Annelida, Clitellata, Enchytraeidae)

Total Page:16

File Type:pdf, Size:1020Kb

Annelida, Clitellata, Enchytraeidae) Organisms Diversity & Evolution (2018) 18:291–312 https://doi.org/10.1007/s13127-018-0374-6 ORIGINAL ARTICLE Two new bioluminescent Henlea from Siberia and lack of molecular support for Hepatogaster (Annelida, Clitellata, Enchytraeidae) Emilia Rota1 & Svante Martinsson2 & Christer Erséus2 Received: 25 February 2018 /Accepted: 30 July 2018 /Published online: 30 August 2018 # Gesellschaft für Biologische Systematik 2018 Abstract Two bioluminescent enchytraeids, Henlea petushkovi sp. n. and Henlea rodionovae sp. n., are described from the Krasnoyarsk and Irkutsk regions in Eastern Siberia. These large potworms exhibit the typical light-production pattern reported repeatedly in the genus and recently elucidated by Russian researchers in its main biophysical and biochemical aspects. Morphology and DNA indicate that the two species are very closely related, but clearly divergent in the strength of the body wall (thick and opaque in H. petushkovi), structure of the prostomium (in H. rodionovae unprecedentedly wrinkled and mobile), brain shape (almost equilat- eral in H. petushkovi), size of coelomocytes (60–85 μminH. petushkovi) and structure of intestinal diverticula (tulip-shaped in H. petushkovi, apple-shaped in H. rodionovae). Limited hybridization seems to occur between them, supported by a single case of conflict between COI and morphology, and a few intermediate morphotypes were noted in greenhouse populations. The new species are phylogenetically distant from all known congeners so far DNA-barcoded, even those that, like them, respond to the diagnosis of the putative subgenus Hepatogaster Čejka, 1910 (multitubular gut diverticula in VIII, indented brain, dorsal blood vessel from IX, prominent spermathecal glands, and nephridia from 5/6). In fact, our phylogenetic analyses dismiss Hepatogaster as an artificial (polyphyletic) taxon. Issues related to the definition of H. nasuta (Eisen, 1878), H. ochracea (Eisen, 1878) and H. irkutensis Burov, 1929, three species originally described from Siberia, indicate that Henlea taxonomy is still in a state of flux, as regards not only species interrelationships but also species definitions. Keywords New species . Henlea . Taxonomy . Cytochrome C oxidase subunit 1 . Histone 3 . Hybridization . Phylogeny . Hepatogaster . Bioluminescence Introduction technology (by Valentin N. Petushkov and Natalja S. Rodionova since 2002, 2003; see references in Rodionova et Light production in the Enchytraeidae has been known since al. 2017). It was the discovery of Fridericia heliota Zalesskaja the nineteenth century (see historical reviews in Rota et al. (in Zalesskaja et al. 1990), a brightly glowing Siberian forest 2003;Rota2009), but it is only during the last two decades dweller, that sparked new interest and a rigorous effort to- that the issue has been approached with modern insight and wards understanding the mechanism as well as the distribution of the phenomenon across the family. Light production had never been recorded in Fridericia Michaelsen, 1889 before, Electronic supplementary material The online version of this article and in such an amazing form (a continuous, bright glow of the (https://doi.org/10.1007/s13127-018-0374-6) contains supplementary body wall) as in F. heliota. All previous accounts of material, which is available to authorized users. enchytraeid luminescence reported flashes of light by worms identified either as Enchytraeus Henle, 1837 or as Henlea * Emilia Rota [email protected] Michaelsen, 1889 species. Therefore, it was also of great im- portance to compare the tissue origin and chemical bases of light emission in the different genera. It should be said upfront 1 Department of Physics, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy that the phenomenon in the genus Enchytraeus as currently conceived is not confirmed, thus, early reports under that 2 Systematics and Biodiversity, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, name (e.g., Owsiannikow 1864;Harker1887; Pütter 1905) SE-40530 Göteborg, Sweden were possibly all misnamed records of Henlea. 