Boring and Nestling Organisms from Upper Jurassic Coral Colonies from Northern Poland

Total Page:16

File Type:pdf, Size:1020Kb

Boring and Nestling Organisms from Upper Jurassic Coral Colonies from Northern Poland Acta Palaeonto1,ogica Polonica Vol. 32 No. 1-2 pp. 83-104; pls. 33-40 Warszawa, 1987 ANDRZEJ PISERA BORING AND NESTLING ORGANISMS FROM UPPER JURASSIC CORAL COLONIES FROM NORTHERN POLAND PISERA A.: Boring and nestling organisms from Upper Jurassic coral colonies from northern Poland. Acta Palaeont. Polonica, 32, 1-2, 83+lW, 1967. The Upper Jurassic coral colonies collected from glacial deposits in northern Poland reveal abundant boring and nestling organisms. The most common borers were bivalves, among which 4 gastrochaenid species (Gasttochaena s. s. and Spenglerla) and 2 lithophagid species are described. Other borers included sipun- culid worms and sponges (7). The nestling fauna consists of the bivalves Hfatella (probably also a facultative borer), Pltcatula, and oysters, as well as serpulids. The assemblage of borers is suprisingly similar to Recent assemblages from coral reefs. The excellent preservation oi aragonitic bivalve structures allowed for a detailed examination of the internal structure of shells and boreholes. Basing on these features, new diagnostic characters are here proposed and a partial revision is undertaken. K e y w 0 r d s: Boring organisms, bivalves, taxonomy, Upper Jurassic, Poland. Andrzej Pisera, Zaktad Pakobfologft, Polska Akademfa Nauk, Al. twfrkf t Wtgu- q 83, 02-089 Warszawa, Poland. INTRODUCTION The coral colonies of Oxfordian-Kimmeridgian age (see Roniewicz 1984) gathered from glacial deposits of northern Poland show the presence of rich and diversified borings. The majority were executed by bivalves but other taxonomic groups were also responsible for some borings. In many cases, the boreholes contain their original inhabitants andlor se- condary dwellers. Boring and nestling bivalves of Jurassic age are known since long ago (see Phillips 1829, Eudes-Deslongchamps 1838, Buvignier 1843, 1852, Lori01 1888, 1892, 1893, Boehm 1893, Borissjak 1906) and numerous species have been described. The majority, however, are poorly, if at all, illustrat- ed and only inadequately described. Often, they are preserved as moulds or impressions only, which do not allow for a detailed examination of the shell. Moreover, they are oversplitted at the species level; Rollier (1914), for example, listed 47 specific names of the Jurassic lithophagid bivalves. 84 ANDRZEJ PISERA The excellent preservation of the currently investigated material permits, for the first time, to examine the interior of the shell and to classify these organism according to more recent standards. Carter (1978) and Freneix and Roman (1979) dealt recently with diffe- rent aspects of gastrochaenid taxonomy, evolution, and ecology. They examinted, however, mostly a Recent material. In the present paper I am trying to relate the results of these extremely important papers to an Upper Jurassic material.') The investigated material is housed in the Institute of Paleobiology, Polish Academy of Sciences, Warsaw, (ZPAL). Acknowledgements.-I am grateful to Dr. E. Roniewicz and Dr. J. Dzik (Institute of Paleobiology, Warsaw) for putting at my disposal the material for investigations. Dr. S. R. A. Kelly (Department of Geology, Cambridge University) supplied me with molds of the specimens housed in Cambridge, and Miss B. Pyrah (Yorkshire Museum, York) sent me the photograph of another specimen from the Museum collection. The staff of the VSEGEI (Leningrad) museum allowed me to investigate Borissjak's collection INVESTIGATED MATERIAL The original collection of coral colonies consists of 1023 specimens, most of them however are only small fragments. Nearly 26O/o of specimens show traces of different boring organisms; over 24O/o were bored by bivalves. Epifauna occurs on only 2O/o of specimens. In fact, the percentage of originally bored colonies had to be much higher, for the collection contains mostly fragments of larger colonies. More than 100 bivalves (boring and nestling) have been found and make up the basis for the present study. The collection consists mostly of Thamnasteria concinna; much less common is Actinaraeopsis exilis Roniewicz, while other species are repre- sented each by a single or few specimens (Roniewicz 1984). The richest collection of corals was gathered in the gravel pit at Ostromice (Wuster- mitz or Wusterwitz of German authors: Roniewicz 1984). Both the corals and the bivalves are exceptionally well preserved, in form of the original aragonite. AGE OF BORINGS As all the material comes from glacial deposits, there is no direct indication of the age of borings in coral colonies. Indirect evidence, howe- ver, points to the same age of corals and borings. In some natural cavities, 1) Note added in proof: The results of the important paper by Kleemann (1983) were not discussed here, as