Evaluation of Neuroprotective Potential of Polyphenols Derived from Portuguese Native Plants: Juniperus Sp

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Neuroprotective Potential of Polyphenols Derived from Portuguese Native Plants: Juniperus Sp Evaluation of neuroprotective potential of polyphenols derived from Portuguese native plants: Juniperus sp. and Rubus sp. Lucélia Rodrigues Tavares Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Oeiras, November, 2012 Evaluation of neuroprotective potential of polyphenols derived from Portuguese native plants: Juniperus sp. and Rubus sp. Lucélia Rodrigues Tavares Dissertation presented to obtain the Ph.D degree in Biochemistry Instituto de Tecnologia Química e Biologica | Universidade Nova de Lisboa Oeiras, November, 2012 INSTITUTO DE TECNOLOGIA QUIMICA E BI0L0GICA / UNL Knowledge Creation The work presented in this thesis was developed at: Disease and Stress Biology Laboratory Instituto de Tecnologia Química e Biológica Universidade Nova de Lisboa Av. da República, Apartado 127 2781-901 Oeiras, Portugal Supervised by: Doctor Ricardo Boavida Ferreira Doctor Maria Cláudia Nunes dos Santos Funded by FCT and FSE in the scope of QCA, grant SFRH/BD/37382/2007 ii Table of contents Acknowledgements…………………..……………………………………………….iv Abreviation list………………………..……………………………………..….….….v Abstract………………………………..……………………………………..............ix Resumo………………………………………………….…………………………..….xi Thesis outline…………………………..………………………………………….…xiii Chapter 1: General introduction………………..………..………………………...1 Juniperus sp. .…………………………………………………………......…………59 Chapter 2: The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal …………………………...….61 Chapter 3: Elucidating phytochemical production in Juniperus sp.: seasonality and response to stress situations ……………………..…………87 Rubus sp. ……………………………………………………………..……………..113 Chapter 4 : Neuroprotective effect of blackberry (Rubus sp.) polyphenols is potentiated after simulated gastrointestinal digestion……………..…..115 Chapter 5: Neuroprotective effects of digested polyphenols from wild blackberry species……………………………………………………………..…..141 Chapter 6: Differential expression of genes involved in neuroprotection conferred by blackberry polyphenols after simulated gastrointestinal digestion………………………………………………………………..…….…..…169 Chapter 7: General discussion……………………………………….…..…..…221 Appendix: Comparison of different methods for DNA-free RNA isolation from SK-N-MC neuroblastoma …………………………………………………...A.1 iii Acknowledgements I dedicate this thesis to my all family, specially to my parents, my sister and my grandfather “Zé” that always believe on me and supported me. I also would like to acknowledge to my supervisors for all knowledge, advices and support. A special thank to Cláudia for being in the last years my “mom”, my “sister” and specially my friend. To my all lab colleagues. Many thanks for the time we shared together, on the lab and besides it. They enriched my life in many diverse aspects. A special thanks to all that help me in “flow cytometry marathon” and in thesis revision and to Rui for the amazing plant pictures. To my all friends not included above, that always support me and make me laugh, thanks. To Doctors Helena Vieira, Derek Stewart and Gordon McDougall I would like to acknowledge all the help and the involvement into the work. Last but not least, I thank to ITQB for hosting me and all people that make this work possible providing or helping in the search of plants, namely Doctors Carlos Aguiar, Pedro Oliveira, Dalila Espírito-Santo and Fátima Rodrigues. iv Abbreviation list Abbreviation Term m Mitochondrial transmembrane potential 4CL 4-coumarate:CoA ligase 6-OHDA 6-hydroxydopamine 8-OHdG 8-hydroxydeoxyguanosine A -amyloid ABC ATP-binding cassette AC Antioxidant capacity ACC Acetyl-CoA carboxylase ACh Acetylcholine