Interactions in Soft Bottom Benthic Communities

Total Page:16

File Type:pdf, Size:1020Kb

Interactions in Soft Bottom Benthic Communities HELGOI~NDER MEI~Rt~SUNTERSUCHUNGI~N Helgol~inder Meeresunters. 45, 301-316 (1991} Interactions in soft bottom benthic, communities: quantitative aspects of behaviour in the surface deposit feeders Pygospio elegans (Polychaeta) and Macoma balthica (Bivalvia}* Thomas Brey Alfred- Wegener-Institut ffir Polar- und Meeresforschung; ColumbusstraBe, D-W-2850 Bremerhaven, Federal Republic of Germany ABSTRACT: The surface deposit feeding species Pygospio elegans and Macoma balthica are dominant members of many sandy bottom communities of northern boreal regions. The feeding mode of both species and the tube-building of P. elegans are assumed to affect community structure by interactions with other species. The weight of tubes of P. elegans varied between 2 and 13 g DW/ 100 cm 2 at the two stations investigated and during the year, which is equivalent to 230-1500 cm of tubes per 100 cm 2 of sediment surface. Sediment stability may be affected directly or indirectly by the amount of tubes present. M. balttn'ca shows a hnear relation between the maximum size of particles which can be inhaled and animal length. In Kiel Bay, particles > 0.5 mm are out of the range of this species. In summer, the potential feeding area (PFA,) of a P. elegans population at one station in Kiel Bay was 1.8 times the available surface area. The PFA of three different populations of M. balthica in Kiel Bay exceeded the available surface area by factors of 2.6, 2.7, and 3.2. These findings indicate strong intra- and interspecific competition for food. Additionally, the feeding of both species may strongly affect the recruitment of benthic species via pelagic larvae. Experiments are proposed to evaluate the significance of the investigated behavioural aspects for community structure. INTRODUCTION Intra- and interspecific interactions and their significance for community structure in soft bottoms have been the subject of many publications during recent years (Bell & Coull, 1980; Black & Peterson, 1988; Blaricom, i982; Bonsdorff et al., 1986; Gallagher et al., 19831 Hunt et aE, 19871 Levin, 19811 Luckenbach, 1987; Olafsson, 1989; Peterson, 1979; Reise, 1983; Whiflach & Zajak, 19851 Wilson, 1983b; Woodin, 1981; and many others). Any interaction depends on the effect of one animal on another and vice versa, i.e. interactions are based on certain aspects of the life style or behaviour of the animals. In most cases, we know the mechanisms which cause a positive or negative effect of one animal on another, e.g. protection, predation, territorialism, occupation of space, or disturbance. However, with respect to soft bottom benthic communities, only a few authors have examined the "quantity" of a certain behaviour which an interaction may "AWI Publication No. 393 Biologische Anstalt Helgoland, Hamburg 302 T. Brey be based on, e.g. the movement of a meiobenthic predator (Watzin, 1985); the sediment turnover of a population of sediment feeders (Cadee, 1976 and references therein), or the pore water transport rates of a population of tube building polychaetes (Aller, 1980). The aim of this paper is to evaluate some aspects of behaviour which are potential sources of interactions in two surface deposit feeding species, the tube building polychaete t~gospio elegans (Clapar~de) and the bivalve Macoma balthica (L.), which are both very common in shallow sandy sediments of the northern boreal regions. In both species, feeding is assumed to affect other animals which hve at the sediment surface, either via disturbance and competition for food or via predation (see e.g. Hines et al., 1989; Olafsson, 1989; Wilson, 1981). I have tried to quantify the potential feeding area at the sediment surface, i.e. the area within the range of the tentacles (P. elegans) or the inhalent siphon (M. baltln'ca) of the animals. Additionally, I investigated the particle size selection of M. balthica, which may play an important role for the successful recruitment of species with pelagic larvae (see Hines et al., 1989) and the amount of sediment which is bound in the tubes of P. elegans, which are assumed to affect pore water transport and sediment stabihty. METHODS Samples were taken at two stations, the subtidal station "Gabelsflach" (GF) in Kiel Bay (medium/fine sand, 12 m water depth) and the intertidal station "Westerhever" (WH) in the German Wadden Sea {fine sand), during 1986 to 1988 {Fig. 1). Specimens for laboratory experiments were sampled at the station GF with