Boring Bivalve Traces in Modern Reef and Deeper-Water Macroid and Rhodolith Beds
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How Do Upwelling and El Niño Impact Coral Reef Growth? a Guided, Inquiry-Based Lesson
OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Gravinese, P.M., L.T. Toth, C.J. Randall, and R.B. Aronson. 2018. How do upwelling and El Niño impact coral reef growth? A guided, inquiry-based lesson. Oceanography 31(4):184–188, https://doi.org/10.5670/oceanog.2018.424. DOI https://doi.org/10.5670/oceanog.2018.424 PERMISSIONS Oceanography (ISSN 1042-8275) is published by The Oceanography Society, 1 Research Court, Suite 450, Rockville, MD 20850 USA. ©2018 The Oceanography Society, Inc. Permission is granted for individuals to read, download, copy, distribute, print, search, and link to the full texts of Oceanography articles. Figures, tables, and short quotes from the magazine may be republished in scientific books and journals, on websites, and in PhD dissertations at no charge, but the materi- als must be cited appropriately (e.g., authors, Oceanography, volume number, issue number, page number[s], figure number[s], and DOI for the article). Republication, systemic reproduction, or collective redistribution of any material in Oceanography is permitted only with the approval of The Oceanography Society. Please contact Jennifer Ramarui at [email protected]. Permission is granted to authors to post their final pdfs, provided byOceanography , on their personal or institutional websites, to deposit those files in their institutional archives, and to share the pdfs on open-access research sharing sites such as ResearchGate and Academia.edu. DOWNLOADED FROM HTTPS://TOS.ORG/OCEANOGRAPHY HANDS-ON OCEANOGRAPHY How Do Upwelling and El Niño Impact Coral Reef Growth? A GUIDED, INQUIRY-BASED LESSON By Philip M. Gravinese, Lauren T. Toth, Carly J. -
The Roles of Endolithic Fungi in Bioerosion and Disease in Marine Ecosystems. II. Potential Facultatively Parasitic Anamorphic A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs Gleason, Frank H.; Gadd, Geoffrey M.; Pitt, John I.; Larkum, Anthony W.D. Published in: Mycology DOI: 10.1080/21501203.2017.1371802 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology, 8(3), 216-227. https://doi.org/10.1080/21501203.2017.1371802 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Mycology An International Journal on Fungal Biology ISSN: 2150-1203 (Print) 2150-1211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmyc20 The roles of endolithic fungi in bioerosion and disease in marine ecosystems. -
Innovations in Animal-Substrate Interactions Through Geologic Time
The other biodiversity record: Innovations in animal-substrate interactions through geologic time Luis A. Buatois, Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, luis. [email protected]; and M. Gabriela Mángano, Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, [email protected] ABSTRACT 1979; Bambach, 1977; Sepkoski, 1978, 1979, and Droser, 2004; Mángano and Buatois, Tracking biodiversity changes based on 1984, 1997). However, this has been marked 2014; Buatois et al., 2016a), rather than on body fossils through geologic time became by controversies regarding the nature of the whole Phanerozoic. In this study we diversity trajectories and their potential one of the main objectives of paleontology tackle this issue based on a systematic and biases (e.g., Sepkoski et al., 1981; Alroy, in the 1980s. Trace fossils represent an alter- global compilation of trace-fossil data 2010; Crampton et al., 2003; Holland, 2010; native record to evaluate secular changes in in the stratigraphic record. We show that Bush and Bambach, 2015). In these studies, diversity. A quantitative ichnologic analysis, quantitative ichnologic analysis indicates diversity has been invariably assessed based based on a comprehensive and global data that the three main marine evolutionary on body fossils. set, has been undertaken in order to evaluate radiations inferred from body fossils, namely Trace fossils represent an alternative temporal trends in diversity of bioturbation the Cambrian Explosion, Great Ordovician record to assess secular changes in bio- and bioerosion structures. The results of this Biodiversification Event, and Mesozoic diversity. Trace-fossil data were given less study indicate that the three main marine Marine Revolution, are also expressed in the attention and were considered briefly in evolutionary radiations (Cambrian Explo- trace-fossil record. -