AChE Acetylcholinesterase ACT Actin AD Alzheimer’s disease Aha1 ATPase homolog 1 Akt Protein kinase B ALP Autophagy-lysosome pathway ALS Amyotrophic lateral sclerosis ANR Anthocyanidin reductase ANS Anthocyanidin synthase AP-1 Activating protein-1 APC/CDC20 Anaphase-promoting complex/cell division cycle 20 homolog APP Amyloid precursor protein Arc Activity-regulated cytoskeleton-associated protein ARE Antioxidant response element Bcl-2 B-cell lymphoma 2 BDNF Brain-derived neurotrophic factor bp Base pair Brca Breast and ovarian cancer susceptibility protein BuChE Butyrulcholinesterase C3H p-coumarate 3 hydroxylase C4H Cinnamate 4-hydroxylase cAMP Cyclic adenosine monophosphate CAT Catalase CBF Cerebral blood flow CE Catechin equivalents CFTR Cystic fibrosis transmembrane conductance regulator CHI Chalcone isomerise CHS Chalcone synthase CNS Central nervous system COP Coat protein complex COX Cyclooxigenase CREB cAMP response element binding CyDAGlc Cyanidin-3-O-dioxayl-glucoside CyGlc Cyanidin-3-O-glucoside CyHMGG Cyanidin-3-O-hydroxymethyl-glutaroyl glucoside CyMalG Cyanidin-3-O-malonylglucoside CyXyl Cyanidin-3-O-xyloside CyXyl Cyanidin-3-O-xyloside DAPI 4',6-diamidino-2-phenylindole DAVID Database for Annotation, Visualization and Integrated Discovery DCF 2’,7’-dichlorofluorescein DFR Dihydroflavonol reductase DG Dentate gyrus DiOC (3) 3,3’-dihexyloxacarbocyanine iodide 6 DSB Double strain break DW Dry weight EA Ellagic acid ECAC European Collection of Cell Cultures v EF1A Elongation factor 1α EGCG Epigallocatechin gallate eIF2 Eukaryotic translation initiation factor 2 EMEM Eagle Minimum Essential Medium ENaC Epithelium sodium channel ER Endoplasmic reticulum ERK Extracellular-signal-regulated kinase ET Ellagitannin F3’5’H Flavonoid 3′5′-hydroxylase F3’H Flavonoid 3′-hydroxylase F3GT Flavonoid-3-glucosyltransferase F3H Favanone 3-hydroxylase FA Formic acid FBS Foetal bovine serum FLS Flavonol synthase FS Flavone synthase GA Golgi apparatus GABA Gamma-aminobutyric acid A GAE Gallic acid equivalents GAPDH Glyceraldeide 3-phosphate dehydrogenase GCN2 General control nonrepressed 2 GI Gastrointestinal GITC Guanidine Isothiocyanate GPx Glutathione peroxidase GR Glutathione reductase GRAS Generally Recognized As Safe Grx Glutaredoxin GSH Glutathione (reduced form) GSK 3 Glycogen synthase kinase 3 GSSG Glutathione disulphide H DCFDA 2’,7’-dichlorofluorescein diacetate 2 HD Huntington’s disease HNE 4-hydroxynonenal HO-1 Heme oxygenase HSD Honest Significant Difference HSP Heat shock protein IAPs Inhibitors of apoptosis IL-1 Interleukin-1 iNOS Inducible nitric oxide synthase IVD In vitro digestion JNK c-Jun N-terminal kinase KV Voltage-gated K+ Lamb Lambertianin C LAR Leucoanthocyanidin reductase LC-MS Liquid chromatography-mass spectrometry LPO Lipid peroxidation m/z Mass-to-charge ratio MAPK Mitogen-activated protein kinase MEAD Methyl ellagic acid derivative MeEAGlcA Methyl ellagic acid glucuronide MeEApent Methyl ellagic acid pentose MeJa Methyl jasmonate MEK Mitogen-activated protein kinase kinase MMR Mismatch repair MPP+ 1-methyl-4-phenylpyridinium Chk2 Cell cycle checkpoint kinase 2 MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine MRE11 Meiotic recombination element 11 MRN MRE11/Rad50/NBS1 complex mTOR Mammalian target of rapamycin vi NBT Nitro blue tetrazolium NDDs Neurodegenerative diseases NER Nucleotide excision repair Nf-B Nuclear factor-B NFT Neutrophin NHEJ Non-homologous end joining NMDA N-Methyl-D-aspartic acid NP Natural product NQO1 NAD(P)H dehydrogenase, quinone 1 Nrf2 Nuclear factor erythroid 2-related factor 2 OMT o-methyltransferase OPA Orthophthalaldehyde ORAC Oxygen radical absorbance capacity OST Oligosaccharyltransferase PAL Phenylalanine ammonia-lyase PBS Phosphate buffer saline PCD Programmed cell death PCNA Proliferating cell nuclear antigen PCR