a 0.1 m 2 VanVeen grab or a 0.09 m 2 box corer. All other samples were taken by hand {station GF: diver} operated corers (27 cm 2, 10 cm sampling depth), fixed in a seawater solution of 0.4 % formaldehyde and 3% Kohrsolin (see Brey, 1986}, stained with Bengal rose, and sieved through 0.25 mm in the laboratory. Pygospio elegans - potential feeding area (PFA) At the station GF a 40 x 30 crn PVC tray was filled with a 4 cm layer of natural sediment, which had been sieved through 1 rnm previously in order to remove larger animals. On top of this sediment layer I put unsieved sediment from the upper 3-5 cm of the content of two grabs. Afterwards, the tray was filled with seawater. After two days, the specimens of P. elegans in the tray had re-established their tubes and were easily recognizable by the area around each tube, which was swept clean of all fine detritus particles. The size of 50 (June 86) and 60 (July 87) randomly selected PFAs was measured. Pygospio elegans- tubes The amount of tubes of/9. elegans was investigated at severa] dates at both stations. The tubes were collected from core samples, dried at 80~ and weighed. In the laboratory, specimens of P. elegans were allowed to build tubes in 15-ml glass tubes filled with azoic sediment and placed in a circulating sea water system at 12 ~ Animals and their tubes were measured and weighed. Interactions in soft bottom benthos 303 8 ~ 10 ~ 12 ~ 14 ~ I ~J )iiiiiiii!iiiiii!iiiiiiiii k Ii r " iiiii!i" ii;i iii!iiiiiii!!' :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::1= y o ~ 8 S e ..:::::::::::::::::::::::::::!):~:~:::::~:~:~:~:~:~.:~:~::...........:...:~i~i::~!~i~i~!~i~i:~!~!~!:i~i~iii~ ' @ .5 ,,~",e~ -t " ..i:~:i:i:i:?:i:!:'i:i:!:i:i:i:~:~:!:i:i:!:!:!:!:i:i:~:i:!:!:!:!:!:i:i:~:i:i:?:!:~:!:!:!:!:!:!:i:i:i:??~:~:~:~:~:i:~!i!i:. : ..,.-~" .. ==========================================================================================================:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -........,....======================= ========================================================================================================================:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::::::::::::::::::::::::::::. ... =======================================================================================:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: =====================::::::::::~!!:! :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::!:i; :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::r .................................-.,-.....,,..-..,~ ...................,,-~.-~ ......................................................................................... ......................................... :.:....................................... :.:............... :....................... :.x.: ...............:............... t ....................................................................................... ~ ~~-.~-~: 8 = E 10 ~ 12 = 14 ~ Fig'. 1. Location of stations Gabelsflach (GF, star) in Kiei Bay and Westerhever (WH, square) in the German Wadden Sea 304 T. Brey Macoma balthica - potential feeding area (PFA) Single specimens were measured to the lower 0.1 ram, placed in a tray filled with 6 cm natural sediment and kept at 12~C. The,animals buried themselves very rapidly and started to suck material from the surface with their inhalent siphon. The area which had been swept clean was measured after 2 and 5 h in a first set of experiments, and after 24 h in a second set. I~r balthica - particle selection Self & Jumars (1988) stated that M. balthica does not select particles of a certain size with its inhalent siphon, but there may be an upper hmit of particle size which is related to the size of the animal. The maximum size of particles in the mantle cavity of preserved specimens (4-17 mm length) from the station GF was measured under the stereo microscope and correlated with animal length. RESULTS Pygospio elegans - potential feeding area (PFA) Table 1 shows the results of these experiments. The average PFA of P. elegans was 57 mm 2 {June 86) and 91 mm 2 (July 87), respectively. Figure 2 shows the frequency distribution of PFA in July 87. The minimum distance between two tubes was below 4 mm in both experiments. Direct observations showed that P. elegans is able to put the greater part of its body out of the tube, if the range of the tentacles is not sufficient to Table 1. The average feeding area of Pygospio elegans from the station GF in two laboratory experiments. Min. dist.: Minimum distance between two tubes; S.D.: Standard deviation Date N m -2 Feeding area Min. dist. Mean radius S.D. Average area (mm) (mm) (mm 2) 19 June 86 4200 3.5 4.26 0.9 57 15 July 87 3800 3,9 5.46 2.0 91 reach a certain spot at the sediment surface. Furthermore, I could not observe any sign of aggressive reactions