I was not aware that it was already published. BORING AND NESTLING ORGANISMS FROM JURASSIC CORALS 8 5 for example, ferruginous sandy to sandy carbonate rock occurs between coral colonies (Roniewicz 1984), and the same type of sediment fills up some of the borings which still contain intact bivalve shells; this indicates synsedimentary origin of the borings. Undamaged apertures of bivalve boreholes are preserved only on the original, and not on eroded, coral surfaces. If the corals were drilled only after deposition and redeposition, in a secondary environment, one could expect preservation of the original apertures also on the eroded coral surfaces, which is not the case. This observation also points to the same age of the corals and the borings. The most important evidence supporting such hypothesis, however, comes from the rare cases when a borehole, still containing its primary inhabi- tant, is completely overgrown by coral (pl. 39: 3) without any traces of disruption in the coral growth. More precisely, these cases indicate that the bivalves bored coral colonies still alive. BIVALVE BORERS In the investigated material, the majority of borings were made by bivalves, among which the most common were gastrochaenids (pl. 33: 3, 5-6) accompanied also by the genus Lithophaga. For a detailed descrip- tion of these bivalves see the systematic part of this paper. NON-BIVALVE BORERS AND BIVALVE SQUATTERS The most common non-bivalve borings are very small, tubular in shape (one to two millimetres in cross section), very irregular and interconnected in a chainlike pattern, sometimes bifurcated. They penetrate shallow below the surface and have only a single small, rounded opening (pl. 33: 1-4). They are similar to the Cretaceous trace fossil Entobia as well as to the Recent excavations of boring sponges. They are preserved on many investigated coral colonies but mainly on somewhat eroded surfaces, which does not allow to recognise the taxonomic position of the animal respons- ible for their origin. Other common boreholes are much larger, up to 5 centimetres long and up to 3 mm in diameter. They usually are gently curved and circular in cross section, and may penetrate deep into the coral substrate (pl. 33: 1-2, 5). Similar borings are produced in Recent corals by sipunculid worms (Warme 1975, 1977, MacGeachy and Stearn 1976). Basing on this morphological similarity and the ecological context, I am attributing these Jurassic borings to sipunculid worms. Many boreholes as well as some natural coral growth cavities in my material were inhabited by secondary dwellers (squatters). The most comm6n among them was the bivalve Hiatella (Pseudosaxicava) phaseolus 86 ANDRZEJ PISERA (Deslongchamps), which is described in detail in the systematic part. Where this species is found in a gastrochaenid or lithophagid borehole which still contains its primary inhabitant, this suggests that Hiatella was a squatter rather than borer. In some cases, however, it occurs alone in a borehole (pl. 37: 5) which differs from the gastrochaenid and litho- phagid borings; this suggests that the Upper Jurassic hiatellids already had some boring ability, at least the ability to reshape a primary borehole. Sometimes, three generations of inhabitants of the same borehole existed; a gastrochaenid borehole (with the shell inside) was colonized by Hiatella, which was finally succeeded by a young Lithophaga. Other common inhabitants of empty boreholes, as well as growth cavities of coral colonies, were serpulids (probably Glomerula gordialis (Schlotheim) (pl. 34: 5-4) and small spinose Plicatula sp. (resembling Plicatula spinosa Sowerby) (pl. 34: 1-2, 4). A few oysters colonized large natural coral growth cavities and mimicked their shape (pl. 34: 3). ECOLOGICAL REMARKS Roniewicz (1984) considered the lithology of the matrix and the growth forms of the corals, and postulated a low energy environment with high influx of detrital material from crystaline rocks as the original setting for these corals. According to her, the bottom was unstable sand or sandy mud with admixture of biogenic detritus where colonies were overturned only during periods of rougher conditions. In some cases, borings occur on all sides of the investigated colonies; generally, however, the lower and lateral surfaces were infested thus suggesting that most borers attacked overturned and already dead corals. Where a whole borehole, still containing its inhabitant, is entirely over- grown by the coral without any trace of disruption in the structure of the colony, it suggests that a bivalve (Gastrochaena (G.) cf. deshayesea) infested and lived within the growing portion of the coral. The assemblage of boring organisms from this Upper Jurassic material is surprisingly similar to the associations known from Recent shallow water
Recommended publications
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
    ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks.