Polymerase chain reaction PD Parkinson’s disease PDA Photo diode array PEF Phenolic-enriched fraction PG Post gastric (digest) PI Propidium iodide PI3K 1. Phosphoinositide 3-kinase PKA cAMP-dependent protein kinase PLA2 Group II phospholipase A2 POLR2A DNA-directed RNA polymerase II subunit A PP Polyphenol PP1-cat Protein phosphatase catalytic subunit PP2A Protein phosphatase 2A catalytic subunit PP2C Protein phosphatase 2C QGlc Quercetin-glucoside QGlcA Quercetin-glucuronide QHMGG Quercetin-HMG-glucoside QHMGGlc Quercetin-HMG-glucoside Qpent Quercetin pentose Qrut Quercetin-rutinoside QXyl Quercetin-xyloside RAN Ras-related nuclear protein RMA Robust Multi-array average RNS Reactive nitrogen species RONS Reactive oxygen and nitrogen species ROS Radical oxygen species RT Retention time RT-PCR Reverse transcription-polymerase chain reaction Sang Sanguiin SD Standard deviation SIRT1 Sirtuin 1 SN Substancia nigra SOD Superoxide dismutase SPE Solid phase extraction STS Stilbene synthase TE Trolox equivalents TFC Total flavonoid content TFIIH Transcription factor II H TOP Topoisomerase TPC Total phenolic content TrkB Tyrosin-related kinase B UFGT UDP glucose-flavonoid 3-glucosyltransferase vii UPS Ubiquitin-proteasome system UPW Ultra pure water XPG Xeroderma pigmentosum complementation group G XRE Xenobiotic responsive element viii Abstract Neurodegenerative diseases have become a challenge to modern societies in industrialized countries due to the high social and economic impacts and therefore demand intensive research. These diseases present diverse common features, in which oxidative stress plays a very important role. As result of oxidative stress, some molecular mechanisms become dysfunctional and ultimately lead to cell death. Amongst the compounds displaying neuroprotective activity, phenolics have been identified amongst the most active substances from natural sources. The purpose of the work presented in this thesis was to address the neuroprotective capacity of phenolic compounds from juniper
Recommended publications
  • Comparison of Metabolome and Transcriptome of Flavonoid
    International Journal of Molecular Sciences Article Comparison of Metabolome and Transcriptome of Flavonoid Biosynthesis Pathway in a Purple-Leaf Tea Germplasm Jinmingzao and a Green-Leaf Tea Germplasm Huangdan reveals Their Relationship with Genetic Mechanisms of Color Formation Xuejin Chen, Pengjie Wang, Yucheng Zheng, Mengya Gu, Xinying Lin, Shuyan Wang, Shan Jin * and Naixing Ye * College of Horticulture, Fujian Agriculture and Forestry University/Key Laboratory of Tea Science in University of Fujian Province, Fuzhou 350002, China; [email protected] (X.C.); [email protected] (P.W.); [email protected] (Y.Z.); [email protected] (M.G.); [email protected] (X.L.); [email protected] (S.W.) * Correspondence: [email protected] (S.J.); [email protected] (N.Y.) Received: 4 May 2020; Accepted: 7 June 2020; Published: 11 June 2020 Abstract: Purple-leaf tea is a phenotype with unique color because of its high anthocyanin content. The special flavor of purple-leaf tea is highly different from that of green-leaf tea, and its main ingredient is also of economic value. To probe the genetic mechanism of the phenotypic characteristics of tea leaf color, we conducted widely targeted metabolic and transcriptomic profiling. The metabolites in the flavonoid biosynthetic pathway of purple- and green-leaf tea were compared, and results showed that phenolic compounds, including phenolic acids, flavonoids, and tannins, accumulated in purple-leaf tea. The high expression of genes related to flavonoid biosynthesis (e.g., PAL and LAR) exhibits the specific expression of biosynthesis and the accumulation of these metabolites. Our result also shows that two CsUFGTs were positively related to the accumulation of anthocyanin.