Recommended publications
  • COMPLETE LIST of MARINE and SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND Marine Algae Sponges
    COMPLETE LIST OF MARINE AND SHORELINE SPECIES 2012-2016 BIOBLITZ VASHON ISLAND List compiled by: Rayna Holtz, Jeff Adams, Maria Metler Marine algae Number Scientific name Common name Notes BB year Location 1 Laminaria saccharina sugar kelp 2013SH 2 Acrosiphonia sp. green rope 2015 M 3 Alga sp. filamentous brown algae unknown unique 2013 SH 4 Callophyllis spp. beautiful leaf seaweeds 2012 NP 5 Ceramium pacificum hairy pottery seaweed 2015 M 6 Chondracanthus exasperatus turkish towel 2012, 2013, 2014 NP, SH, CH 7 Colpomenia bullosa oyster thief 2012 NP 8 Corallinales unknown sp. crustous coralline 2012 NP 9 Costaria costata seersucker 2012, 2014, 2015 NP, CH, M 10 Cyanoebacteria sp. black slime blue-green algae 2015M 11 Desmarestia ligulata broad acid weed 2012 NP 12 Desmarestia ligulata flattened acid kelp 2015 M 13 Desmerestia aculeata (viridis) witch's hair 2012, 2015, 2016 NP, M, J 14 Endoclaydia muricata algae 2016 J 15 Enteromorpha intestinalis gutweed 2016 J 16 Fucus distichus rockweed 2014, 2016 CH, J 17 Fucus gardneri rockweed 2012, 2015 NP, M 18 Gracilaria/Gracilariopsis red spaghetti 2012, 2014, 2015 NP, CH, M 19 Hildenbrandia sp. rusty rock red algae 2013, 2015 SH, M 20 Laminaria saccharina sugar wrack kelp 2012, 2015 NP, M 21 Laminaria stechelli sugar wrack kelp 2012 NP 22 Mastocarpus papillatus Turkish washcloth 2012, 2013, 2014, 2015 NP, SH, CH, M 23 Mazzaella splendens iridescent seaweed 2012, 2014 NP, CH 24 Nereocystis luetkeana bull kelp 2012, 2014 NP, CH 25 Polysiphonous spp. filamentous red 2015 M 26 Porphyra sp. nori (laver) 2012, 2013, 2015 NP, SH, M 27 Prionitis lyallii broad iodine seaweed 2015 M 28 Saccharina latissima sugar kelp 2012, 2014 NP, CH 29 Sarcodiotheca gaudichaudii sea noodles 2012, 2014, 2015, 2016 NP, CH, M, J 30 Sargassum muticum sargassum 2012, 2014, 2015 NP, CH, M 31 Sparlingia pertusa red eyelet silk 2013SH 32 Ulva intestinalis sea lettuce 2014, 2015, 2016 CH, M, J 33 Ulva lactuca sea lettuce 2012-2016 ALL 34 Ulva linza flat tube sea lettuce 2015 M 35 Ulva sp.
    [Show full text]
  • A Comprehensive Wetland Program for Fringing Salt Marshes in the Ory K River, Maine Pamela A
    University of New England DUNE: DigitalUNE Environmental Studies Faculty Publications Environmental Studies Department 5-31-2007 A Comprehensive Wetland Program For Fringing Salt Marshes In The orY k River, Maine Pamela A. Morgan University of New England, [email protected] Jeremy Miller Wells National Estuarine Research Reserve Christopher Cayce Dalton Wells National Estuarine Research Reserve Michele Dionne Wells National Estuarine Research Reserve Follow this and additional works at: http://dune.une.edu/env_facpubs Part of the Environmental Health and Protection Commons, Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, Marine Biology Commons, Plant Sciences Commons, and the Systems Biology Commons Recommended Citation Morgan, Pamela A.; Miller, Jeremy; Dalton, Christopher Cayce; and Dionne, Michele, "A Comprehensive Wetland Program For Fringing Salt Marshes In The orkY River, Maine" (2007). Environmental Studies Faculty Publications. Paper 3. http://dune.une.edu/env_facpubs/3 This Article is brought to you for free and open access by the Environmental Studies Department at DUNE: DigitalUNE. It has been accepted for inclusion in Environmental Studies Faculty Publications by an authorized administrator of DUNE: DigitalUNE. For more information, please contact [email protected]. A Comprehensive Wetland Program for Fringing Salt Marshes in the York River, Maine A Final Report Submitted to the Environmental Protection Agency by: Dr. Pamela Morgan1 Jeremy Miller2 Christopher Cayce Dalton2,3 Dr. Michele Dionne2 1 University of New England Department of Environmental Studies 11 Hills Beach Road, Biddeford ME 04009 2 Wells National Estuarine Research Reserve 342 Laudholm Farm Road, Wells ME 04090 3 Town of York 186 York Street, York ME 03909 May 31, 2007 Contents Executive Summary ........................................................................................................5 Introduction .................................................................................................................