    [Show full text]
  • Boring Bivalve Traces in Modern Reef and Deeper-Water Macroid and Rhodolith Beds
    UC Berkeley UC Berkeley Previously Published Works Title Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds Permalink https://escholarship.org/uc/item/7rj146x4 Journal Progress in Earth and Planetary Science, 7(1) ISSN 2197-4284 Authors Bassi, D Braga, JC Owada, M et al. Publication Date 2020-12-01 DOI 10.1186/s40645-020-00356-w Peer reviewed eScholarship.org Powered by the California Digital Library University of California Bassi et al. Progress in Earth and Planetary Science (2020) 7:41 Progress in Earth and https://doi.org/10.1186/s40645-020-00356-w Planetary Science RESEARCH ARTICLE Open Access Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds Davide Bassi1* , Juan C. Braga2, Masato Owada3, Julio Aguirre2, Jere H. Lipps4, Hideko Takayanagi5 and Yasufumi Iryu5 Abstract Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117 m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L.
    [Show full text]
  • Molecular Phylogeny of the Bivalve Superfamily Galeommatoidea
    Goto et al. BMC Evolutionary Biology 2012, 12:172 http://www.biomedcentral.com/1471-2148/12/172 RESEARCH ARTICLE Open Access Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching Ryutaro Goto1,2*, Atsushi Kawakita3, Hiroshi Ishikawa4, Yoichi Hamamura5 and Makoto Kato1 Abstract Background: Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results: Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Evidence and Implications of Marine Invertebrate Settlement on Eocene Otoliths from the Moodys Branch Formation of Montgomery Landing (Louisiana, U.S.A.)
    Cainozoic Research, 16(1), pp. 3-12, June 2016 3 Evidence and implications of marine invertebrate settlement on Eocene otoliths from the Moodys Branch Formation of Montgomery Landing (Louisiana, U.S.A.) Gary L. Stringer Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA; [email protected] Received 2 November 2015, revised manuscript accepted 24 February 2016 Microscopic analysis of 3,256 fish otoliths from the Eocene Moodys Branch Formation at Montgomery Landing, Louisiana, U.S.A., revealed 93 specimens with evidence of marine invertebrate settlements, primarily encrustings and boreholes. Although size, abun­ dance, shape (stability), durability, and surface residence­time influenced the use of otoliths, key factors were size, abundance, and surface time. Invertebrates affecting otoliths were cnidarians (scleractinian solitary corals), bryozoans (cheilostome species), molluscs (mainly gastrochaenid bivalves), and annelids (serpulids), noted by larval form settlement, encrustation, and drilling. The size of the scleractinian corals, the time duration of the serpulids, encrustation by cnidarians and serpulids and paucity of other epifauna such as bryozoans, and the lengths of Gastrochaena borings appear to indicate that the otoliths did not remain exposed on the sea floor for an extended period. Surface residence­time may also explain why the abundant, diverse invertebrates present affected only about 3% of the otoliths. KEY WORDS: fish otoliths, Eocene, invertebrates, surface residence­time. Introduction Background and previous studies The vast majority of literature on fossil otoliths has con- Otoliths are unique because they are specialised and in- centrated on taxonomy and paleoecology (Nolf, 2013). tegral components of the fish’s acoustico­lateralis system There is a substantial and notable paucity of research (Norman, 1931; Lowenstein, 1957; Lagler et al., 1962).
