Echinoid Community Structure and Rates of Herbivory and Bioerosion on Exposed and Sheltered Reefs

Total Page:16

File Type:pdf, Size:1020Kb

Echinoid Community Structure and Rates of Herbivory and Bioerosion on Exposed and Sheltered Reefs Journal of Experimental Marine Biology and Ecology 456 (2014) 8–17 Contents lists available at ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Echinoid community structure and rates of herbivory and bioerosion on exposed and sheltered reefs Omri Bronstein ⁎,YossiLoya Department of Zoology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel article info abstract Article history: Echinoid–habitat relations are complex and bi-directional. Echinoid community structure is affected by the hab- Received 19 September 2013 itat structural and environmental conditions; while at the same time, echinoids may also act as ‘reef engineers’, Received in revised form 24 January 2014 able to alter marine environments on a wide geographic scale. In particular, echinoids play a major role in Accepted 9 March 2014 bioerosion and herbivory on coral reefs. Through feeding, echinoids reduce algal cover, enabling settlement Available online xxxx and coral growth. However, at the same time, they also remove large parts of the reef hard substrata, gradually Keywords: leading to reef degradation. Here, we compared coral and macroalgal abundance, echinoid community structure fi Bioerosion and species-speci c rates of echinoid herbivory and bioerosion on reefs subjected to different intensities of oce- Coral reefs anic exposure. Spatio-temporal variations in coral and macroalgal cover were monitored, and populations of the Herbivory four most abundant echinoid species on the coral reefs of Zanzibar – Diadema setosum (Leske), Diadema savignyi MPAs (Michelin), Echinometra mathaei (de Blainville) and Echinothrix diadema (Linnaeus) – were compared between Sea urchins the Island's eastern exposed reefs and western sheltered ones. To account for the effect of management in the Western Indian Ocean context of reef exposure, we included marine protected areas (MPAs) of both types of reef categories (i.e. shel- tered and exposed) in our comparison. Coral and macroalgal cover presented a conspicuous contrasting pattern across exposed and sheltered sites. While coral dominance and lack of macroalgae were prominent on sheltered reefs, an opposite trend of low coral cover and moderate–high macroalgal cover were found on exposed reefs. Bioerosion was also significantly higher on exposed reefs than on sheltered ones (4.2–13 and 1.2–3.9 kg CaCO3 −2 −1 −2 −1 m year , respectively). The highest rates, recorded on Pongwe, with almost 7 kg CaCO3 m year , are among the highest echinoid bioerosion rates known to date. Management had a substantial effect on habitat and echinoid community structure, as coral cover was significantly higher, macroalgal cover lower, and echinoid densities generally reduced on MPAs regardless of exposure intensity. Our findings suggest that exposed reefs are susceptible to markedly higher degrees of echinoid bioerosion; however, adequate management measures can significantly reduce these rates, consequently altering the reef's trajectory for degradation. © 2014 Elsevier B.V. All rights reserved. 1. Introduction 1990; Hawkins and Lewis, 1982). At moderate sea urchin densities this action may facilitate a topographic complexity that favors increased Common coral-reef associated echinoids have a range of different biodiversity (Johnson et al., 2003) and may also enhance coral recruit- feeding modes. Echinoids are considered to be generalist herbivores as ment (Birkeland and Randall, 1981; Carpenter and Edmunds, 2006; their diets may include algae and seaweed (Klumpp et al., 1993; Griffin et al., 2003). However, at high sea urchin densities, echinoids Lawrence, 1975; Vaïtilingon et al., 2003), or omnivores due to the inclu- may limit reef growth through predation of coral tissue (Glynn et al., sion of animal tissue (Briscoe and Sebens, 1988; McClintock et al., 1982), 1979)orextensivecoral(Bak et al., 1984; Mokady et al., 1996) and crus- and even the occasional predation of live coral tissue (Bak and van Eys, tose coralline algae (CCA) erosion (O'leary and McClanahan, 2010). 