292 Rota E. et al. Light production in Henlea was described in detail by specimens were found in taiga soil along Kacha and Mana Walter (1909) from specimens collected in garden soil of rivers in the region of Krasnoyarsk, together with F. heliota, Kaluga and Perm districts, European Russia, both identified but later, the same or closely related luminous worms were by Wilhelm Michaelsen as Henlea ventriculosa (d’Udekem, detected in other places, outdoor or more frequently in green- 1854). Luminosity was subject to fluctuations and always houses, and as far as Lake Bajkal. Beside the different body appeared more intense at the body ends, and accompanied localization, the bioluminescence system of the Henlea by discharge of luminous slime upon mechanical, chemical worms shows, with respect to F. heliota, different spectral or thermal stimulation. In the same period, similarly luminous characteristics and different temperature and pH optima, and enchytraeids were found in Austrian greenhouses by botanists its distinctness is confirmed by the negative results of all pos- Linsbauer (1917) and Molisch (1912). Linsbauer considered sible cross-reactions. Biochemically, the system of Henlea the animals self-illuminating, not having been able to detect comprises four essential components: luciferase, luciferin, ox- bacteria within the worms or their mucus (Pratje 1923). ygen and calcium ions. For F.heliota, the luminescent reaction Recently, during studies of F. heliota, some large Siberian requires five components: luciferase, luciferin, ATP, magne- Henlea worms (Fig. 1) were noted to exhibit the same pattern sium ions and oxygen (see Rodionova et al. 2017). of bioluminescence as described by Walter (1909)and A taxonomic description of these bioluminescent Siberian Linsbauer (1917), in response to tactile or chemical distur- Henlea worms, which are in fact different from H. ventriculosa bance (Petushkov et al. 2002; Rota et al. 2003). The first and comprise an evolutionary lineage with considerable genet- ic variation, is given here. What we consider to be two closely related, but morphologically divergent, bioluminescent species in this lineage, H. petushkovi sp.n.andH. rodionovae sp. n., are present both in the region of Krasnoyarsk and around the Bajkal. However, because they appear to be interfertile, and a few morphological intermediates were observed in samples from greenhouses in these regions, they will be described here from the most divergent morphotypes collected. On Hepatogaster Čejka, 1910 Both our two new species fit the diagnosis of Hepatogaster Čejka, 1910, a taxon considered by Welch (1920)and Stephenson (1930) subordinate to the genus Henlea, but that Černosvitov (1937) maintained in a distinct position within the Henleinae. The species included in Hepatogaster by Černosvitov (1937) indeed satisfy the original uncommon criteria established by Čejka (1910): (1) oesophageal append- ages extending into VI and VII, (2) “gastrointestinal glands”, forming a quadruple multitubular structure surrounding gut in VIII, (3) spermathecae opening into the oesophagus in the very back of V (in VI from an external view), (4) a gradual dilatation of the oesophagus to form the intestine. What prin- cipally differentiates the named (sub) group from the other Henlea species also possessing oesophageal diverticula in VIII and dorsal vessel originating in IX (H. ventriculosa, H. jutlandica Nielsen and Christensen 1959), is the multitubular substructure (as opposed to a largely hollowed cavity) of the pouches closely surrounding the gut in VIII. Figure 2 shows how Michaelsen (1886) illustrated through histological cross-sections the different structures of the gut diverticula in Enchytraeus leptodera Vejdovský 1879 (= Henlea nasuta auct.) and E. ventriculosus d’Udekem (= H. ventriculosa). In E. leptodera, two lateral pouches protrude Fig. 1 Bioluminescent Henlea specimen photographed in vivo. a Under a light microscope. b By direct contact printing worm-to-film in the dark from the intestine and project freely forward into the body- room (courtesy of V. N. Petushkov & N. S. Rodionova). Scale bar: 1 mm cavity (Fig. 2a). In E. ventriculosus, four pockets closely Two new bioluminescent Henlea (Clitellata, Enchytraeidae) from Siberia 293 Fig. 2 Histological cross sections of the gut diverticula in Enchytraeus leptodera Vejdovský (a)andEnchytraeus ventriculosus d’Udekem (b), and in Archienchytraeus nasutus Eisen (c), as shown by Michaelsen (1886) and Michaelsen (1889), respectively adhere to the intestine (Fig. 2b). In both cases, the lumen of the The status of Hepatogaster was briefly commented upon in pockets is constricted by the multiple, irregular folds of the morphocladistic terms by Tynen et al. (1991). In this paper we walls, so that a considerable enlargement of the inner surface will attempt to verify if this old name deserves taxonomic takes place. Later, Michaelsen (1889) illustrated the structure status, or not, on a molecular basis. of the gut diverticula in the types of Archienchytraeus nasutus Eisen, 1878, where two short, wide pockets are attached lat- Taxonomy and diversity of Henlea in Siberia erally to the posterior end of the oesophagus, and extend for- ward without fusing with it. The walls of the pockets are Taxonomic work on the enchytraeids of Siberia has mostly “often and irregularly folded, and so strongly that the cen- concerned
Recommended publications
  • 'Cejkaian Tubules' in the Posterior Midgut of Terrestrial Enchytraeidae (Oligochaeta)
    85 (2) · August 2013 pp. 113–122 ‘Cejkaian tubules’ in the posterior midgut of terrestrial Enchytraeidae (Oligochaeta) Rüdiger M. Schmelz1,2,* and Rut Collado2 1 ECT Oekotoxikologie GmbH, Böttgerstrasse 2–14, 65439 Flörsheim am Main, Germany 2 Universidad de A Coruña, Fac. Ciencias, Dep. Biología Animal, Biol. Vegetal, y Ecología, Rua da Fraga 10, 15008 A Coruña, Spain * Corresponding author, e-mail: [email protected] Received 29 May 2013 | Accepted 2 July 2013 Published online at www.soil-organisms.de 1 August 2013 | Printed version 15 August 2013 Abstract More than one hundred years ago, Bohumil Čejka described peculiar elongate tubules in the posterior region of the intestine of Hepatogaster birulae, a new terrestrial enchytraeid species collected in North-East Siberia. The tubules have no cilia but a proper epithelium and they run parallel to the longitudinal axis of the intestine over several segments, inside the intestinal epithelium but in close contact with the blood sinus. The tubules end blindly anteriorly and with a porus to the intestinal lumen posteriorly. The number of tubules increases from posterior to anterior due to bifurcations, and their diameter decreases. Čejka hypothesized that these tubules are glands that provide secretions for the final process of digestion or that aid in the egestion of faeces. He found them only in one species, Hepatogaster birulae, which was later synonymized with Henlea ochracea. In recent years we screened a large number of terrestrial enchytraeids in vivo and found these peculiar tubules in two further species of Henlea, in one species of Oconnorella and in thirteen species of Fridericia.