Marine Boring Bivalve Mollusks from Isla Margarita, Venezuela
ISSN 0738-9388 247 Volume: 49 THE FESTIVUS ISSUE 3 Marine boring bivalve mollusks from Isla Margarita, Venezuela Marcel Velásquez 1 1 Museum National d’Histoire Naturelle, Sorbonne Universites, 43 Rue Cuvier, F-75231 Paris, France; [email protected] Paul Valentich-Scott 2 2 Santa Barbara Museum of Natural History, Santa Barbara, California, 93105, USA; [email protected] Juan Carlos Capelo 3 3 Estación de Investigaciones Marinas de Margarita. Fundación La Salle de Ciencias Naturales. Apartado 144 Porlama,. Isla de Margarita, Venezuela. ABSTRACT Marine endolithic and wood-boring bivalve mollusks living in rocks, corals, wood, and shells were surveyed on the Caribbean coast of Venezuela at Isla Margarita between 2004 and 2008. These surveys were supplemented with boring mollusk data from malacological collections in Venezuelan museums. A total of 571 individuals, corresponding to 3 orders, 4 families, 15 genera, and 20 species were identified and analyzed. The species with the widest distribution were: Leiosolenus aristatus which was found in 14 of the 24 localities, followed by Leiosolenus bisulcatus and Choristodon robustus, found in eight and six localities, respectively. The remaining species had low densities in the region, being collected in only one to four of the localities sampled. The total number of species reported here represents 68% of the boring mollusks that have been documented in Venezuelan coastal waters. This study represents the first work focused exclusively on the examination of the cryptofaunal mollusks of Isla Margarita, Venezuela. KEY WORDS Shipworms, cryptofauna, Teredinidae, Pholadidae, Gastrochaenidae, Mytilidae, Petricolidae, Margarita Island, Isla Margarita Venezuela, boring bivalves, endolithic. INTRODUCTION The lithophagans (Mytilidae) are among the Bivalve mollusks from a range of families have more recognized boring mollusks. -
Molecular Phylogeny of the Bivalve Superfamily Galeommatoidea
Goto et al. BMC Evolutionary Biology 2012, 12:172 http://www.biomedcentral.com/1471-2148/12/172 RESEARCH ARTICLE Open Access Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching Ryutaro Goto1,2*, Atsushi Kawakita3, Hiroshi Ishikawa4, Yoichi Hamamura5 and Makoto Kato1 Abstract Background: Galeommatoidea is a superfamily of bivalves that exhibits remarkably diverse lifestyles. Many members of this group live attached to the body surface or inside the burrows of other marine invertebrates, including crustaceans, holothurians, echinoids, cnidarians, sipunculans and echiurans. These symbiotic species exhibit high host specificity, commensal interactions with hosts, and extreme morphological and behavioral adaptations to symbiotic life. Host specialization to various animal groups has likely played an important role in the evolution and diversification of this bivalve group. However, the evolutionary pathway that led to their ecological diversity is not well understood, in part because of their reduced and/or highly modified morphologies that have confounded traditional taxonomy. This study elucidates the taxonomy of the Galeommatoidea and their evolutionary history of symbiotic lifestyle based on a molecular phylogenic analysis of 33 galeommatoidean and five putative galeommatoidean species belonging to 27 genera and three families using two nuclear ribosomal genes (18S and 28S ribosomal DNA) and a nuclear (histone H3) and mitochondrial (cytochrome oxidase subunit I) protein-coding genes. Results: Molecular phylogeny recovered six well-supported major clades within Galeommatoidea. Symbiotic species were found in all major clades, whereas free-living species were grouped into two major clades. Species symbiotic with crustaceans, holothurians, sipunculans, and echiurans were each found in multiple major clades, suggesting that host specialization to these animal groups occurred repeatedly in Galeommatoidea. -
Evidence and Implications of Marine Invertebrate Settlement on Eocene Otoliths from the Moodys Branch Formation of Montgomery Landing (Louisiana, U.S.A.)
