Work Zone Intrusion Alert Technologies: Assessment and Practical Guidance

Total Page:16

File Type:pdf, Size:1020Kb

Work Zone Intrusion Alert Technologies: Assessment and Practical Guidance WORK ZONE INTRUSION ALERT TECHNOLOGIES: ASSESSMENT AND PRACTICAL GUIDANCE Final Report SPR 790 WORK ZONE INTRUSION ALERT TECHNOLOGIES: ASSESSMENT AND PRACTICAL GUIDANCE FINAL REPORT SPR 790 by John A. Gambatese Hyun Woo Lee Chukwuma Aham Nnaji School of Civil and Construction Engineering Oregon State University Corvallis, OR 97331 for Oregon Department of Transportation Research Section 555 13th Street NE, Suite 1 Salem OR 97301 and Federal Highway Administration 400 Seventh Street, SW Washington, DC 20590-0003 June 2017 Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA-OR-RD-17-14 4.Title and Subtitle 5. Report Date Work Zone Intrusion Alert Technologies: Assessment and Practical June 2017 Guidance 6. Performing Organization Code 7.Author(s) 8. Performing Organization John A. Gambatese; Hyun Woo Lee; Chukwuma Aham Nnaji Report No. SPR 790 9.Performing Organization Name and Address 10. Work Unit No. (trais) Oregon State University School of Civil and Construction Engineering 11. Contract or Grant No. Corvallis, Oregon 97331-2302 12.Sponsoring Agency Name and Address 13. Type of Report and Period Oregon Dept. of Transportation U.S. Department of Transportation Covered Research Unit Federal Highway Administration Final Report 555 13th Street NE, Suite 2 400 Seventh St., SW 14. Sponsoring Agency Code Salem, Oregon 97301-4178 Washington, D.C. 20590 15.Supplementary Notes 16. Abstract A work zone intrusion alert technology is a type of safety system that is used in a roadway work zone to alert field workers and secure time for them to escape when errant vehicles intrude into the work zone. Although such technologies have potential to significantly improve the overall safety of construction work zones, previous studies reported mixed findings, resulting in limited application of intrusion alert technologies. In response, the primary goal of this research study is to scientifically assess the effectiveness of currently available work zone intrusion alert technologies, and to provide recommendations for use of the technologies in future ODOT construction and maintenance work zones. To fulfill this goal, the research gathered information about work zone intrusion alert technologies, gained experiential input and advice from ODOT staff and industry practitioners, and tested technologies under controlled conditions and in active work zones. While sample sizes were limited, the findings from the study indicate that aspects of intrusion alarms via visual, audio, and haptic means can be effective warning mechanisms in a work zone. To improve the potential impacts of these technologies, this report identifies recommended minimum standards for each of the aforementioned means of alert. Implementation of the research results is expected to assist ODOT with enhancing the safety of motorists and workers in construction work zones on high-speed roadways. 17. Key Words 18. Distribution Statement Work Zone, Safety, Intrusion Alert Technologies. Copies available from NTIS, and online at Construction http://oregon.gov/ODOT/Programs/Pages/Researc h-Publications.aspx 19. Security Classification 20. Security Classification 21. No. of Pages 22. Price (of this report) (of this page) 203 Unclassified Unclassified chnical Report Form DOT F 1700.7 (8-72) Reproduction of completed page authorized Printed on recycled paper i ii SI* (MODERN METRIC) CONVERSION FACTORS APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS Symbo When You Multiply Symbo Symbo When You Multiply To Find To Find Symbol l Know By l l Know By LENGTH LENGTH in inches 25.4 millimeters mm mm millimeters 0.039 inches in ft feet 0.305 meters m m meters 3.28 feet ft yd yards 0.914 meters m m meters 1.09 yards yd mi miles 1.61 kilometers km km kilometers 0.621 miles mi AREA AREA millimeters millimeters in2 square inches 645.2 mm2 mm2 0.0016 square inches in2 squared squared ft2 square feet 0.093 meters squared m2 m2 meters squared 10.764 square feet ft2 yd2 square yards 0.836 meters squared m2 m2 meters squared 1.196 square yards yd2 ac acres 0.405 hectares ha ha hectares 2.47 acres ac kilometers kilometers mi2 square miles 2.59 km2 km2 0.386 square miles mi2 squared squared VOLUME VOLUME iii fl oz fluid ounces 29.57 milliliters ml ml milliliters 0.034 fluid ounces fl oz gal gallons 3.785 liters L L liters 0.264 gallons gal ft3 cubic feet 0.028 meters cubed m3 m3 meters cubed 35.315 cubic feet ft3 yd3 cubic yards 0.765 meters cubed m3 m3 meters cubed 1.308 cubic yards yd3 NOTE: Volumes greater than 1000 L shall be shown in m3. MASS MASS oz ounces 28.35 grams g g grams 0.035 ounces oz lb pounds 0.454 kilograms kg kg kilograms 2.205 pounds lb short tons (2000 short tons (2000 T 0.907 megagrams Mg Mg megagrams 1.102 T lb) lb) TEMPERATURE (exact) TEMPERATURE (exact) (F- 1.8C+3 °F Fahrenheit Celsius °C °C Celsius Fahrenheit °F 32)/1.8 2 *SI is the symbol for the International System of Measurement ACKNOWLEDGEMENTS The authors would like to acknowledge the input of the ODOT Research Unit and Technical Advisory Committee established for this research study: Travis Brouwer, ODOT Dean Chess, ODOT Nick Fortey, FHWA Justin King, ODOT Ron Larson, ODOT Jon Lazarus, ODOT Tyson Lindekugel, ODOT Scott McCanna, ODOT Jarvis Pennington, ODOT John Rakowitz, AGC Eric Standley, ODOT Additional appreciation is expressed to Ali Karakhan, Ali Jafarnejad, Ding Liu, Kasim AlOmari, Ziyu Jin, and Fan Zhang, graduate students at OSU, who assisted with data collection on the case study projects. As well, Prof. van den Wymelenberg, Stephanie Luiere, and Alen Mahić of the Energy Studies in Buildings Laboratory at the University of Oregon assisted in providing the instruments used for the day time luminance assessment. The research team is also grateful to the many construction industry partners who volunteered their time and effort to participate in the survey, focus groups, and case study projects. DISCLAIMER This document is disseminated under the sponsorship of the Oregon Department of Transportation and the United States Department of Transportation in the interest of information exchange. The State of Oregon and the United States Government assume no liability of its contents or use thereof. The contents of this report reflect the view of the authors who are solely responsible for the facts and accuracy of the material presented. The contents do not necessarily reflect the official views of the Oregon Department of Transportation or the United States Department of Transportation. The State of Oregon and the United States Government do not endorse products of manufacturers. Trademarks or manufacturers’ names appear herein only because they are considered essential to the object of this document. This report does not constitute a standard, specification, or regulation. iv TABLE OF CONTENTS 1.0 INTRODUCTION............................................................................................................. 1 1.1 BACKGROUND .................................................................................................................. 1 1.2 STUDY GOAL AND OBJECTIVES ......................................................................................... 3 1.3 RESEARCH SCOPE ............................................................................................................. 4 1.4 IMPLEMENTATION ............................................................................................................ 6 2.0 LITERATURE REVIEW ................................................................................................ 7 2.1 PREVIOUS RESEARCH ....................................................................................................... 7 2.1.1 Work Zone Intrusions............................................................................................................................. 7 2.2 SAFETY TECHNOLOGIES IN HIGHWAY CONSTRUCTION ................................. 9 2.3 PREVIOUS INTRUSION ALERT TECHNOLOGIES ................................................ 10 2.4 AVAILABLE TECHNOLOGIES ................................................................................ 11 2.5 POINT OF DEPARTURE ............................................................................................ 14 3.0 SURVEY OF CURRENT PRACTICE ......................................................................... 15 3.1 SURVEY STRUCTURE .............................................................................................. 15 3.2 SURVEY ADMINISTRATION ............................................................................................. 15 3.3 SURVEY DISTRIBUTION .................................................................................................. 15 3.4 RESULTS ........................................................................................................................ 16 3.5 SUMMARY OF CURRENT PRACTICES .............................................................................. 22 4.0 PRELIMINARY INVESTIGATION ............................................................................ 25 4.1 ODOT 14821 TUALATIN RIVER NATIONAL WILDLIFE REFUGE (TRNWR) TURN LANE PROJECT ..................................................................................................................................... 25 4.2 DATA COLLECTION ........................................................................................................ 26 4.3 RESULTS AND ANALYSIS ...............................................................................................