    [Show full text]
  • FAU Institutional Repository
    FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1984 Elsevier B.V. This manuscript is an author version with the final publication available at http://www.sciencedirect.com/science/journal/00220981 and may be cited as: Wilson, W. H., Jr. (1984). Non‐overlapping distributions of spionid polychaetes: the relative importance of habitat and competition. Journal of Experimental Marine Biology and Ecology, 75(2), 119‐127. doi:10.1016/0022‐0981(84)90176‐X J. Exp. Mar. Bioi. Ecol., 1984, Vol. 75, pp. 119-127 119 Elsevier JEM 217 NON-OVERLAPPING DISTRIBUTIONS OF SPIONID POLYCHAETES: THE RELATIVE IMPORTANCE OF HABITAT AND COMPETITIONI W. HERBERT WILSON, JR. Harbor Branch Institution, Inc .. R.R. 1, Box 196, Fort Pierce, FL 33450. U.S.A. Abstract: The spionid polychaetes, Pygospio elegans Claparede, Pseudopolydora kempi (Southern), and Rhynchospio arenincola Hartman are found in False Bay, Washington. Two species, Pygospio elegans and Pseudopolydora kempi, co-occur in the high intertidal zone. The third species Rhynchospio arenincola occurs only in low intertidal areas. Reciprocal transplant experiments were used to test the importance of intraspecific density, interspecific density, and habitat on the survivorship of experimental animals. For all three species, only habitat had a significant effect. Individuals of each species survived better in experimental containers in their native habitat, regardless of the heterospecific and conspecific densities used in the experiments. The physical stresses associated with the prolonged exposure of the high intertidal site are experimentally shown to result in Rhynchospio mortality. From these experiments, habitat type is the only significant factor tested which can explain the observed distributions; the presence of confamilials has no detected effect on the survivorship of any species, suggesting that competition does not serve to maintain the patterns of distribution.
    [Show full text]
  • Baltic Sea Genetic Biodiversity: Current Knowledge Relating to Conservation Management
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Brage IMR Received: 21 August 2016 Revised: 26 January 2017 Accepted: 16 February 2017 DOI: 10.1002/aqc.2771 REVIEW ARTICLE Baltic Sea genetic biodiversity: Current knowledge relating to conservation management Lovisa Wennerström1* | Eeva Jansson1,2* | Linda Laikre1 1 Department of Zoology, Stockholm University, SE‐106 91 Stockholm, Sweden Abstract 2 Institute of Marine Research, Bergen, 1. The Baltic Sea has a rare type of brackish water environment which harbours unique genetic Norway lineages of many species. The area is highly influenced by anthropogenic activities and is affected Correspondence by eutrophication, climate change, habitat modifications, fishing and stocking. Effective genetic Lovisa Wennerström, Department of Zoology, management of species in the Baltic Sea is highly warranted in order to maximize their potential SE‐106 91 Stockholm, Sweden. for survival, but shortcomings in this respect have been documented. Lack of knowledge is one Email: [email protected] reason managers give for why they do not regard genetic diversity in management. Funding information Swedish Research Council Formas (LL); The 2. Here, the current knowledge of population genetic patterns of species in the Baltic Sea is BONUS BAMBI Project supported by BONUS reviewed and summarized with special focus on how the information can be used in (Art 185), funded jointly by the European management. The extent to which marine protected areas (MPAs) protect genetic diversity Union and the Swedish Research Council Formas (LL); Swedish Cultural Foundation in is also investigated in a case study of four key species.