    [Show full text]
  • DNA-Based Environmental Monitoring for the Invasive Myxozoan Parasite, Myxobolus Cerebralis, in Alberta, Canada
    ! ! ! ! "#$%&'()*!+,-./0,1),2'3!40,.20/.,5!60/!27)!!8,-'(.-)!49:0;0',!<'/'(.2)=!!"#$%$&'() *+,+%,-&.(=!.,!$3>)/2'=!?','*'! ! >9! ! "',.)33)!+/.,!&'//9! ! ! ! ! ! ! ! ! $!27)(.(!(@>1.22)*!.,!A'/2.'[email protected]),2!06!27)!/)B@./)1),2(!60/!27)!*)5/))!06! ! ! 4'(2)/!06!CD.),D)! ! .,! ! +,-./0,1),2'3!E)'327!CD.),D)(! ! ! ! ! ! CD7003!06!<@>3.D!E)'327! F,.-)/(.29!06!$3>)/2'! ! ! ! ! ! ! ! ! ! ! ! G!"',.)33)!+/.,!&'//9=!HIHI! !! ! ! ! ! ! !"#$%&'$( ! J7./3.,5!*.()'()!.(!'!*.()'()!06!6.(7!D'@()*!>9!',!.,-'(.-)!19:0(A0/)',!A'/'(.2)=! !"#$%$&'()*+,+%,-&.(K!82!L'(!6./(2!*)2)D2)*!.,!?','*'!.,!M07,(0,!N'O)!.,!&',66!#'2.0,'3!<'/O=! $3>)/2'=!.,!$@5@(2!HIPQ=!',*!3.223)!.(!O,0L,!'>0@2!27)!2/',(1.((.0,!06!27.(!A'/'(.2)!.,!?','*'K! ?@//),2!2)(2.,5!60D@()(!0,!27)!*)2)D2.0,!06!!/)*+,+%,-&.(!.,!6.(7!2.((@)(=!/)B@./.,5!3)27'3!2)(2.,5!06! >027!.,6)D2)*!',*!,0,%.,6)D2)*!6.(7K!E0L)-)/=!27)!A'/'(.2)!7'(!'!*)6.,.2.-)!70(2=!27)!03.50D7')2)! L0/1!0'%.1+#)2'%.1+#!',*!2L0!),-./0,1),2'3!(2'5)(!60@,*!.,!L'2)/!',*!()*.1),2!27'2!D/)'2)! 027)/!'-),@)(!60/!*)2)D2.0,K!J)!A/0A0()!27'2!@(.,5!27)!A'/'(.2)!(2'5)(!60@,*!.,!L'2)/!',*! ()*.1),2!',*!27)!'32)/,'2)!L0/1!70(2=!0'%.1+#)2'%.1+#3!'/)!'!/)'(0,'>3)!D01A3)1),2!20!6.(7! ('1A3.,5!',*!L.33!>)!)(A)D.'339!@()6@3!60/!('1A3.,5!.,!'/)'(!L7)/)!6.(7!D033)D2.0,!.(!D7'33),5.,5! 0/!A/07.>.2.-)!*@)!20!-@3,)/'>.3.29!06!27)!6.(7!A0A@3'2.0,(K!8,!'**.2.0,=!0/)2'%.1+#!(@(D)A2.>.3.29!20! !/)*+,+%,-&.(!.(!,02!D0,(.(2),2!'D/0((!27)!(A)D.)(=!L.27!):A)/.1),2(!(70L.,5!(01)!'/)!/)6/'D20/9K! ?7'/'D2)/.;'2.0,!06!27)()!L0/1!A0A@3'2.0,(!L.33!7)3A!2'/5)2!6@2@/)!10,.20/.,5!',*!D0,2/03!
    [Show full text]
  • Testing Species Hypotheses for Fridericia Magna, an Enchytraeid Worm (Annelida: Clitellata) with Great Mitochondrial Variation
    Martinsson et al. BMC Evolutionary Biology (2020) 20:116 https://doi.org/10.1186/s12862-020-01678-5 RESEARCH ARTICLE Open Access Testing species hypotheses for Fridericia magna, an enchytraeid worm (Annelida: Clitellata) with great mitochondrial variation Svante Martinsson* , Mårten Klinth and Christer Erséus Abstract Background: Deep mitochondrial divergences were observed in Scandinavian populations of the terrestrial to semi-aquatic annelid Fridericia magna (Clitellata: Enchytraeidae). This raised the need for testing whether the taxon is a single species or a complex of cryptic species. Results: A total of 62 specimens from 38 localities were included in the study, 44 of which were used for species delimitation. First, the 44 specimens were divided into clusters using ABGD (Automatic Barcode Gap Discovery) on two datasets, consisting of sequences of the mitochondrial markers COI and 16S. For each dataset, the worms were divided into six not completely congruent clusters. When they were combined, a maximum of seven clusters, or species hypotheses, were obtained, and the seven clusters were used as input in downstream analyses. We tested these hypotheses by constructing haplowebs for two nuclear markers, H3 and ITS, and in both haplowebs the specimens appeared as a single species. Multi-locus species delimitation analyses performed with the Bayesian BPP program also mainly supported a single species. Furthermore, no apparent morphological differences were found between the clusters. Two of the clusters were partially separated from each other and the other clusters, but not strongly enough to consider them as separate species. All 62 specimens were used to visualise the Scandinavian distribution, of the species, and to compare with published COI data from other Fridericia species.