    [Show full text]
  • Elicitation of Grapevine Defense Responses Against Plasmopara Viticola , the Causal Agent of Downy Mildew
    Elicitation of grapevine defense responses against Plasmopara viticola , the causal agent of downy mildew Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Naturwissenschaftlichen Fachbereiche der Justus-Liebig-Universität Gießen Durchgeführt am Institut für Phytopathologie und Angewandte Zoologie Vorgelegt von M.Sc. Moustafa Selim aus Kairo, Ägypten Dekan: Prof. Dr. Peter Kämpfer 1. Gutachter: Prof. Dr. Karl-Heinz Kogel 2. Gutachterin: Prof. Dr. Tina Trenczek Dedication / Widmung I. DEDICATION / WIDMUNG: Für alle, die nach Wissen streben Und ihren Horizont erweitern möchten bereit sind, alles zu geben Und das Unbekannte nicht fürchten Für alle, die bereit sind, sich zu schlagen In der Wissenschaftsschlacht keine Angst haben Wissen ist Macht **************** For all who seek knowledge And want to expand their horizon Who are ready to give everything And do not fear the unknown For all who are willing to fight In the science battle Who have no fear Because Knowledge is power I Declaration / Erklärung II. DECLARATION I hereby declare that the submitted work was made by myself. I also declare that I did not use any other auxiliary material than that indicated in this work and that work of others has been always cited. This work was not either as such or similarly submitted to any other academic authority. ERKLÄRUNG Hiermit erklare ich, dass ich die vorliegende Arbeit selbststandig angefertigt und nur die angegebenen Quellen and Hilfsmittel verwendet habe und die Arbeit der anderen wurde immer zitiert. Die Arbeit lag in gleicher oder ahnlicher Form noch keiner anderen Prufungsbehorde vor. II Contents III. CONTENTS I. DEDICATION / WIDMUNG……………...............................................................I II. ERKLÄRUNG / DECLARATION .…………………….........................................II III.
    [Show full text]
  • Structure, Functions and Biosynthetic Pathway of Naturally Occurring Anthocyanin in Sweet Potato -A Review
    iochemis t B try n & la P P h f y o s l i a o Journal of Plant Biochemistry & l n o r g u y o J ISSN: 2329-9029 Physiology Review Article Structure, Functions and Biosynthetic Pathway of Naturally Occurring Anthocyanin in Sweet Potato -A Review Amoanimaa-Dede H, Hongbo Z*, Kyereko WT, Yeboah A and Agyenim-Boateng KA Department of Crop Breeding and Genetics, College of Agricultural Sciences, Guangdong Ocean University, Haida Road, Mazhang District, Zhanjiang, Guangdong, P.R. China ABSTRACT Sweet potato (Ipomoea batatas (L.) Lam.) has several phytochemicals including anthocyanin that provide many special health-promoting functions as well as other functional components. Sweet potato is thought to be a health-giving food owing to the numerous diversities of natural products, especially antioxidants. Anthocyanins are natural hydro- soluble pigments which give the purple, blue and red colouration evident in fruits, leaves, flowers, and storage organs. Anthocyanins are beneficial to human health due to their potent antioxidative properties which protect against several chronic disorders, thus a valuable constituent in the human diet. The pathway for biosynthesis of anthocyanin has been clearly defined with its key regulatory genes identified and segregated in diverse species. Cyanidin or Peonidin 3-sophoroside-5-glucoside with associated acylated derivate are the two primary anthocyanins identified in purple-fleshed sweet potato. Anthocyanins in sweet potato are of great importance to plants, animals, humans and possess scientific benefits as well. This article provides a summary of current findings on the function, structure, and biosynthesis of anthocyanin in sweet potato. Keywords: Biosynthesis; Sweet potato (Ipomoea batatas (L.) Lam.); Antioxidant; Anthocyanin; Purple-fleshed.