    [Show full text]
  • Abarenicola Pacifica Class: Polychaeta, Sedentaria, Scolecida
    Phylum: Annelida Abarenicola pacifica Class: Polychaeta, Sedentaria, Scolecida Order: The lugworm or sand worm Family: Arenicolidae Description pendages (Fig. 2). Size: Individuals often over 10 cm long and Parapodia: (Fig. 3) Segments 1–19 with re- 1 cm wide. Present specimen is duced noto- and neuropodia that are reddish approximately 4 cm in length (from South and are far from the lateral line. All parapodia Slough of Coos Bay). On the West coast, are absent in the caudal region. average length is 15 cm (Ricketts and Calvin Setae (chaetae): (Fig. 3) Bundles of notose- 1971). tae arise from notopodia near branchiae. Color: Head and abdomen orange, body a Short neurosetae extend along neuropodium. mixture of yellow, green and brown with par- Setae present on segments 1-19 only (Blake apodial areas and branchiae red (Kozloff and Ruff 2007). 1993). Eyes/Eyespots: None. General Morphology: A sedentary poly- Anterior Appendages: None. chaete with worm-like, cylindrical body that Branchiae: Prominent and thickly tufted in tapers at both ends. Conspicuous segmen- branchial region with bunched setae. Hemo- tation, with segments wider than they are globin makes the branchiae appear bright red long and with no anterior appendages (Kozloff 1993). (Ruppert et al. 2004). Individuals can be Burrow/Tube: Firm, mucus impregnated bur- identified by their green color, bulbous phar- rows are up to 40 cm long, with typical fecal ynx (Fig. 1), large branchial gills (Fig. 2) and castings at tail end. Head end of burrow is a J-shaped burrow marked at the surface collapsed as worm continually consumes mud with distinctive coiled fecal castings (Kozloff (Healy and Wells 1959).
    [Show full text]
  • Pygospio Elegans
    Protistology 10 (4), 148–157 (2016) Protistology Metchnikovella dogieli sp. n. (Microsporidia: Metch- nikovellida), a parasite of archigregarines Selenidium sp. from polychaetes Pygospio elegans Gita G. Paskerova1, Ekaterina V. Frolova1, Magdaléna Kováčiková2, Tatiana S. Panfilkina1, Yelisei S. Mesentsev1, Alexey V. Smirnov1 and Elena S. Nassonova1,3 1 Department of Invertebrate Zoology, St Petersburg State University, Universitetskaya nab. 7/9, 199034 St Petersburg, Russian Federation 2 Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic 3 Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St Petersburg, Russian Federation | Submitted November 21, 2016 | Accepted December 10, 2016 | Summary Cysts and free spores of a metchnikovellid microsporidium were found in several specimens of an archigregarine Selenidium sp. isolated from polychaetes Pygospio elegans. Samples were collected at the littoral area of the Kandalaksha Bay of the White Sea in the year 2016. We examined this material with high-quality light optics in stained and live preparations. The structure of cysts and the host range suggest that this species belongs to the genus Metchnikovella Caullery et Mesnil, 1897. The length of the cysts varied from 9.5 to 34 µm (av. 23.8 µm); the width of the cysts was 4.8–9.2 µm (av. 8.2 µm). The number of cyst-bound spores varied from 7 to 18. Cyst-bound spores were oval or ovoid and arranged in two or three rows. The length of the spores was 2.2–3.0 µm (av. 2.6 µm); the width was 1.4–2.9 µm (av.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Ecological Condition of the Estuaries of Oregon and Washington
    EPA 910-R-06-001 Alaska United States Region 10 Idaho Environmental Protection 1200 Sixth Avenue Oregon Agency Seattle, WA 98101 Washington Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington (blank page) EPA Region 10 Office of Environmental Assessment March 2006 Ecological Condition of the Estuaries of Oregon and Washington an Environmental Monitoring and Assessment Program (EMAP) Report Authors: Gretchen Hayslip1, Lorraine Edmond1, Valerie Partridge2, Walt Nelson3, Henry Lee3, Faith Cole3, Janet Lamberson3 , and Larry Caton4 March 2006 1 U.S. Environmental Protection Agency, Region 10, Seattle, Washington 2 Washington State Department of Ecology, Environmental Assessment Program, Olympia, Washington 3 U.S. Environmental Protection Agency, Office of Research and Development, Western Ecology Division, Newport, Oregon 4 Oregon Department of Environmental Quality, Portland, Oregon U.S. Environmental Protection Agency, Region 10 Office of Environmental Assessment 1200 Sixth Avenue Seattle, Washington 98101 Publication Number: EPA 910-R-06-001 Suggested Citation: Hayslip, G., L. Edmond, V. Partridge, W. Nelson, H. Lee, F. Cole, J. Lamberson , and L. Caton. 