Cainozoic Research, 16(1), pp. 3-12, June 2016 3 Evidence and implications of marine invertebrate settlement on Eocene otoliths from the Moodys Branch Formation of Montgomery Landing (Louisiana, U.S.A.) Gary L. Stringer Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA; [email protected] Received 2 November 2015, revised manuscript accepted 24 February 2016 Microscopic analysis of 3,256 fish otoliths from the Eocene Moodys Branch Formation at Montgomery Landing, Louisiana, U.S.A., revealed 93 specimens with evidence of marine invertebrate settlements, primarily encrustings and boreholes. Although size, abun dance, shape (stability), durability, and surface residencetime influenced the use of otoliths, key factors were size, abundance, and surface time. Invertebrates affecting otoliths were cnidarians (scleractinian solitary corals), bryozoans (cheilostome species), molluscs (mainly gastrochaenid bivalves), and annelids (serpulids), noted by larval form settlement, encrustation, and drilling. The size of the scleractinian corals, the time duration of the serpulids, encrustation by cnidarians and serpulids and paucity of other epifauna such as bryozoans, and the lengths of Gastrochaena borings appear to indicate that the otoliths did not remain exposed on the sea floor for an extended period. Surface residencetime may also explain why the abundant, diverse invertebrates present affected only about 3% of the otoliths. KEY WORDS: fish otoliths, Eocene, invertebrates, surface residencetime. Introduction Background and previous studies The vast majority of literature on fossil otoliths has con- Otoliths are unique because they are specialised and in- centrated on taxonomy and paleoecology (Nolf, 2013). tegral components of the fish’s acousticolateralis system There is a substantial and notable paucity of research (Norman, 1931; Lowenstein, 1957; Lagler et al., 1962). -
Bioerosion of Experimental Substrates on High Islands and on Atoll Lagoons (French Polynesia) After Two Years of Exposure
MARINE ECOLOGY PROGRESS SERIES Vol. 166: 119-130,1998 Published May 28 Mar Ecol Prog Ser -- l Bioerosion of experimental substrates on high islands and on atoll lagoons (French Polynesia) after two years of exposure 'Centre d'oceanologie de Marseille, UMR CNRS 6540, Universite de la Mediterranee, Station Marine d'Endoume, rue de la Batterie des Lions, F-13007 Marseille, France 2Centre de Sedimentologie et Paleontologie. UPRESA CNRS 6019. Universite de Provence, Aix-Marseille I, case 67, F-13331 Marseille cedex 03. France 3The Australian Museum, 6-8 College Street, 2000 Sydney, New South Wales, Australia "epartment of Biology, Boston University, Boston, Massachusetts 02215, USA ABSTRACT: Rates of bioerosion by grazing and boring were studied in lagoons of 2 high islands (3 sites) and 2 atolls (2 sites each) In French Polynesia using experimental carbonate substrates (blocks of Porites lutea skeleton). The substrate loss versus accretion was measured after 6 and 24 mo of exposure. The results show significant differences between pristine environments on atolls and envi- ronments on high islands sub!ected to different levels of eutrophication and pollution due to human activities. Whereas experimental substrates on the atolls maintain a balance between accretion and erosion or exhibit net gains from accretion (positive budget), only 1 site on a high island exhibits sig- nificant loss of substrate by net erosion (negative budget). The erosional patterns set within the first 6 rno of exposure were largely maintained throughout the entire duration of the expeiiment. The inten- sity of bioerosion by grazing increases dramatically when reefs are exposed to pollution from harbour waters; this is shown at one of the Tahiti sites, where the highest average bioerosional loss, up to 25 kg m-2 yr-' (6.9 kg m-' yr-I on a single isolated block), of carbonate substrate was recorded. -
Decoupled Evolution of Soft and Hard Substrate Communities During the Cambrian Explosion and Great Ordovician Biodiversification Event
Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event Luis A. Buatoisa,1, Maria G. Mánganoa, Ricardo A. Oleab, and Mark A. Wilsonc aDepartment of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; bEastern Energy Resources Science Center, US Geological Survey, Reston, VA 20192; and cDepartment of Geology, The College of Wooster, Wooster, OH 44691 Edited by Steven M. Holland, University of Georgia, Athens, GA, and accepted by Editorial Board Member David Jablonski May 6, 2016 (received for review November 21, 2015) Contrasts between the Cambrian Explosion (CE) and the Great shed light on the natures of both radiations. Because there is still Ordovician Biodiversification Event (GOBE) have long been recog- controversy regarding Sepkoski’s nonstandardized curves of nized. Whereas the vast majority of body plans were established Phanerozoic taxonomic diversity (13–15), a rarefaction analysis as a result of the CE, taxonomic increases during the GOBE were was performed in an attempt to standardize diversity data. The manifested at lower taxonomic levels. Assessing changes of ichno- aims of this paper are to document the contrasting ichnodiversity diversity and ichnodisparity as a result of these two evolutionary and ichnodisparity trajectories in soft and hard substrate com- events may shed light on the dynamics of both radiations. The early munities during these two evolutionary events and to discuss the Cambrian (series 1 and 2) displayed a dramatic increase in ichnodi- possible underlying causes of this decoupled evolution. versity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Results Cambrian bioerosion structures are known. -
Marine Bioerosion 1 21.08.01
Marine Bioerosion 1 21.08.01 VL Marine Bioerosion VL 807.191 gelesen von / lecture given by dr. Karl Kleemann (Script zusammengestellt von / compiled by: P.Madl) Universität Wien Univerisity of Vienna Teil I Definitionen................................................................................ 2 Teil II Endolithische Bioerosion (ohne Bivalvia).................................. 6 Mikrobohrer (Bakteria, Fungi, Algae)........................................ 7 Porifera (Boring Sponges).......................................................... 9 Polychaeta (Annelids)................................................................. 11 Arthropoda (Crustaceans: Iso-, Decapods, Cirripeds)................ 11 Sipunculidae............................................................................... 12 Teil III Epilithische Bioerosion (incl. endolithish aktive Bivalvia)........ 13 Mollusca - (Käferschnecken und Bivalvia)................................ 14 Echinodermata (Urchins)............................................................ 18 Scaridae (Parrotfish)................................................................... 20 Pomacentridae (Damselfish)....................................................... 22 Teil IV Faktoren und Variationen der Bioerosion.................................. 23 Teil V Korallenkrankheiten................................................................... 24 Teil VI Literatur...................................................................................... 25 http://www.sbg.ac.at/ipk/avstudio/pierofun/funpage.htm -
Echinoid Community Structure and Rates of Herbivory and Bioerosion on Exposed and Sheltered Reefs
Journal of Experimental Marine Biology and Ecology 456 (2014) 8–17 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs Omri Bronstein ⁎,YossiLoya Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel article info abstract Article history: Echinoid–habitat relations are complex and bi-directional. Echinoid community structure is affected by the hab- Received 19 September 2013 itat structural and environmental conditions; while at the same time, echinoids may also act as ‘reef engineers’, Received in revised form 24 January 2014 able to alter marine environments on a wide geographic scale. In particular, echinoids play a major role in Accepted 9 March 2014 bioerosion and herbivory on coral reefs. Through feeding, echinoids reduce algal cover, enabling settlement Available online xxxx and coral growth. However, at the same time, they also remove large parts of the reef hard substrata, gradually Keywords: leading to reef degradation. Here, we compared coral and macroalgal abundance, echinoid community structure fi Bioerosion and species-speci c rates of echinoid herbivory and bioerosion on reefs subjected to different intensities of oce- Coral reefs anic exposure. Spatio-temporal variations in coral and macroalgal cover were monitored, and populations of the Herbivory four most abundant echinoid species on the coral reefs of Zanzibar – Diadema setosum (Leske), Diadema savignyi MPAs (Michelin), Echinometra mathaei (de Blainville) and Echinothrix diadema (Linnaeus) – were compared between Sea urchins the Island's eastern exposed reefs and western sheltered ones. -