1975; Carpenter, 1981; Glynn et al., 1979). This dietary flexibility, Moreover, the indiscriminate nature of echinoid grazing has a profound coupled with their great abundance on some coral reefs (Bauer, 1980; effect on coral community composition through its control of newly- McClanahan and Kurtis, 1991), place echinoids as keystone species in settled coral spat (Sammarco, 1980, 1982). Consequently, high sea ur- coral reef environments. As hard-substrate eroders (Bak, 1990; Glynn chin abundance may alter the structure of coral reef communities by et al., 1979; Hunter, 1977; Trudgill et al., 1987) they scrape the surface eroding the reef's coral framework, leading to gradual reef degradation. while grazing (Lawrence and Sammarco, 1982), reducing algal cover Many variables have been recognized as important in regulating (Mapstone et al., 2007) and breaking down reef substratum (Bak, echinoid food consumption. For example, species composition, body size, population densities (Bak, 1990, 1994; Carreiro-Silva and ⁎ Corresponding author. Tel.: +972 3 6409809; fax: +972 3 6727746. McClanahan, 2001; Scoffin et al., 1980), attraction to food (Vadas and E-mail address: [email protected] (O. Bronstein). Elner, 2003), hydrodynamics (Siddon and Witman, 2003), light (Mills http://dx.doi.org/10.1016/j.jembe.2014.03.003 0022-0981/© 2014 Elsevier B.V. All rights reserved. O. Bronstein, Y. Loya / Journal of Experimental Marine Biology and Ecology 456 (2014) 8–17 9 et al., 2000; Vaïtilingon et al., 2003), temperature (Larson et al., 1980), detailed account on echinoid community structure and associated rates and reproductive stage (Klinger et al., 1997), have all been mentioned of herbivory and bioerosion around the Island of Zanzibar, WIO. as factors influencing echinoid feeding rates and ecological impact. How- ever, beyond the physiological aspects determined by the life histories of 2. Methods particular species, echinoid food consumption, and consequently the rates of herbivory and bioerosion, must be considered in terms of the en- 2.1. Study sites vironmental conditions that exist in their habitats, as gradients in the physical environment may produce variability in the abundance and dis- Coral communities and associated echinoid populations were tribution of echinoid populations (Andrew, 1993; Clemente and studied on six reefs surrounding Zanzibar Island (Fig. 1). The sites Hernández, 2008). Several studies have investigated the relationship be- were selected to represent sheltered and exposed reefs in terms of oce- tween coral reef associated echinoids and their habitat (e.g., Dumas et al., anic exposure. To test for effects of marine protected areas, MPAs from 2007; Graham and Nash, 2013; McClanahan, 1998; McClanahan and both exposure categories (i.e. sheltered and exposed) were selected. Kurtis, 1991; O'leary and McClanahan, 2010; Peyrot-Clausade et al., However due to the scarcity of MPAs in the region, only one such site 2000). These publications suggest aspects such as structural complexity, per exposure category was available for this analysis. Three sites, macroalgal and coral cover, sedimentation, and the presence or absence Bawe (06°08.7′S; 039°08.2′E), Changu (06°06.8′S; 039°09.8′E), and of predators, as having substantial effects on the composition, distribu- Chumbe (06°16.3′S; 039°10.2′E), were selected on the sheltered tion, and size of related echinoid populations. For example, marine western side of the main island facing the Zanzibar channel. The site protected areas (MPAs) protecting various echinoid predators conse- at Changu is located ca. 5.5 km from Zanzibar Town and a similar quently present lower rates of sea urchins compared to reefs with distance from the site at Bawe. Chumbe is located ca. 12 km south depauperate predatory populations (McClanahan and Kurtis, 1991; of Zanzibar Town, and has been a private nature reserve, developed McClanahan et al., 1999). Additionally, echinoid communities tend to and managed by the Chumbe Island Coral Park (CHICOP), since