    [Show full text]
  • Redalyc.CONTINENTAL BIODIVERSITY of SOUTH
    Acta Zoológica Mexicana (nueva serie) ISSN: 0065-1737 [email protected] Instituto de Ecología, A.C. México Christoffersen, Martin Lindsey CONTINENTAL BIODIVERSITY OF SOUTH AMERICAN OLIGOCHAETES: THE IMPORTANCE OF INVENTORIES Acta Zoológica Mexicana (nueva serie), núm. 2, 2010, pp. 35-46 Instituto de Ecología, A.C. Xalapa, México Available in: http://www.redalyc.org/articulo.oa?id=57515556003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ISSN 0065-1737 Acta ZoológicaActa Zoológica Mexicana Mexicana (n.s.) Número (n.s.) Número Especial Especial 2: 35-46 2 (2010) CONTINENTAL BIODIVERSITY OF SOUTH AMERICAN OLIGOCHAETES: THE IMPORTANCE OF INVENTORIES Martin Lindsey CHRISTOFFERSEN Universidade Federal da Paraíba, Departamento de Sistemática e Ecologia, 58.059-900, João Pessoa, Paraíba, Brasil. E-mail: [email protected] Christoffersen, M. L. 2010. Continental biodiversity of South American oligochaetes: The importance of inventories. Acta Zoológica Mexicana (n.s.), Número Especial 2: 35-46. ABSTRACT. A reevaluation of South American oligochaetes produced 871 known species. Megadrile earthworms have rates of endemism around 90% in South America, while Enchytraeidae have less than 75% endemism, and aquatic oligochaetes have less than 40% endemic taxa in South America. Glossoscolecid species number 429 species in South America alone, a full two-thirds of the known megadrile earthworms. More than half of the South American taxa of Oligochaeta (424) occur in Brazil, being followed by Argentina (208 taxa), Ecuador (163 taxa), and Colombia (142 taxa).
    [Show full text]
  • Descripción De Nuevas Especies Animales De La Península Ibérica E Islas Baleares (1978-1994): Tendencias Taxonómicas Y Listado Sistemático
    Graellsia, 53: 111-175 (1997) DESCRIPCIÓN DE NUEVAS ESPECIES ANIMALES DE LA PENÍNSULA IBÉRICA E ISLAS BALEARES (1978-1994): TENDENCIAS TAXONÓMICAS Y LISTADO SISTEMÁTICO M. Esteban (*) y B. Sanchiz (*) RESUMEN Durante el periodo 1978-1994 se han descrito cerca de 2.000 especies animales nue- vas para la ciencia en territorio ibérico-balear. Se presenta como apéndice un listado completo de las especies (1978-1993), ordenadas taxonómicamente, así como de sus referencias bibliográficas. Como tendencias generales en este proceso de inventario de la biodiversidad se aprecia un incremento moderado y sostenido en el número de taxones descritos, junto a una cada vez mayor contribución de los autores españoles. Es cada vez mayor el número de especies publicadas en revistas que aparecen en el Science Citation Index, así como el uso del idioma inglés. La mayoría de los phyla, clases u órdenes mues- tran gran variación en la cantidad de especies descritas cada año, dado el pequeño núme- ro absoluto de publicaciones. Los insectos son claramente el colectivo más estudiado, pero se aprecia una disminución en su importancia relativa, asociada al incremento de estudios en grupos poco conocidos como los nematodos. Palabras clave: Biodiversidad; Taxonomía; Península Ibérica; España; Portugal; Baleares. ABSTRACT Description of new animal species from the Iberian Peninsula and Balearic Islands (1978-1994): Taxonomic trends and systematic list During the period 1978-1994 about 2.000 new animal species have been described in the Iberian Peninsula and the Balearic Islands. A complete list of these new species for 1978-1993, taxonomically arranged, and their bibliographic references is given in an appendix.