Caridea, Palaemonidae) in Association with a Boring Bivalve of the Genus Spengleria (Bivalvia, Euheterodonta, Gastrochaenidae
FIRST RECORD OF A PONTONIINE SHRIMP (CARIDEA, PALAEMONIDAE) IN ASSOCIATION WITH A BORING BIVALVE OF THE GENUS SPENGLERIA (BIVALVIA, EUHETERODONTA, GASTROCHAENIDAE) BY CHARLES H. J. M. FRANSEN 1) and SANCIA E. T. VAN DER MEIJ 2) Department of Marine Zoology, Netherlands Centre for Biodiversity Naturalis, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands ABSTRACT During fieldwork in Raja Ampat, West Papua, Indonesia, in 2007, a pontoniine shrimp, most likely belonging to the genus Anchistus, was collected from a coral boring bivalve of the genus Spengleria. This is the first record of a pontoniine shrimp living in association with a boring bivalve. As it probably concerns a juvenile shrimp, its identity remains unclear. Its affinities with the Indo- West Pacific mollusc-associated genera and with congenerics are discussed. RÉSUMÉ Au cours d’un travail de terrain dans le Raja Ampat, Papouasie occidentale, Indonésie, en 2007, une crevette Pontoniinae, probablement appartenant au genre Anchistus, a été collectée dans un bivalve creusant le corail du genre Spengleria. C’est le premier enregistrement d’une crevette Pontoniinae vivant en association avec un bivalve perforant. Comme il s’agit probablement d’une crevette juvénile, son identité reste incertaine. Ses affinités avec les genres de l’Indo-Ouest Pacifique associés aux mollusques, et avec les congénères sont discutées. INTRODUCTION Nine Indo-Pacific pontoniine genera (Anchiopontonia Bruce, 1992, Anchistus Borradaile, 1898, Bruceonia Fransen, 2002, Cainonia Bruce, 2005, Chernocaris Johnson, 1967, Conchodytes Peters, 1852, Neoanchistus Bruce, 1975, Paranchis- tus Holthuis, 1952, and Platypontonia Bruce, 1968), comprising 30 species (De 1) Corresponding author; e-mail: [email protected] 2) e-mail: [email protected] © Koninklijke Brill NV, Leiden, 2010 Crustaceana 83 (11): 1391-1400 Also available online: www.brill.nl/cr DOI:10.1163/001121610X535564 1392 CHARLES H. -
Echinoderm Ichnology: Bioturbation, Bioerosion and Related Processes
Journal of Paleontology, 91(4), 2017, p. 643–661 Copyright © 2017, The Paleontological Society 0022-3360/17/0088-0906 doi: 10.1017/jpa.2016.146 Echinoderm ichnology: bioturbation, bioerosion and related processes Zain Belaústegui,1 Fernando Muñiz,2 James H. Nebelsick,3 Rosa Domènech,1 and Jordi Martinell1 1IRBio (Biodiversity Research Institute) and Departamento de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona (UB), Martí Franquès s/n, E-08028 Barcelona, Spain 〈[email protected]; [email protected]; [email protected]〉 2Departamento de Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla (US), Avda. Reina Mercedes 6, E-41012 Sevilla, Spain 〈[email protected]〉 3Department of Geosciences, Hölderlinstrasse 12, 72074 Tübingen, Germany 〈[email protected]〉 Abstract.—Among invertebrates and both in modern and ancient marine environments, certain echinoderms have been and are some of the most active and widespread bioturbators and bioeroders. Bioturbation and/or bioerosion of regular and irregular echinoids, starfish, brittle stars, sea cucumbers and crinoids are known from modern settings, and some of the resulting traces have their counterparts in the fossil record. By contrast, surficial trails or trackways produced by other modern echinoderms, e.g., sand dollars, exhibit a lower preservation rate and have not yet been identified in the fossil record. In addition, the unique features of the echinoderm skeleton (e.g., composition, rapid growth, multi-element architecture, etc.) may promote the production of related traces produced by the reutilization of echinoderm ossicles (e.g., burrow lining), predation (e.g., borings), or parasitism (e.g., swellings or cysts). Finally, the skeletal robustness of some echinoids may promote their post mortum use as benthic islands for the settlement of hard-substrate dwellers.