display strong differences in species distribution between exposed and 1992 (Nordlund and Walther, 2010). The sites on the exposed eastern sheltered reefs, making sea urchin ecology further complex (Dumas side of Zanzibar were Kiwengwa (06°00.9′S; 039°24.6′E), Pongwe et al., 2007). (06°01.9′S; 039°25.2′E), and Mnemba (05°48.5′S; 039°21.3′E). The Zanzibar Island (Unguja, Tanzania) is situated on the continental shelf of Tanzania between 50°40′ and 60°30′ south of the equator, 35 km from the mainland. Being an island surrounded by coral reefs, ex- N posed to strong easterly winds and with a sheltered west coast, makes Zanzibar an ideal study location for echinoid ecology. Located off the AFRICA East-African shoreline, the island's coral reefs are fundamental to the entire marine environment and of great economic importance for the Mnemba large human population that depends on them for a livelihood (Jiddawi, 1997; Khatib, 1997; Mbije et al., 2002; Ngoile and Horrill, 1993). Small patches of mangrove forest and shallow patches of fringing reefs occur along the more sheltered western coast, while on the more exposed eastern coast fringing reefs slope up to a narrow coastal lagoon backed by sand beaches or fossil coral cliffs (Richmond, 2002). The east- ern and western sides of the island are subject to markedly different wave and current intensities; reefs on the eastern ocean-facing side are exposed to the Indian Ocean (IO) and are susceptible to strong waves and currents, while reefs in the Zanzibar channel, on the Island's Kiwengwa western side, are sheltered from direct exposure to the IO (Bergman and Öhman, 2001; Ngoile, 1990). Swell waves generated in the IO can travel Pongwe undisturbed for thousands of miles before hitting the Island's eastern ZANZIBAR reefs. These swell waves occur off the east coast of Zanzibar for much of the year, changing their orientation from north-east (between Octo- Bawe ber and March) to south-east (between March and October) depending Changu on monsoonal season (McClanahan, 1988b; Zanzibar Department of Environment and MACEMP, 2009).
Recommended publications
  • Status of Alcyonacean Corals Along Tuticorin Coast of Gulf of Mannar, Southeastern India
    Indian Journal of Geo-Marine Sciences Vol. 43(4), April 2014, pp. 666-675 Status of Alcyonacean corals along Tuticorin coast of Gulf of Mannar, Southeastern India S. Rajesh, K. Diraviya Raj, G. Mathews, T. Sivaramakrishnan & J.K. Patterson Edward Suganthi Devadason Marine Research Institute 44-Beach Road, Tuticorin – 628 001, Tamil Nadu, India [E-mail: [email protected]] Received 28 November 2012; revised 7 December 2012 In this study, the assessment of alcyonaceans was conducted in Tuticorin coast of the Gulf of Mannar during the period between 2010 and 2012 in 5 locations; Vaan, Koswari, Kariyachalli and Vilanguchalli islands and mainland Punnakayal patch reef. Average alcyonacean coral cover in Tuticorin coast was 6.76% during 2011-12 which was 5.61% during 2010- 2011. Percentage cover of alcyonacean corals increased in all the study locations; Kariyachalli 12.04 to 13.96%; Vilanguchalli 8.94 to 10.23%; Koswari 1.6 to 3.69; Vaan 0.53 to 0.72; mainland Punnakayal patch reef 4.95 to 5.21% was documented. In total, 15 species from 7 genera were recorded during the study period. Though anthropogenic threats in Tuticorin coast are comparatively high, the abundance of alcyonacean corals has increased considerably showing their resilience and adaptability. [Keywords: Alcyonacean corals, Status, Diversity, Tuticorin, Gulf of Mannar] Introduction experience all the natural and anthropogenic threats. Alcyonacean corals (soft corals and gorgonians) Reef ecosystems of Gulf of Mannar are heavily are modular cnidarians composed of polyps that stressed due to various human induced threats like always have eight tentacles and are oftentimes destructive and over fishing practices, coral mining, connected by vessels classified under subclass domestic and industrial pollution, seaweed and other Octocorallia while hard corals have six tentacles resource collection in reef areas and invasion of (which are hexa corals).