    [Show full text]
  • Two Species of Fridericia Mich., 1889 (Oligochaeta, Enchytraeidae) from Brazil
    Bolm. Zool., Univ. S. Paulo 1:239-256, 1976 Two species of Fridericia Mich., 1889 (Oligochaeta, Enchytraeidae) from Brazil. MARTIN LINDSEY CHRISTOFFERSEN Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo SUMMARY Two species of enchytraeid worms common in the State of São Paulo, Fridericia bulbosa (Rosa, 1887) and F bollonsi Benham, 1914, were studied regarding their anatomy and taxonomy. Three varieties of F. bulbosa were recognized which, in a general manner, present the following differences: variations in body size, dif­ ference in number of body segments and setae, dissimilar disposition of clitellar and chylus cells, variety in shape of spermathecae, peptonephridia and septal glands, different points of origin of ectal ducts on nephridia and of dorsal vessel and, finally, difference in size of seminal funnels and of penial bulbs. RESUMO Foram estudadas anatômica e sistematicamente Fridericia bulbosa (Rosa, 1887) e F. bollonsi Benham, 1914, comuns no Estado de São Paulo. De F. bulbosa foram reconhecidas três variedades que, de um modo geral, diferem pelo tamanho, número de segmentos e de cerdas, disposição das células clitelares e quilíferas, forma das espermatecas, dos peptonefrídios e das glândulas septais, pela origem do duto excretor nos nefrídios e do vaso dorsal, assim como pelo tamanho dos funis seminais e dos bulbos peniais. Being interested in the Oligochaeta, Enchytraeidae, I studied the anthropochorous species, which must be very plastic, anatomically and/or physiologically, to adapt themselves to the new biotopes into which they are introduced by man. Only when the intraspecific differences in the various geographical regions are compiled, will it be possible to establish with certainty the degree of variability of these peregrine species and consequently their synonymy.
    [Show full text]
  • Fauna Europaea: Annelida - Terrestrial Oligochaeta (Enchytraeidae and Megadrili), Aphanoneura and Polychaeta
    Biodiversity Data Journal 3: e5737 doi: 10.3897/BDJ.3.e5737 Data Paper Fauna Europaea: Annelida - Terrestrial Oligochaeta (Enchytraeidae and Megadrili), Aphanoneura and Polychaeta Emilia Rota‡, Yde de Jong §,| ‡ University of Siena, Siena, Italy § University of Amsterdam - Faculty of Science, Amsterdam, Netherlands | Museum für Naturkunde, Berlin, Germany Corresponding author: Emilia Rota ([email protected]), Yde de Jong ([email protected]) Academic editor: Christos Arvanitidis Received: 26 Jul 2015 | Accepted: 07 Sep 2015 | Published: 11 Sep 2015 Citation: Rota E, de Jong Y (2015) Fauna Europaea: Annelida - Terrestrial Oligochaeta (Enchytraeidae and Megadrili), Aphanoneura and Polychaeta. Biodiversity Data Journal 3: e5737. doi: 10.3897/BDJ.3.e5737 Abstract Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education. This paper provides updated information on the taxonomic composition and distribution of the Annelida - terrestrial Oligochaeta (Megadrili and Enchytraeidae), Aphanoneura and Polychaeta, recorded in Europe. Data on 18 families, 11 autochthonous and 7 allochthonous, represented in our continent by a total of 800 species, are reviewed, beginning from their distinctness, phylogenetic status, diversity and global distribution, and following with major recent developments in taxonomic and faunistic research in Europe.