Recommended publications
  • Pedestrian and Bicyclist Traffic Safety Research Projects 1969-2007
    NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION A Compendium of NHTSA’s Pedestrian and Bicyclist Traffic Safety Research Projects 1969-2007 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Cover photograph of pedestrians by Dan Burden, www.pedbikeimages.org ii iii Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. DOT HS 810 793 4. Title and Subject 5. Report Date A Compendium of NHTSA Pedestrian and Bicyclist Research Projects: July 2007 1969 – 2007 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Arlene M. Cleven and Richard D. Blomberg 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Dunlap and Associates, Inc. 110 Lenox Avenue 11. Contract or Grant No. Stamford, CT 06906 DTNH22-99-D-05099, Task Order 7 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Final Report U.S. Department of Transportation 12/22/03 – 12/22/05 National Highway Traffic Safety Administration 14.
    [Show full text]
  • Alpr & Traffic Vision
    ALPR & TRAFFIC VISION +34 916 510 644 I www.lectorvision.com I [email protected] www.lectorvision.com ALPR & TRAFFIC VISION LECTOR VISON Designs, develops, and manufactures Artificial Vision systems, namely for Automatic Number Plate Recognition, applied to road safety, car park management, traffic control and security increase. We manufacture “All in One” License Plate Recognition units for parking, tolls, ITS and enforcement We develop the software for Automatic Number Plate Recognition (based on our own neural networks), car park management applications, restricted area access, traffic management and customized applications with a high technological value. Lector Vision is a part of the Group Tradesegur – Siaisa, which started its activity in 1944, having focus its activity in the technological field. Who we are The group has over 100 employees distributed along three delegations, offering full national and international support. Our R&D department develops hardware & software solutions on demand to adjusy with our client’s needs. We are specialists in consultancy, development and deployment of efficient and innovative projects and solutions. With over 30 years of experience on ITS safety and Parking Access control, and being loyal to our compromise of giving an integral service to our clients, we are one of main groups in Systems for Citizen Security. [email protected] ALPR & TRAFFIC VISION Our team is composed by a group of people with a multidisciplinary technical education, with more than 15 years of experience and a deep knowledge of the sector. This allows us to understand the needs of our clients and to give them solutions to specific problems, not just providing standard products, helping our clients to generate “added value” in the markets in which they operate.