    [Show full text]
  • Echinodermata: Echinoidea)
    UC San Diego UC San Diego Previously Published Works Title Magnetic Resonance Imaging (MRI)has failed to distinguish between smaller gut regions and larger haemal sinuses in sea urchins (Echinodermata: Echinoidea) Permalink https://escholarship.org/uc/item/8vm315fm Journal BMC Biology, 7(1) ISSN 1741-7007 Authors Holland, Nicholas D Ghiselin, Michael T Publication Date 2009-07-13 DOI http://dx.doi.org/10.1186/1741-7007-7-39 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BMC Biology BioMed Central Correspondence Open Access Magnetic resonance imaging (MRI) has failed to distinguish between smaller gut regions and larger haemal sinuses in sea urchins (Echinodermata: Echinoidea) Nicholas D Holland*1 and Michael T Ghiselin2 Address: 1Marine Biology Research Division, University of California at San Diego, La Jolla, CA, 92093, USA and 2California Academy of Sciences, 55 Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA Email: Nicholas D Holland* - [email protected]; Michael T Ghiselin - [email protected] * Corresponding author Published: 13 July 2009 Received: 17 February 2009 Accepted: 13 July 2009 BMC Biology 2009, 7:39 doi:10.1186/1741-7007-7-39 This article is available from: http://www.biomedcentral.com/1741-7007/7/39 © 2009 Holland and Ghiselin; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract A response to Ziegler A, Faber C, Mueller S, Bartolomaeus T: Systematic comparison and reconstruction of sea urchin (Echinoidea) internal anatomy: a novel approach using magnetic resonance imaging.
    [Show full text]
  • How Do Upwelling and El Niño Impact Coral Reef Growth? a Guided, Inquiry-Based Lesson
    OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Gravinese, P.M., L.T. Toth, C.J. Randall, and R.B. Aronson. 2018. How do upwelling and El Niño impact coral reef growth? A guided, inquiry-based lesson. Oceanography 31(4):184–188, https://doi.org/10.5670/oceanog.2018.424. DOI https://doi.org/10.5670/oceanog.2018.424 PERMISSIONS Oceanography (ISSN 1042-8275) is published by The Oceanography Society, 1 Research Court, Suite 450, Rockville, MD 20850 USA. ©2018 The Oceanography Society, Inc. Permission is granted for individuals to read, download, copy, distribute, print, search, and link to the full texts of Oceanography articles. Figures, tables, and short quotes from the magazine may be republished in scientific books and journals, on websites, and in PhD dissertations at no charge, but the materi- als must be cited appropriately (e.g., authors, Oceanography, volume number, issue number, page number[s], figure number[s], and DOI for the article). Republication, systemic reproduction, or collective redistribution of any material in Oceanography is permitted only with the approval of The Oceanography Society. Please contact Jennifer Ramarui at [email protected]. Permission is granted to authors to post their final pdfs, provided byOceanography , on their personal or institutional websites, to deposit those files in their institutional archives, and to share the pdfs on open-access research sharing sites such as ResearchGate and Academia.edu. DOWNLOADED FROM HTTPS://TOS.ORG/OCEANOGRAPHY HANDS-ON OCEANOGRAPHY How Do Upwelling and El Niño Impact Coral Reef Growth? A GUIDED, INQUIRY-BASED LESSON By Philip M. Gravinese, Lauren T. Toth, Carly J.
    [Show full text]
  • Solomon Islands Marine Life Information on Biology and Management of Marine Resources
    Solomon Islands Marine Life Information on biology and management of marine resources Simon Albert Ian Tibbetts, James Udy Solomon Islands Marine Life Introduction . 1 Marine life . .3 . Marine plants ................................................................................... 4 Thank you to the many people that have contributed to this book and motivated its production. It Seagrass . 5 is a collaborative effort drawing on the experience and knowledge of many individuals. This book Marine algae . .7 was completed as part of a project funded by the John D and Catherine T MacArthur Foundation Mangroves . 10 in Marovo Lagoon from 2004 to 2013 with additional support through an AusAID funded community based adaptation project led by The Nature Conservancy. Marine invertebrates ....................................................................... 13 Corals . 