    [Show full text]
  • Fridericia Brunensis Sp. N. (Clitellata: Enchytraeidae) – a New European Enchytraeid Species Similar to F
    Folia Fac. Sci. Nat. Univ. Masaryk. Brun., Biol. 110 (2007): 53-65 Newsletter on Enchytraeidae No. 10: Proceedings of the 7 th International Symposium on Enchytraeidae; May 25-28, 2006, Brno, Czech Republic Edited by J. SCHLAGHAMERSKÝ Fridericia brunensis sp. n. (Clitellata: Enchytraeidae) – a new European enchytraeid species similar to F. monochaeta Rota, 1995 JI ŘÍ SCHLAGHAMERSKÝ Masaryk University, Faculty of Science, Department of Botany and Zoology, Kotlá řská 2, 611 37 Brno, Czech Republic; e-mail: [email protected] ABSTRACT Fridericia brunensis sp. n. (Clitellata: Enchytraeidae), a species similar to F. monochaeta Rota, 1995 with single dorso-lateral chaetae in most postclitellar segments, preclitellar chylus cells, large seminal vesicle, large sperm funnels, and fused spermathecal ampullae is described based on material from a municipal forest of the city of Brno, Czech Republic. In comparison to its co-geners the species seems very tolerant to acidic and dry conditions. Additional records from Hungary and Germany are discussed. Keywords: Enchytraeidae, Fridericia, taxonomy, species description INTRODUCTION The newly described species was found during an ecological study of enchytraeids conducted in a municipal forest of the city of Brno (Czech Republic) in 2003-2004 (ŠÍDOVÁ & SCHLAGHAMERSKÝ, 2007). It was originally listed as F. cf. monochaeta due to its similarity with the recently described Fridericia monochaeta Rota, 1995 (SCHLAGHAMERSKÝ, 2007; ŠÍDOVÁ & SCHLAGHAMERSKÝ, 2007). As some characters differed from F. monochaeta , additional specimens were investigated later to clarify the taxonomic status of the Brno population. In a discussion with Prof. Klara Dózsa- 54 JI ŘÍ SCHLAGHAMERSKÝ Farkas, Dr. Rüdiger M. Schmelz and Dipl.-Biol.
    [Show full text]
  • Integrated Aquatic Community and Water
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Integrated Aquatic Community and Water Quality Monitoring of Wadeable Streams in the Klamath Network – Annual Report 2011 results from Whiskeytown National Recreation Area and Lassen Volcanic National Park Natural Resource Technical Report NPS/KLMN/NRTR—2014/904 ON THE COVER Crystal Creek, Whiskeytown National Recreation Area Photograph by: Charles Stanley, Field Crew Leader Integrated Aquatic Community and Water Quality Monitoring of Wadeable Streams in the Klamath Network – Annual Report 2011 results from Whiskeytown National Recreation Area and Lassen Volcanic National Park Natural Resource Technical Report NPS/KLMN/NRTR—2014/904 Eric C. Dinger, and Daniel A. Sarr National Park Service 1250 Siskiyou Blvd Southern Oregon University Ashland, Oregon 97520 August 2014 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • First Record of Terrestrial Enchytraeidae (Annelida: Clitellata )
    1 First record of terrestrial Enchytraeidae (Annelida: Clitellata) in 2 Versailles palace’s park, France 3 4 Joël Amossé1, Gergely Boros2, Sylvain Bart1, Alexandre R.R. Péry 1, Céline Pelosi1* 5 6 1 UMR ECOSYS, INRA, AgroParisTech, Université Paris-Saclay, 78026, Versailles, France 7 2 Institute of Ecology & Botany, Hungarian Academy of Sciences, Alkotmány, Vácrátót 2-42163, 8 Hungary 9 10 * Corresponding author: UMR1402 INRA AgroParisTech ECOSYS, Bâtiment 6, RD 10, 78026 11 Versailles cedex, France. Tel: (+33)1.30.83.36.07; Fax: (+33)1.30.83.32.59. E-mail address: 12 [email protected] 13 1 14 Abstract 15 16 France can be qualified as terra incognita regarding terrestrial enchytraeids because very little 17 data has been recorded so far in this country. In spring and autumn 2016, enchytraeid communities 18 were investigated in a loamy soil in a meadow located in the park of Versailles palace, France. In total, 19 twenty four enchytraeid species were identified, belonging to six different genera. i.e., eleven 20 Fridericia species, four Enchytraeus species, four Achaeta species, two Buchholzia species, two 21 Marionina species and one Enchytronia species. According to the published data, this was one of the 22 highest diversity found in a meadow in Europe. 23 24 Keywords: Enchytraeids; Potworms; Soil fauna; Annelids; Oligochaeta; Meadow 25 2 26 Introduction 27 28 Despite their key role in soils (Didden, 1993), enchytraeids (Annelida: Clitellata) are so far 29 poorly studied in many countries worldwide. To our knowledge, and except a few species recorded in 30 Schmelz and Collado (2010), no data have been published on enchytraeid communities in France, i.e., 31 based on a literature search in the ISI Web of Knowledge, using the “All Databases” option, with the 32 formula: ‘(enchytr* or potworm*) and (France or French) in Topics’.