    [Show full text]
  • Diversifying Selection of the Anthocyanin Biosynthetic
    Huang et al. BMC Evolutionary Biology (2016) 16:191 DOI 10.1186/s12862-016-0759-0 RESEARCH ARTICLE Open Access Diversifying selection of the anthocyanin biosynthetic downstream gene UFGT accelerates floral diversity of island Scutellaria species Bing-Hong Huang1†, Yi-Wen Chen2†, Chia-Lung Huang1, Jian Gao3 and Pei-Chun Liao1* Abstract Background: Adaptive divergence, which usually explains rapid diversification within island species, might involve the positive selection of genes. Anthocyanin biosynthetic pathway (ABP) genes are important for floral diversity, and are related to stress resistance and pollination, which could be responsible for species diversification. Previous studies have shown that upstream genes of ABP are subject to selective constraints and have a slow evolutionary rate, while the constraints on downstream genes are lower. Results: In this study, we confirmed these earlier observations of heterogeneous evolutionary rate in upstream gene CHS and the downstream gene UFGT, both of which were expressed in Scutellaria sp. inflorescence buds. We found a higher evolutionary rate and positive selection for UFGT. The codons under positive selection corresponded to the diversified regions, and the presence or absence of an α-helix might produce conformation changes in the Rossmann-like fold structure. The significantly high evolutionary rates for UFGT genes in Taiwanese lineages suggested rapid accumulation of amino acid mutations in island species. The results showed positive selection in closely related species and explained the high diversification of floral patterns in these recently diverged species. In contrast, non-synonymous mutation rate decreases in long-term divergent species could reduce mutational load and prevent the accumulation of deleterious mutations.
    [Show full text]
  • In Citrus Sinensis
    Genetics and Molecular Biology, 30, 3 (suppl), 819-831 (2007) Copyright by the Brazilian Society of Genetics. Printed in Brazil www.sbg.org.br Research Article An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis Adriano R. Lucheta1, Ana Carla O. Silva-Pinhati1, Ana Carolina Basílio-Palmieri1, Irving J. Berger1, Juliana Freitas-Astúa1,2 and Mariângela Cristofani1 1Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil. 2Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, BA, Brazil. Abstract Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST) in Citrus sinensis (L.) Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids). A thorough analysis of all related putative genes from the Citrus EST (CitEST) da- tabase revealed several interesting aspects associated to these pathways and brought novel information with prom- ising usefulness for both basic and biotechnological applications. Key words: phenylpropanoids, sweet orange, expressed sequence tags (EST), secondary metabolism. Received: August 14, 2006; Accepted: April 2, 2007. Introduction Flavonoid biosynthesis is one of the most studied Phenolic compounds, terpenes and nitrogen-contain- branches of phenolic compounds, encompassing more than ing secondary products (i.e., alkaloids and cyanogenic gly- 4,000 different substances distributed within the plant king- cosides) constitute secondary metabolism in plants.
    [Show full text]
  • Tese Camila Pegoraro.Pdf
    i UNIVERSIDADE FEDERAL DE PELOTAS Programa de Pós-Graduação em Agronomia Faculdade de Agronomia Eliseu Maciel Tese Bases moleculares da resposta a estresses ambientais em vegetais: arroz, tomate e pêssego Camila Pegoraro Pelotas, 2012 ii Camila Pegoraro Bases moleculares da resposta a estresses ambientais em vegetais: arroz, tomate e pêssego Tese apresentada ao Programa de Pós- Graduação em Agronomia da Universidade Federal de Pelotas, como requisito parcial à obtenção do título de Doutora em Ciências (área do conhecimento: Fitomelhoramento). Orientador: Dr. Antonio Costa de Oliveira – FAEM/UFPel Co-orientadores: Dr. Cesar Valmor Rombaldi – FAEM/UFPel Dr. Luciano Carlos da Maia – FAEM/UFPel Dr. Livio Trainotti – UNIPD Pelotas, 2012. iii Dados de catalogação na fonte: (Marlene Cravo Castillo – CRB-10/744) P376b Pegoraro, Camila Bases moleculares da resposta a estresses ambientais em vêgetais: arroz, tomate e pêssego / Camila Pegoraro; orientador Antonio Costa de Oliveira; co-orientadores Cesar Valmor Rombaldi, Luciano Carlos da Maia e Livio Trainotti - Pelotas, 2012. 229f.: il.- Tese (Doutorado) –Programa de Pós-Graduação em Agron omia. Faculdade de Agronomia Eliseu Maciel. Universidade Federal de Pelotas. Pelotas, 2012. 1.Expressão gênica 2.Oryza sativa 3.Solanum lycopersicum 4.Prunus persica 5.Estresses abióticos I.Oliveira, Antonio Costa de(orientador) I.Título. CDD 574.87 iv Banca Examinadora: Dr. Antonio Costa de Oliveira – FAEM/UFPel (presidente) Dr. Cesar Valmor Rombaldi – FAEM/UFPel Dra. Roberta Manica Berto – FAEM/UFPel Dr. Sandro Bonow – EMBRAPA Clima Temperado Dra. Vera Maria Quecini – EMBRAPA Uva e Vinho v Agradecimentos A Deus pela vida, força e proteção em todas os momentos. A toda minha família, principalmente meus pais Isaias e Iraci e meu irmão Cassiano pelo amor, incentivo e apoio.
