalis Biodiversity Center, Leiden, The Netherlands and Departamento de Geologia e Centro de Geologia, Faculdade de Ciên- cias, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. E-mail:[email protected] 3 Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany. E-mail: [email protected] 4Royal Albert Memorial Museum & Art Gallery, Queen Street, Exeter, Great Britain. E-mail: [email protected]. 5Museo Geologico Giovanni Capellini, Via Zamboni 63, 40126 Bologna, Italy *Corresponding author: Daniele Scarponi. E-mail: [email protected] Abstract Bela Leach in Gray is a misapplied and broadly defined genus within the family Mangeliidae Fischer, 1883. Examination of material from the Montagu collection at the Royal Albert Memorial Museum & Art Gallery (RAMM) in Exeter (UK) led to the discovery of six specimens of Murex nebula Montagu 1803 (the type species of Bela). This material is considered to belong to the original lot used by Montagu to define his species. We selected the best-preserved specimen as a lectotype.
    [Show full text]