    [Show full text]
  • Multi-Level Convergence of Complex Traits and the Evolution of Bioluminescence Emily S
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 December 2020 Multi-level convergence of complex traits and the evolution of bioluminescence Emily S. Lau* and Todd H. Oakley* Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara CA 93106 Corresponding authors information: Emily S. Lau: [email protected]; Todd H. Oakley: [email protected] Keywords multi‐level convergence | evolution | bioluminescence | biological organization | complex trait ABSTRACT Evolutionary convergence provides natural opportunities to investigate how, when, and why novel traits evolve. Many convergent traits are complex, highlighting the importance of explicitly considering convergence at different levels of biological organization, or ‘multi‐level convergent evolution’. To investigate multi‐level convergent evolution, we propose a holistic and hierarchical framework that emphasizes breaking down traits into several functional modules. We begin by identifying long‐standing questions on the origins of complexity and the diverse evolutionary processes underlying phenotypic convergence to discuss how they can be addressed by examining convergent systems. We argue that bioluminescence, a complex trait that evolved dozens of times through either novel mechanisms or conserved toolkits, is particularly well suited for these studies. We present an updated estimate of at least 94 independent origins of bioluminescence across the tree of life, which we calculated by reviewing and summarizing all estimates of independent origins. Then, we use our framework to review the biology, chemistry, and evolution of bioluminescence, and for each biological level identify questions that arise from our systematic review. We focus on luminous organisms that use the shared luciferin substrates coelenterazine or vargulin to produce light because these organisms convergently evolved bioluminescent proteins that use the same luciferins to produce bioluminescence.
    [Show full text]
  • Investigating the Clitellata (Annelida) of Icelandic Springs with Alternative Barcodes
    Fauna norvegica 2019 Vol. 39: 119–132. Investigating the Clitellata (Annelida) of Icelandic springs with alternative barcodes Mårten J. Klinth1, Agnes-Katharina Kreiling2 and Christer Erséus1 Klinth MJ, Kreiling A-K and Erséus C. 2019. Investigating the Clitellata (Annelida) of Icelandic springs with alternative barcodes. Fauna norvegica 39: 119–132. DNA barcoding is an invaluable tool to identify clitellates, regardless of life stage or cryptic morphology. However, as COI (the standard barcode for animals) is relatively long (658 bp), sequencing it requires DNA of high quality. When DNA is fragmented due to degradation, alternative barcodes of shorter length present an option to obtain genetic material. We attempted to sequence 187 clitellates sampled from springs in Iceland. However, the material had been stored at room temperature for two years, and DNA of the worms had degraded, and only three COI sequences were produced (i.e., <2% success rate). Using two alternative barcodes of 16S (one ca. 320 bp, the other ca. 70 bp long) we increased the number of sequenced specimens to 51. Comparisons of the 16S sequences showed that even the short 70 bp fragment contained enough genetic variation to separate all clitellate species in the material. Combined with morphological examinations we recognized a total of 23 species, where at least 8 are new records for Iceland, some belonging to genera new for Iceland: Cernosvitoviella and Pristina. All the new taxa are included in an updated species list of Icelandic Clitellata. The material revealed some stygophilic species previously known to inhabit springs, but true stygobionts, which are restricted to groundwater habitats, were not found.
    [Show full text]