2006. Ecological Condition of the Estuaries of Oregon and Washington. EPA 910-R-06-001. U.S. Environmental Protection Agency, Office of Environmental Assessment, Region 10, Seattle, Washington. i EPA Region 10 Office of Environmental Assessment March 2006 (blank page) ii EPA Region 10 Office of Environmental Assessment March 2006
    [Show full text]
  • Interplay Between Abiotic Factors and Species Assemblages Mediated by the Ecosystem Engineer Sabellaria Alveolata
    Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta) Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier To cite this version: Auriane Jones, Stanislas Dubois, Nicolas Desroy, Jérôme Fournier. Interplay between abi- otic factors and species assemblages mediated by the ecosystem engineer Sabellaria alveolata (Annelida: Polychaeta). Estuarine, Coastal and Shelf Science, Elsevier, 2018, 200, pp.1-18. 10.1016/j.ecss.2017.10.001. hal-02323051 HAL Id: hal-02323051 https://hal.archives-ouvertes.fr/hal-02323051 Submitted on 10 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 2 3 1 Title 4 5 2 Interplay between abiotic factors and species assemblages mediated by the ecosystem engineer Sabellaria 6 7 3 alveolata (Annelida: Polychaeta) 8 9 4 Authors 10 11 5 Auriane G. Jones a,b,c, Stanislas F. Dubois a, Nicolas Desroy b, Jérôme Fournier c,d 12 6 Affiliations 13 14 7 a IFREMER, Laboratoire Centre de Bretagne, DYNECO LEBCO, 29280 Plouzané, France 15 b 16 8 IFREMER, Laboratoire Environnement et Ressources Bretagne nord, 38 rue du Port Blanc, BP 80108, 35801 Dinard cedex, France 17 9 18 10 c CNRS, UMR 7208 BOREA, 61 rue Buffon, CP 53, 75231 Paris cedex 05, France 19 20 11 d MNHN, Station de Biologie Marine, BP 225, 29182 Concarneau cedex, France 21 12 Corresponding author 22 23 Auriane G.
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • SPECIAL PUBLICATION 6 the Effects of Marine Debris Caused by the Great Japan Tsunami of 2011
    PICES SPECIAL PUBLICATION 6 The Effects of Marine Debris Caused by the Great Japan Tsunami of 2011 Editors: Cathryn Clarke Murray, Thomas W. Therriault, Hideaki Maki, and Nancy Wallace Authors: Stephen Ambagis, Rebecca Barnard, Alexander Bychkov, Deborah A. Carlton, James T. Carlton, Miguel Castrence, Andrew Chang, John W. Chapman, Anne Chung, Kristine Davidson, Ruth DiMaria, Jonathan B. Geller, Reva Gillman, Jan Hafner, Gayle I. Hansen, Takeaki Hanyuda, Stacey Havard, Hirofumi Hinata, Vanessa Hodes, Atsuhiko Isobe, Shin’ichiro Kako, Masafumi Kamachi, Tomoya Kataoka, Hisatsugu Kato, Hiroshi Kawai, Erica Keppel, Kristen Larson, Lauran Liggan, Sandra Lindstrom, Sherry Lippiatt, Katrina Lohan, Amy MacFadyen, Hideaki Maki, Michelle Marraffini, Nikolai Maximenko, Megan I. McCuller, Amber Meadows, Jessica A. Miller, Kirsten Moy, Cathryn Clarke Murray, Brian Neilson, Jocelyn C. Nelson, Katherine Newcomer, Michio Otani, Gregory M. Ruiz, Danielle Scriven, Brian P. Steves, Thomas W. Therriault, Brianna Tracy, Nancy C. Treneman, Nancy Wallace, and Taichi Yonezawa. Technical Editor: Rosalie Rutka Please cite this publication as: The views expressed in this volume are those of the participating scientists. Contributions were edited for Clarke Murray, C., Therriault, T.W., Maki, H., and Wallace, N. brevity, relevance, language, and style and any errors that [Eds.] 2019. The Effects of Marine Debris Caused by the were introduced were done so inadvertently. Great Japan Tsunami of 2011, PICES Special Publication 6, 278 pp. Published by: Project Designer: North Pacific Marine Science Organization (PICES) Lori Waters, Waters Biomedical Communications c/o Institute of Ocean Sciences Victoria, BC, Canada P.O. Box 6000, Sidney, BC, Canada V8L 4B2 Feedback: www.pices.int Comments on this volume are welcome and can be sent This publication is based on a report submitted to the via email to: [email protected] Ministry of the Environment, Government of Japan, in June 2017.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]