    [Show full text]
  • A Study of a Traffic Controlling Robot for Safer Work Zones
    A Study of a Traffic Controlling Robot for Safer Work Zones Interactive Qualifying Project Submitted for Approval to: Professor El-Korchi and Professor Mallick May 17, 2020 Team Members: Benjamin Bushe Thomas Feraco Ella Forbes Isaac Stilwell Jacob Vanscoy 1 Table of Contents Abstract 5 Introduction 5 Literature Review 6 Current Practices 6 Use of Flaggers 6 Automated Flagger Assistance Device (AFAD) 7 Wearables for Roadside Construction Workers 8 Artificial Intelligence 9 Intelligent Transportation Systems 10 RFID Technology 11 LiDAR 11 Airport Runway Traffic Safety 12 Safety 12 Resilience 17 Sustainability 18 Legal Aspects 19 Objective 20 Methodology 21 Results 30 WPI Community Survey Responses 31 DOT Representative Survey Responses 36 Analysis 42 Conclusion 44 References 46 Appendix 50 Appendix 1: Design Flow Chart 50 Appendix 2: Survey Questions for Construction Companies and Contractors 51 Appendix 3: Survey Questions for DOTs 53 Appendix 4: Survey Questions for WPI Community 54 Appendix 5: Questions for Professor Pinciroli 56 2 List of Figures Figure 1: Automated Flagger Assistance device from MnDOT. Figure 2: Amazon’s wearable Robotic Tech Vest Figure 3: MOBOTIX M73 model camera Figure 4: ITS Queue Detector Figure 5: ITS Variable Message Display Figure 6: How traFFic is controlled during construction on a roadway Figure 7: Human Flagger signal and movements Figure 8: Construction on I-95 Southbound, Florida Figure 9: Accident on I-95, southbound Florida Figure 10: Nighttime construction I-96 South, Florida Figure 11: Passing Vehicles
    [Show full text]
  • An Evaluation of the Effectiveness of School Zone Flashers
    An Evaluation of the Effectiveness of School Zone Flashers Documents Prepared By: Safety Evaluation Group Traffic Safety Systems Management Section Traffic Engineering and Safety Systems Branch North Carolina Department of Transportation Principal Investigator _______________________________ __6/5/07________ Carrie L. Simpson, PE Date Traffic Safety Project Engineer Executive Summary This report summarizes the effectiveness of placing flashing beacons on school zone speed limit signs to improve speed compliance in school zones. A sample set of fifteen treatment school zones with flashers and fifteen comparison school zones without flashers were selected for analysis throughout North Carolina. Speed data was collected at all sites during the reduced speed school zone hours of operation (school time) and outside the reduced speed school zone hours of operation (non-school time). The school time speed limits at all sites ranged between 25 mph to 45 mph. An evaluation of the treatment and comparison sites yield the following results: x The speed distributions of both flasher and non-flasher locations were similar during the school time. It appears there was no practical difference in vehicle speeds between the flasher and non- flasher locations during school time hours. x At the flasher sites, 5.6 percent fewer vehicles exceeded the speed limit and average speeds were 0.4 mph less than the non-flasher sites during school time. The 85th percentile speed was 0.1 mph higher at the flasher locations and the pace speeds were the same during school time. x There was an 11.8 percent greater compliance to 35-mph or greater school time speed limits at flasher sites than non-flasher sites.
    [Show full text]
  • Active Work Zone Safety Using Emerging Technologies 2017
    Active Work Zone Safety Using Emerging Technologies 2017 By Dr. Eric Marks, Dr. Stephanie Vereen, Ibukun Awolusi Department of Civil, Construction, and Environmental Engineering The University of Alabama Tuscaloosa, Alabama Prepared by UTCA University Transportation Center for Alabama The University of Alabama, The University of Alabama at Birmingham, and The University of Alabama in Huntsville UTCA Report Number 15412 July 2017 UTCA Theme: Management and Safety of Transportation Systems University Transportation Center for Alabama About UTCA The University Transportation Center for Alabama (UTCA) is headquartered in the Department of Civil, Construction, and Environmental Engineering at the University of Alabama (UA). Interdisciplinary faculty members perform