    [Show full text]
  • Caridea, Palaemonidae) in Association with a Boring Bivalve of the Genus Spengleria (Bivalvia, Euheterodonta, Gastrochaenidae
    FIRST RECORD OF A PONTONIINE SHRIMP (CARIDEA, PALAEMONIDAE) IN ASSOCIATION WITH A BORING BIVALVE OF THE GENUS SPENGLERIA (BIVALVIA, EUHETERODONTA, GASTROCHAENIDAE) BY CHARLES H. J. M. FRANSEN 1) and SANCIA E. T. VAN DER MEIJ 2) Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands ABSTRACT During fieldwork in Raja Ampat, West Papua, Indonesia, in 2007, a pontoniine shrimp, most likely belonging to the genus Anchistus, was collected from a coral boring bivalve of the genus Spengleria. This is the first record of a pontoniine shrimp living in association with a boring bivalve. As it probably concerns a juvenile shrimp, its identity remains unclear. Its affinities with the Indo- West Pacific mollusc-associated genera and with congenerics are discussed. RÉSUMÉ Au cours d’un travail de terrain dans le Raja Ampat, Papouasie occidentale, Indonésie, en 2007, une crevette Pontoniinae, probablement appartenant au genre Anchistus, a été collectée dans un bivalve creusant le corail du genre Spengleria. C’est le premier enregistrement d’une crevette Pontoniinae vivant en association avec un bivalve perforant. Comme il s’agit probablement d’une crevette juvénile, son identité reste incertaine. Ses affinités avec les genres de l’Indo-Ouest Pacifique associés aux mollusques, et avec les congénères sont discutées. INTRODUCTION Nine Indo-Pacific pontoniine genera (Anchiopontonia Bruce, 1992, Anchistus Borradaile, 1898, Bruceonia Fransen, 2002, Cainonia Bruce, 2005, Chernocaris Johnson, 1967, Conchodytes Peters, 1852, Neoanchistus Bruce, 1975, Paranchis- tus Holthuis, 1952, and Platypontonia Bruce, 1968), comprising 30 species (De 1) Corresponding author; e-mail: [email protected] 2) e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2010 Crustaceana 83 (11): 1391-1400 Also available online: www.brill.nl/cr DOI:10.1163/001121610X535564 1392 CHARLES H.
    [Show full text]
  • On Some Indo-Pacific Boring Endolithic Bivalvia Species Introduced Into the Mediterranean Sea with Their Host – Spread of Sphenia Rueppelli A
    Mediterranean Marine Science Vol. 11, 2010 On some Indo-Pacific boring endolithic Bivalvia species introduced into the Mediterranean Sea with their host – spread of Sphenia rueppelli A. Adams, 1850 ZENETOS A. Hellenic Centre for Marine Research, Institute of Marine Biological Resources, Agios Kosmas, P.C. 16610, Elliniko, Athens OVALIS P. Agisilaou 37-39, Tzitzifies/Kallithea, 17674 Athens EVIKER D. Balmumcu Itri sok. No 4, 34349, Besiktas, Istanbul https://doi.org/10.12681/mms.104 Copyright © 2010 To cite this article: ZENETOS, A., OVALIS, P., & EVIKER, D. (2010). On some Indo-Pacific boring endolithic Bivalvia species introduced into the Mediterranean Sea with their host – spread of Sphenia rueppelli A. Adams, 1850. Mediterranean Marine Science, 11(1), 201. doi:https://doi.org/10.12681/mms.104 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 28/06/2020 22:55:56 | Mediterranean Marine Science Short Communication Indexed in WoS (Web of Science, ISI Thomson) The journal is available on line at http://www.medit-mar-sc.net On some Indo-Pacific boring endolithic Bivalvia species introduced into the Mediterranean Sea with their host – spread of Sphenia rueppelli A. Adams, 1850 A. ZENETOS1, P. OVALIS2 and D. EVIKER 3 1 Hellenic Centre for Marine Research, Institute of Marine Biological Resources, P.O. Box 712, 19013 Anavissos, Hellas 2 Agisilaou 37-39, Kallithea, 17674 Athens, Hellas 3 Balmumcu Itri sok. No 4, 34349, Besiktas, Istanbul, Turkey Corresponding author: [email protected] Received: 14 May 2010; Accepted: 21 May 2010; Published on line: 9 June 2010 Abstract The study of the endolithic molluscs found on/in living alien Spondylus shells collected in the Gulf of Iskenderun (Turkey) brought to light three more alien Bivalvia species, namely Petricola hemprichi, Gastrochaena cymbium and Sphenia rueppelli.