    [Show full text]
  • Análise Da Regulação Transcricional Da Rota Metabólica De Antocianinas E De Seus Transportadores Em Diferentes Tecidos Do Fruto De Tomateiro
    ADOLFO LUÍS DOS SANTOS ANÁLISE DA REGULAÇÃO TRANSCRICIONAL DA ROTA METABÓLICA DE ANTOCIANINAS E DE SEUS TRANSPORTADORES EM DIFERENTES TECIDOS DO FRUTO DE TOMATEIRO LAVRAS – MG 2017 ADOLFO LUÍS DOS SANTOS ANÁLISE DA REGULAÇÃO TRANSCRICIONAL DA ROTA METABÓLICA DE ANTOCIANINAS E DE SEUS TRANSPORTADORES EM DIFERENTES TECIDOS DO FRUTO DE TOMATEIRO Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Fisiologia Vegetal, para a obtenção do título de Doutor. PhD. Vagner Augusto Benedito Orientador PhD. Antônio Chalfun Júnior Co-Orientador LAVRAS – MG 2017 Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a). Santos, Adolfo Luis dos. Análise da regulação transcricional da rota metabólica de antocianinas e de seus transportadores em diferentes tecidos do fruto de tomateiro / Adolfo Luís dos Santos. - 2017. 221 p. : il. Orientador(a): Vagner Augusto Benedito. Coorientador(a): Antônio Chalfun Júnior. Tese (doutorado) - Universidade Federal de Lavras, 2017. Bibliografia. 1. Tomate. 2. Antocianina. 3. Antioxidante. I. Benedito, Vagner Augusto. II. Júnior, Antônio Chalfun. III. Título. ADOLFO LUÍS DOS SANTOS ANÁLISE DA REGULAÇÃO TRANSCRICIONAL DA ROTA METABÓLICA DE ANTOCIANINAS E DE SEUS TRANSPORTADORES EM DIFERENTES TECIDOS DO FRUTO DE TOMATEIRO ANALYSIS OF THE TRANSCRIPTIONAL REGULATION OF THE ANTHOCYANIN METABOLIC PATHWAY AND THEIR TRANSPORTERS IN DIFFERENT TOMATO FRUIT TISSUES Tese apresentada à Universidade Federal de Lavras, como parte das exigências do Programa de Pós- Graduação em Fisiologia Vegetal, para a obtenção do título de Doutor. Aprovada em 31 de março de 2017 Dr. Antônio Paulino da Costa Netto - UFG PhD.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Eveline Tavares.Pdf
    TESE DE DOUTORADO REGULAÇÃO DA DEGRADAÇÃO DA PAREDE CELULAR DURANTE A FORMAÇÃO DO AERÊNQUIMA EM RAÍZES DE CANA-DE-AÇÚCAR MSc. Eveline Queiroz de Pinho Tavares Orientador: Dr. Marcos S. Buckeridge São Paulo, maio de 2015 TESE DE DOUTORADO REGULAÇÃO DA DEGRADAÇÃO DA PAREDE CELULAR DURANTE A FORMAÇÃO DO AERÊNQUIMA EM RAÍZES DE CANA-DE-AÇÚCAR Regulation of cell wall degradation during aerenchyma development in roots of sugarcane MSc. Eveline Queiroz de Pinho Tavares Orientador: Dr. Marcos S. Buckeridge Tese apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Doutor em Ciências, na Área de Biologia de Sistemas São Paulo, maio de 2015 FICHA CATALOGRÁFICA TAVARES, Eveline Queiroz de Pinho Regulação da degradação da parede celular durante a formação do aerênquima em raízes de cana-de-açúcar Tese (Doutorado) – Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica. 1. Aerênquima 2. Cana-de-açúcar 3. Parede celular 4. Regulação transcricional 5. Etanol 2G. I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica. Maio de 2015. Comissão julgadora: _______________________________ _______________________________ Prof(a) Dr(a): Prof(a) Dr(a): _______________________________ _______________________________ Prof(a) Dr(a): Prof(a) Dr(a): _______________________________ Prof. Dr. Marcos Silveira Buckeridge Orientador É sempre difícil a gente falar das qualidades da gente, mas acho que uma qualidade que a gente deve cultivar, não é que eu a tenha, mas que eu almejo tê-la, é saber-me frágil, saber-me incompleta, saber-me faltosa, dependente desse outro que me sustenta, que me completa, que me acalma e que me inquieta.