18 Photographs: Simon Albert, Fred Olivier, Chris Roelfsema, Anthony Plummer (www.anthonyplummer. Bêche-de-mer . 21 com), Grant Kelly, Norm Duke, Corey Howell, Morgan Jimuru, Kate Moore, Joelle Albert, John Read, Katherine Moseby, Lisa Choquette, Simon Foale, Uepi Island Resort and Nate Henry. Crown of thorns starfish . 24 Cover art: Steven Daefoni (artist), funded by GEF/IWP Fish ............................................................................................ 26 Cover photos: Anthony Plummer (www.anthonyplummer.com) and Fred Olivier (far right). Turtles ........................................................................................... 30 Text: Simon Albert,
    [Show full text]
  • EXTENDED COST BENEFIT ANALYSIS of PRESENT and FUTURE USE of INDONESIAN CORAL REEFS an Empirical Approach to Sustainable Management of Tropical Marine Resources
    Aus dem Institut für Agrarökonomie der Christian-Albrechts-Universität zu Kiel EXTENDED COST BENEFIT ANALYSIS OF PRESENT AND FUTURE USE OF INDONESIAN CORAL REEFS An Empirical Approach to Sustainable Management of Tropical Marine Resources Dissertation zur Erlangung des Doktorgrades der Agrar-und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Magister of Science Achmad Fahrudin aus Jakarta (Indonesien) Kiel, November 2003 Dekan : Prof. Dr. Friedhelm Taube Erster Berichterstatter : Prof. Dr. Christian Noell Zweiter Berichterstatter : Prof. Dr. Franciscus Colijn Tag der mündlichen Prüfung: 06.11.2003 i Gedruckt mit Genehmigung der Agrar- und Ernährungswissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel ii Zusammenfassung Korallen stellen einen wichtigen Faktor der indonesischen Wirtschaft dar. Im Vergleich zu anderen Ländern weisen die Korallenriffe Indonesiens die höchsten Schädigungen auf. Das zerstörende Fischen ist ein Hauptgrund für die Degradation der Korallenriffe in Indonesien, so dass das Gesamtsystem dieser Fangpraxis analysiert werden muss. Dazu wurden im Rahmen dieser Studie die Standortbedingungen der Korallen erfasst, die Hauptnutzungen mit ihren jeweiligen Auswirkungen und typischen Merkmale der Nutzungen bestimmt sowie die politische Haltung der gegenwärtigen Regierung gegenüber diesem Problemfeld untersucht. Die Feldarbeit wurde in der Zeit von März 2001 bis März 2002 an den Korallenstandorten Seribu Islands (Jakarta), Menjangan Island (Bali) und Gili Islands
    [Show full text]
  • CORAL REEF DEGRADATION in the INDIAN OCEAN Status Report 2005
    Coral Reef Degradation in the Indian Ocean Status Report 2005 Coral Reef Degradation in the Indian Ocean. The coastal ecosystem of the Indian Ocean includes environments such as mangroves, sea- Program Coordination grass beds and coral reefs. These habitats are some CORDIO Secretariat Coral Reef Degradation of the most productive and diverse environments Olof Lindén on the planet. They form an essential link in the David Souter Department of Biology and Environmental food webs that leads to fish and other seafood in the Indian Ocean Science providing food security to the local human University of Kalmar population. In addition coral reefs and mangrove 29 82 Kalmar, Sweden Status Report 2005 forests protect the coastal areas against erosion. (e-mail: [email protected], Unfortunately, due to a number of human activi- [email protected]) Editors: DAVID SOUTER & OLOF LINDÉN ties, these valuable environments are now being degraded at an alarming rate. The use of destruc- CORDIO East Africa Coordination Center David Obura tive fishing techniques on reefs, coral mining and P.O. Box 035 pollution are examples of some of these stresses Bamburi, Mombasa, Kenya from local sources on the coral reefs. Climate (e-mail: [email protected], change is another stress factor which is causing [email protected]) additional destruction of the reefs. CORDIO is a collaborative research and CORDIO South Asia Coordination Center development program involving expert groups in Dan Wilhelmsson (to 2004) Status Report 2005 countries of the Indian Ocean. The focus of Jerker Tamelander (from 2005) IUCN (World Conservation Union) CORDIO is to mitigate the widespread degrada- 53 Horton Place, Colombo 7, Sri Lanka tion of the coral reefs and other coastal eco- (e-mail: [email protected]) systems by supporting research, providing knowledge, creating awareness, and assist in CORDIO Indian Ocean Islands developing alternative livelihoods.