research, education, and technology-transfer projects using funds provided by UTCA and external sponsors. Mission Statement and Strategic Plan The mission of UTCA is “to advance the technology and expertise in the multiple disciplines that comprise transportation through the mechanisms of education, research, and technology transfer while serving as a university-based center of excellence.” The UTCA strategic plan contains six goals that support this mission: Education – conduct a multidisciplinary program of coursework and experiential learning that reinforces the theme of transportation; Human Resources – increase the number of students, faculty and staff who are attracted to and substantively involved in the undergraduate, graduate, and professional programs of UTCA; Diversity
    [Show full text]
  • Pedbikecrashtypes.Pdf
    Technical Report Documentation Page 1. Keport 1"0. l. \ioyemment Ace....'" 1"0. J. Rodp...,1 • CataloK No. FHWA-RD-95-163 4. Tille lIIld Subtitle 5. Keport Dale PEDESTRIAN AND BICYCLE CRASH TYPES OF June 1996 THE EARLY 1990'S 6. Yerfomunl lJrpniZa'- Code 8. Pcrt"DnIUIII OI'pniZatlon Report No. 7. Aulhor(.) William W. Hunter, Jane C. Stutts, Wayne E. Pein and Chante L. Cox ~. I ' I"ame lIIld Add"'"" lU. WOrk unit 1"0. \TKAlll) Highway Safety Research Center 3A4b University of North Carolina u. Contract or Gnnt No. CB #3430, 730 Airport Road DTFH61-92-Y-30048 Chapel Hill, NC 27599-3430 u. Spansonnl ....I0Il.,. !'lame lIIld Ad_ 1.>. lype or Keporl ana renoa "overea Office of Safety and Traffic Operations R&D Research Report Federal Highway Administration 8/92 - 2/95 6300 Georgetown Pike 14. Spoasonnl Aaen<1 Code McLean, VA 22101-2296 1'. ~upp_enlar11"_ Contracting Officer's Teclmical Representatives (COTR's) Justin True and Carol Tan (HSR-20) 16. Abstract The purpose of this research was to apply the basic NHTSA pedestrian and bicyclist typologies to a sample of recent crashes and to refme and update the crash type distributions with particular attention to roadway and locational factors. Five thousand pedestrian- and 3,000 bicycle-motor vehicle crashes were coded in a population-based sample drawn from the States of California, Florida, Maryland, Minnesota, North Carolina, and Utah. Nearly a third of the pedes­ trians were struck at or near (within 16 m (50 ft) of an intersection. Midblock events were the second major pedestrian crash type grouping, representing over a fourth (26 percent) of all crashes.
    [Show full text]
  • Roadway Design Manual (RDW)
    Roadway Design Manual Revised July 2020 © 2020 by Texas Department of Transportation (512) 463-8630 all rights reserved Manual Notice 2020-1 From: Camille Thomason, P.E Manual: Roadway Design Manual Effective Date: July 01, 2020 Purpose The Roadway Design Manual has been revised to update roadway policy in accordance with FHWA guidelines and with comments received from Design Division, other Divisions, and TxDOT's 25 Districts. As a result, revisions were made to Chapters 1-8 and Appendices A, B and C. Also, new Appendices D, and E were added to the manual, that is, Right Turn Slip Lane Design Guidelines and Alternative Intersections and Interchanges, respectively. Likewise, minor errata type corrections and edits were made throughout the manual. Contents Chapter 1 Section 1: Revised Roadway Design Manual Format for chapters 7, 8, Appendix C, and to include the addition of Appendices D, and E. Under External Reference Documents, updated references. Section 2: Revised controlling criteria per FHWA guidance for Design Exceptions, Waivers, and Variances. Reduced controlling criteria from 13 to 10. Under Design Exceptions, added guidance that 4' minimum width is required for new bike lanes. Widths less than 4' will require a design exception. Under Design Exceptions, added guidance that design exceptions for bridge rails shall be sent to Bridge Division. Under Design Waivers, removed "non-controlling criteria for the" from introductory sentence. Under Design Waivers, removed requirement for copy of documentation being furnished to Design Division. Under Design Waivers, added "Shared Use Paths (if this is the chosen Bicycle/Ped facility)" to 4R. Under Special Facilities, moved sentence "Design waivers are not applicable…" to the bottom of the section.