    [Show full text]
  • Boring Bivalve Traces in Modern Reef and Deeper-Water Macroid and Rhodolith Beds Davide Bassi1* , Juan C
    Bassi et al. Progress in Earth and Planetary Science (2020) 7:41 Progress in Earth and https://doi.org/10.1186/s40645-020-00356-w Planetary Science RESEARCH ARTICLE Open Access Boring bivalve traces in modern reef and deeper-water macroid and rhodolith beds Davide Bassi1* , Juan C. Braga2, Masato Owada3, Julio Aguirre2, Jere H. Lipps4, Hideko Takayanagi5 and Yasufumi Iryu5 Abstract Macroids and rhodoliths, made by encrusting acervulinid foraminifera and coralline algae, are widely recognized as bioengineers providing relatively stable microhabitats and increasing biodiversity for other species. Macroid and rhodolith beds occur in different depositional settings at various localities and bathymetries worldwide. Six case studies of macroid/rhodolith beds from 0 to 117 m water depth in the Pacific Ocean (northern Central Ryukyu Islands, French Polynesia), eastern Australia (Fraser Island, One Tree Reef, Lizard Island), and the Mediterranean Sea (southeastern Spain) show that nodules in the beds are perforated by small-sized boring bivalve traces (Gastrochanolites). On average, boring bivalve shells (gastrochaenids and mytilids) are more slender and smaller than those living inside shallow-water rocky substrates. In the Pacific, Gastrochaena cuneiformis, Gastrochaena sp., Leiosolenus malaccanus, L. mucronatus, L.spp.,andLithophaga/Leiosolenus sp., for the first time identified below 20 m water depth, occur as juvenile forms along with rare small-sized adults. In deep-water macroids and rhodoliths the boring bivalves are larger than the shallower counterparts in which growth of juveniles is probably restrained by higher overturn rates of host nodules. In general, most boring bivalves are juveniles that grew faster than the acervulinid foraminiferal and coralline red algal hosts and rarely reached the adult stage.
    [Show full text]
  • Periostracal Mineralization in the Gastrochaenid Bivalve Spengleria Antonio G
    Acta Zoologica (Stockholm) doi: 10.1111/azo.12019 Periostracal mineralization in the gastrochaenid bivalve Spengleria Antonio G. Checa1 and Elizabeth M. Harper2 Abstract 1Departamento de Estratigrafıa y Paleonto- Checa, A.G. and Harper, E.M. 2012. Periostracal mineralization in the logıa, Universidad de Granada, Avenida gastrochaenid bivalve Spengleria.—Acta Zoologica (Stockholm) 00: 000–000. Fuentenueva s/n, Granada, 18071, Spain; 2Department of Earth Sciences, University We investigated the spikes on the outer shell surface of the endolithic gastrochae- of Cambridge, Downing Street, Cam- nid bivalve genus Spengleria with a view to understand the mechanism by which bridge, CB2 3EQ, UK they form and evaluate their homology with spikes in other heterodont and pal- aeoheterodont bivalves. We discovered that spike formation varied in mecha- Keywords: nism between different parts of the valve. In the posterior region, spikes form biomineralization, molluscs, aragonite, peri- within the translucent layer of the periostracum but separated from the calcare- ostracum ous part of the shell. By contrast those spikes in the anterior and ventral region, despite also forming within the translucent periostracal layer, become incorpo- Accepted for publication: 20 November 2012 rated into the outer shell layer. Spikes in the posterior area of Spengleria mytiloides form only on the outer surface of the periostracum and are therefore, not encased in periostracal material. Despite differences in construction between these gastrochaenid spikes and those of other heterodont and palaeoheterodont bivalves, all involve calcification of the inner translucent periostracal layer which may indicate a deeper homology. Antonio G. Checa, Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain.