    [Show full text]
  • The Roles of Endolithic Fungi in Bioerosion and Disease in Marine Ecosystems. II. Potential Facultatively Parasitic Anamorphic A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Dundee Online Publications University of Dundee The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs Gleason, Frank H.; Gadd, Geoffrey M.; Pitt, John I.; Larkum, Anthony W.D. Published in: Mycology DOI: 10.1080/21501203.2017.1371802 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link to publication in Discovery Research Portal Citation for published version (APA): Gleason, F. H., Gadd, G. M., Pitt, J. I., & Larkum, A. W. D. (2017). The roles of endolithic fungi in bioerosion and disease in marine ecosystems. II. Potential facultatively parasitic anamorphic ascomycetes can cause disease in corals and molluscs. Mycology, 8(3), 216-227. https://doi.org/10.1080/21501203.2017.1371802 General rights Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Mycology An International Journal on Fungal Biology ISSN: 2150-1203 (Print) 2150-1211 (Online) Journal homepage: http://www.tandfonline.com/loi/tmyc20 The roles of endolithic fungi in bioerosion and disease in marine ecosystems.
    [Show full text]
  • Damage on South African Coral Reefs and an Assessment of Their Sustainable Diving Capacity Using a Fisheries Approach
    BULLETIN OF MARINE SCIENCE, 67(3): 1025–1042, 2000 CORAL REEF PAPER DAMAGE ON SOUTH AFRICAN CORAL REEFS AND AN ASSESSMENT OF THEIR SUSTAINABLE DIVING CAPACITY USING A FISHERIES APPROACH Michael H. Schleyer and Bruce J. Tomalin ABSTRACT Coral reefs in a marine reserve at Sodwana Bay (27°30'S) make it a premier dive resort. Corals are at the southern limits of their African distribution on these reefs which are dominated by soft corals. The coastline is exposed and turbulent. An assessment of the degree to which sport diving damages the reefs is needed for their management. This study showed that recognizable diver damage is generally concentrated in heavily dived areas. This damage and that of unknown cause probably attributable to divers exceeded natural damage on the reefs, despite the normally rough seas. Fishing line discarded in angling areas also caused considerable damage by tangling around branching corals which become algal fouled and die. Heaviest damage was caused in isolated areas by a minor crown-of-thorns outbreak. A linear regression indicated that 10% diver damage occurs at 9000 dives per dive site p.a. Taking uncertainty into account, a precautionary limit of 7000 dives per dive site p.a. was recommended. Further recommendations are that the reefs be zoned in terms of their sensitivity to diver damage, depth and use by divers according to qualification, and a ban be placed on the use of diving gloves to reduce handling of the reefs. The complexity and beauty of coral reefs make them an attractive and valuable re- source for ecotourism (Davis and Tisdell, 1995).
    [Show full text]
  • Innovations in Animal-Substrate Interactions Through Geologic Time
    The other biodiversity record: Innovations in animal-substrate interactions through geologic time Luis A. Buatois, Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, luis. [email protected]; and M. Gabriela Mángano, Dept. of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon SK S7N 5E2, Canada, [email protected] ABSTRACT 1979; Bambach, 1977; Sepkoski, 1978, 1979, and Droser, 2004; Mángano and Buatois, Tracking biodiversity changes based on 1984, 1997). However, this has been marked 2014; Buatois et al., 2016a), rather than on body fossils through geologic time became by controversies regarding the nature of the whole Phanerozoic. In this study we diversity trajectories and their potential one of the main objectives of paleontology tackle this issue based on a systematic and biases (e.g., Sepkoski et al., 1981; Alroy, in the 1980s. Trace fossils represent an alter- global compilation of trace-fossil data 2010; Crampton et al., 2003; Holland, 2010; native record to evaluate secular changes in in the stratigraphic record. We show that Bush and Bambach, 2015). In these studies, diversity. A quantitative ichnologic analysis, quantitative ichnologic analysis indicates diversity has been invariably assessed based based on a comprehensive and global data that the three main marine evolutionary on body fossils. set, has been undertaken in order to evaluate radiations inferred from body fossils, namely Trace fossils represent an alternative temporal trends in diversity of bioturbation the Cambrian Explosion, Great Ordovician record to assess secular changes in bio- and bioerosion structures. The results of this Biodiversification Event, and Mesozoic diversity. Trace-fossil data were given less study indicate that the three main marine Marine Revolution, are also expressed in the attention and were considered briefly in evolutionary radiations (Cambrian Explo- trace-fossil record.