    [Show full text]
  • Appendix A: SRF Pedestrian Traffic Control Assessment
    Grand Forks, ND Appendix A: SRF Pedestrian Traffic Control Assessment CPS, Ltd. APPENDIX Draft Memorandum SRF No. 0179294 To: Alex Zikmund, Engineer CPS, Ltd. From: Sara Schmidt, EIT, Senior Analyst Jacob Nordick, P.E. (MN, ND), Principal Date: May 17, 2017 Subject: South Columbia Road Pedestrian Traffic Control Assessment Background SRF Consulting Group, Inc. has completed a pedestrian traffic control assessment along South Columbia Road between 40th Avenue South and 47th Avenue South in Grand Forks, North Dakota. Discovery Elementary School opened in the fall of 2015 and is located on 40th Avenue South west of South Columbia Road. This school serves students that live on both the east and west side of South Columbia Road. Currently students walking or biking to school utilize the traffic signal at 40th Avenue South to cross South Columbia Road. On average, approximately 30 students were found to walk/bike to school in the Discovery School Survey on Modes of Transportation that was conducted by the City of Grand Forks. The number of residential developments in the project area are increasing and with this comes more vehicular and pedestrian traffic. The City of Grand Forks requested the pedestrian traffic control assessment to determine the most appropriate location and pedestrian traffic control method along this segment of South Columbia Road. Existing Conditions South Columbia Road is currently a 2-lane undivided urban roadway that has been functionally classified as a principal arterial with a posted speed limit of 40 miles per hour (mph). Adjacent land uses are residential, educational, and recreational. There are no sidewalks along South Columbia Road within the project area.
    [Show full text]
  • Chapter 7: Policing Methods and Challenges ■ 157 Copyright ©2021 by SAGE Publications, Inc
    distribute or CHAPTER 7 post, iStockphoto.com/400tmax POLICINGcopy, METHODS AND CHALLENGESnot IssuesDo of Force, Liability, and Technologies Paramount among the policies of law enforcement organizations are those controlling use of force. —The President’s Task Force on 21st Century Policing, 2015 156 Copyright ©2021 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. LEARNING OBJECTIVES As a result of reading this chapter, you will be able to 4. Review what is meant by the term police brutality and, in that connection, the current 1. Describe the test used for determining whether police status of officers’ body-worn cameras use of force was reasonable or unreasonable 5. Explain civil liability, the types of police actions (or 2. Assess police use of force in terms of the current inaction) that are vulnerable to lawsuits and how state of police-community (particularly minority police officers—including their supervisors—might group) relations resulting from a number of widely be held criminally liable for their misconduct publicized, fatal police shootings and the Black 6. Delineate several types of technologies that Lives Matter and Blue Lives Matter movements are assisting police in their duties but that 3. Define constitutional policing, legitimacy, procedural might also raise privacy and use concerns justice, and consent decrees as they apply to police efforts to bring harmony to their whole approach—and to achieve a “guardian” rather than “soldier” mindset ASSESS YOUR AWARENESS Check your current knowledge of police methods and chal- a futile effort, as they are less effective lenges by responding to the following eight true-false items; in this type of work.