    [Show full text]
  • Worm-Riding Clam: Description of Montacutona Sigalionidcola Sp. Nov. (Bivalvia: Heterodonta: Galeommatidae) from Japan and Its Phylogenetic Position
    Zootaxa 4652 (3): 473–486 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4652.3.4 http://zoobank.org/urn:lsid:zoobank.org:pub:D1823BBA-EDC4-4A1D-84C1-27BD4F002CE0 Worm-riding clam: description of Montacutona sigalionidcola sp. nov. (Bivalvia: Heterodonta: Galeommatidae) from Japan and its phylogenetic position RYUTARO GOTO1,3 & MAKOTO TANAKA2 1Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama 649-2211, Japan 21060–113 Sangodai, Kushimoto, Higashimuro, Wakayama 649-3510, Japan 3Corresponging author. E-mail: [email protected] Abstract A new galeommatid bivalve, Montacutona sigalionidcola sp. nov., is described from an intertidal flat in the southern end of the Kii Peninsula, Honshu Island, Japan. Unlike other members of the genus, this species is a commensal with the burrowing scale worm Pelogenia zeylanica (Willey) (Annelida: Sigalionidae) that lives in fine sand sediments. Specimens were always found attached to the dorsal surface of the anterior end of the host body. This species has a ligament lithodesma between diverging hinge teeth, which is characteristic of Montacutona Yamamoto & Habe. However, it is morphologically distinguished from the other members of this genus in having elongate-oval shells with small gape at the posteroventral margin and lacking an outer demibranch. Molecular phylogenetic analysis based on the four-gene combined dataset (18S + 28S + H3 + COI) indicated that this species is monophyletic with Montacutona, Nipponomontacuta Yamamoto & Habe and Koreamya Lützen, Hong & Yamashita, which are commensals with sea anemones or Lingula brachiopods.
    [Show full text]
  • On Bivalve Phylogeny: a High-Level Analysis of the Bivalvia (Mollusca) Based on Combined Morphology and DNA Sequence Data
    Invertebrate Biology 12 I(4): 27 1-324. 0 2002 American Microscopical Society, Inc. On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data Gonzalo Giribet'%aand Ward Wheeler2 ' Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University; 16 Divinity Avenue, Cambridge, Massachusetts 021 38, USA Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024, USA Abstract. Bivalve classification has suffered in the past from the crossed-purpose discussions among paleontologists and neontologists, and many have based their proposals on single char- acter systems. More recently, molecular biologists have investigated bivalve relationships by using only gene sequence data, ignoring paleontological and neontological data. In the present study we have compiled morphological and anatomical data with mostly new molecular evi- dence to provide a more stable and robust phylogenetic estimate for bivalve molluscs. The data here compiled consist of a morphological data set of 183 characters, and a molecular data set from 3 loci: 2 nuclear ribosomal genes (1 8s rRNA and 28s rRNA), and 1 mitochondria1 coding gene (cytochrome c oxidase subunit I), totaling -3 Kb of sequence data for 76 rnollu bivalves and 14 outgroup taxa). The data have been analyzed separately and in combination by using the direct optimization method of Wheeler (1 996), and they have been evaluated under 1 2 analytical schemes. The combined analysis supports the monophyly of bivalves, paraphyly of protobranchiate bivalves, and monophyly of Autolamellibranchiata, Pteriomorphia, Hetero- conchia, Palaeoheterodonta, and Heterodonta s.I., which includes the monophyletic taxon An- omalodesmata.
    [Show full text]