    [Show full text]
  • Forecasting Intensifying Disturbance Effects on Coral Reefs
    Author Manuscript This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/GCB.15059 This article is protected by copyright. All rights reserved Forecasting intensifying disturbance effects on coral reefs Julie Vercelloni∗1, 2, 3, 4, Benoit Liquet3, 5, Emma V. Kennedy†2, Manuel Gonzalez-Rivero´ ‡1, 2, M. Julian Caley3, 4, Erin E. Peterson3, 6, Marji Puotinen7, Ove Hoegh-Guldberg1, 2, and Kerrie Mengersen3, 4, 6 1ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia 2The Global Change Institute, The University of Queensland, St Lucia, QLD 4072, Australia 3ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane, QLD 4000, Australia 4School of Mathematical Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia 5Universite´ de Pau et des Pays de l’Adour, E2S UPPA, CNRS, LMAP, Pau, France 6Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4000 Australia 7Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, WA 6009, Australia 1 Running title Modelling the structure of reef communities ∗Corresponding author - Electronic address: [email protected]; Phone number: +61731389817; ORCiD: 0000-0001-5227-014X †PresentAuthor Manuscript affiliation: School of Earth and Environmental Sciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia ‡Present affiliation: Australian Institute of Marine Science, PMB 3, Townsville MC, QLD 4810, Australia 1 This article is protected by copyright.
    [Show full text]
  • Marine Pollution in the Caribbean: Not a Minute to Waste
    Public Disclosure Authorized Public Disclosure Authorized Marine Public Disclosure Authorized Pollution in the Caribbean: Not a Minute to Waste Public Disclosure Authorized Standard Disclaimer: This volume is a product of the staff of the International Bank for Reconstruction and Development/the World Bank. The findings, interpreta- tions, and conclusions expressed in this paper do not necessarily reflect the views of the Executive Directors of the World Bank or the governments they represent. The World Bank does not guarantee the accuracy of the data included in this work. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of the World Bank concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Copyright Statement: The material in this publication is copyrighted. Copying and/or transmitting portions or all of this work without permission may be a violation of applicable law. The International Bank for Reconstruction and Development/ The World Bank encourages dissemination of its work and will normally grant per- mission to reproduce portions of the work promptly. For permission to photocopy or reprint any part of this work, please send a request with complete information to the Copyright Clearance Center, Inc., 222 Rose- wood Drive, Danvers, MA 01923, USA, telephone 978-750-8400, fax 978-750-4470, http://www.copyright.com/. All other queries on rights and licenses, including subsidiary rights, should be addressed to the Office of the Publisher, The World Bank, 1818 H Street NW, Washington, DC 20433, USA, fax 202-522-2422, e-mail [email protected].
    [Show full text]
  • S41598-021-95872-0.Pdf
    www.nature.com/scientificreports OPEN Phylogeography, colouration, and cryptic speciation across the Indo‑Pacifc in the sea urchin genus Echinothrix Simon E. Coppard1,2*, Holly Jessop1 & Harilaos A. Lessios1 The sea urchins Echinothrix calamaris and Echinothrix diadema have sympatric distributions throughout the Indo‑Pacifc. Diverse colour variation is reported in both species. To reconstruct the phylogeny of the genus and assess gene fow across the Indo‑Pacifc we sequenced mitochondrial 16S rDNA, ATPase‑6, and ATPase‑8, and nuclear 28S rDNA and the Calpain‑7 intron. Our analyses revealed that E. diadema formed a single trans‑Indo‑Pacifc clade, but E. calamaris contained three discrete clades. One clade was endemic to the Red Sea and the Gulf of Oman. A second clade occurred from Malaysia in the West to Moorea in the East. A third clade of E. calamaris was distributed across the entire Indo‑Pacifc biogeographic region. A fossil calibrated phylogeny revealed that the ancestor of E. diadema diverged from the ancestor of E. calamaris ~ 16.8 million years ago (Ma), and that the ancestor of the trans‑Indo‑Pacifc clade and Red Sea and Gulf of Oman clade split from the western and central Pacifc clade ~ 9.8 Ma. Time since divergence and genetic distances suggested species level diferentiation among clades of E. calamaris. Colour variation was extensive in E. calamaris, but not clade or locality specifc. There was little colour polymorphism in E. diadema. Interpreting phylogeographic patterns of marine species and understanding levels of connectivity among popula- tions across the World’s oceans is of increasing importance for informed conservation decisions 1–3.
    [Show full text]