    [Show full text]
  • View Catalog
    Traffic Cones 36” cones #518-3-1LG 28” cones #528-7-1LG 18” cones #JB270032CLM3M64 #JB2RS45015CL3M6 18”-36” Orange Cones w/ Black Base 18”-28” Lime Green Cones w/ Black Base One of the most durable cones on the market today. Meets MUTCD specifica- These lime green traffic cones are one of the most durable cones on the market tions & assures maximum day & night vision. Brilliant fluorescent today. They feature a softer base for flexibility and road grip and they are very orange color attracts immediate attention. competitively priced. Perfect for marking hazards, directing traffic and indicat- ing special routes. Available with or without reflective collars. Meets MUTCD specifications and assure maximum day and night vision. #518-3-1: 18” No Reflective Collar, 3 lbs. base $7.25 #518-3-2: 18” w/1 Reflective Collar, 3 lbs. base $10.00 #518-3-1LG: 18” Lime No Collar, 3# base $8.95 #528-7-1: 28” No Reflective Collar, 7 lbs. base $12.00 #JB2RS45015CL3M6: 18” Lime w/Collar, 3# base $13.25 #528-7-2: 28” w/2 Reflective Collars, 7 lbs. base $16.50 #528-7-1LG: 28” Lime No Collar, 7# base $13.95 #536-4: 36” Orange No Collar, 12 lbs. base $12.00 #JB270032CLM3M64: 28” Lime w/Collar, 7# base $21.50 #536-5: 36” Orange w/Collars, 12 lbs. base $18.00 Double & Single Collar Orange Traffic Cones All vinyl construction assures durability and flexibility in all weather conditions. Long lasting #1850-00-M brilliant fluorescent color provides high visibility protection. Ultraviolet stabilized color provides maximum resistance to fading.
    [Show full text]
  • July (Summer) 2016
    IAPSNJ Quarterly Magazine July ~ September 2016 Summer Edition Volume 1, Issue 31 A social, fraternal organization of more than 4,000 Italian American Law Enforcement officers in the State. William Schievella, President Editor: Patrick Minutillo Executive Secretary W e d n e s d a y S e p t . 1 4 B a s k i n g R i d g e Country Club 1 8 5 Madisonville Rd., Basking R i d g e , N J W e d n e s d a y O c t . 6 M a r c o P o l o 527 Morris Ave. S u m m i t , N J W e d n e s d a y N o v . 9 C h a n d e l i e r 340 Franklin A v e . Belleville, NJ Visit us at http://www.iapsnj.org IAPSNJ Quarterly Magazine July ~ September 2016 Summer Edition Page 2 Volume 1, Issue 31 2014 ~ 2015 P RESIDENT ’ S MESSAGE William Schievella B ILL S CHIEVELLA President Vincent Nardone Executive Director officers have professionals Ronald Sepe Executive Vice President trained to act as peer sup- John Lazzara porters. They can be 1st Vice President reached at 1 866-COP- Jerry Onnembo 2nd Vice President 2COP (267-2267) 24 hours Alfonse Imperiale Dear Members and Friends, a day 365 days a year. Please rd 3 Vice President don’t let another brother or Joseph Simonetti Financial Vice President As you read this magazine sister law enforcement of- Patrick Minutillo the summer is upon us.
    [Show full text]
  • Developing a Taxonomy of Human Errors and Violations That Lead to Crashes
    Developing a Taxonomy of Human Errors and Violations that Lead to Crashes December 2, 2020 Asad Khattak, Ph.D. Numan Ahmad Behram Wali, Ph.D. The University of Tennessee, Knoxville Eric Dumbaugh, Ph.D. Florida Atlantic University 1 www.roadsafety.unc.edu U.S. DOT Disclaimer The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated in the interest of information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes no liability for the contents or use thereof. Acknowledgement of Sponsorship This project was supported by the Collaborative Sciences Center for Road Safety, www.roadsafety.unc.edu, a U.S. Department of Transportation National University Transportation Center promoting safety. We gratefully acknowledge the contributions of Ms. Kinzee Clark and Mr. Zachary Jerome toward editing the report. www.roadsafety.unc.edu 2 TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CSCRS-R19 4. Title and Subtitle: 5. Report Date Developing a Taxonomy of Human Errors and Violations that Lead to Crashes December 02, 2019 6. Performing Organization Code DUNS: 608195277 7. Author(s) 8. Performing Organization Report No. Asad Khattak, PhD; Numan Ahmad, Behram Wali, PhD, Eric Dumbaugh, PhD 9. Performing Organization Name and Address 10. Work Unit No. University of Tennessee Center for Transportation Research, Knoxville, TN Florida Atlantic University, Boca Raton, FL 11.
    [Show full text]