    [Show full text]
  • Integration of Metabolome and Transcriptome Analyses Highlights Soybean Roots Responding to Phosphorus Deficiency by Modulating Phosphorylated T Metabolite Processes
    Plant Physiology and Biochemistry 139 (2019) 697–706 Contents lists available at ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Integration of metabolome and transcriptome analyses highlights soybean roots responding to phosphorus deficiency by modulating phosphorylated T metabolite processes ∗ Xiaohui Mo, Mengke Zhang, Cuiyue Liang, Luyu Cai, Jiang Tian Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China ARTICLE INFO ABSTRACT Keywords: Phosphorus (P) is a major constituent of biomolecules in plant cells, and is an essential plant macronutrient. Low Transcriptome phosphate (Pi) availability in soils is a major constraint on plant growth. Although a complex variety of plant Metabolome responses to Pi starvation has been well documented, few studies have integrated both global transcriptome and Soybean metabolome analyses to shed light on molecular mechanisms underlying metabolic responses to P deficiency. Pdeficiency This study is the first time to investigate global profiles of metabolites and transcripts in soybean (Glycine max) roots subjected to Pi starvation through targeted liquid chromatography electrospray ionization mass spectro- metry (LC-ESI-MS/MS) and RNA-sequencing analyses. This integrated analysis allows for assessing coordinated transcriptomic and metabolic responses in terms of both pathway enzyme expression and regulatory levels. Between two Pi availability treatments, a total of 155 metabolites differentially accumulated in soybean roots, of which were phosphorylated metabolites, flavonoids and amino acids. Meanwhile, a total of 1644 differentially expressed genes (DEGs) were identified in soybean roots, including 1199 up-regulated and 445 down-regulated genes.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Springer Handbook of Enzymes
    Dietmar Schomburg Ida Schomburg (Eds.) Springer Handbook of Enzymes Alphabetical Name Index 1 23 © Springer-Verlag Berlin Heidelberg New York 2010 This work is subject to copyright. All rights reserved, whether in whole or part of the material con- cerned, specifically the right of translation, printing and reprinting, reproduction and storage in data- bases. The publisher cannot assume any legal responsibility for given data. Commercial distribution is only permitted with the publishers written consent. Springer Handbook of Enzymes, Vols. 1–39 + Supplements 1–7, Name Index 2.4.1.60 abequosyltransferase, Vol. 31, p. 468 2.7.1.157 N-acetylgalactosamine kinase, Vol. S2, p. 268 4.2.3.18 abietadiene synthase, Vol. S7,p.276 3.1.6.12 N-acetylgalactosamine-4-sulfatase, Vol. 11, p. 300 1.14.13.93 (+)-abscisic acid 8’-hydroxylase, Vol. S1, p. 602 3.1.6.4 N-acetylgalactosamine-6-sulfatase, Vol. 11, p. 267 1.2.3.14 abscisic-aldehyde oxidase, Vol. S1, p. 176 3.2.1.49 a-N-acetylgalactosaminidase, Vol. 13,p.10 1.2.1.10 acetaldehyde dehydrogenase (acetylating), Vol. 20, 3.2.1.53 b-N-acetylgalactosaminidase, Vol. 13,p.91 p. 115 2.4.99.3 a-N-acetylgalactosaminide a-2,6-sialyltransferase, 3.5.1.63 4-acetamidobutyrate deacetylase, Vol. 14,p.528 Vol. 33,p.335 3.5.1.51 4-acetamidobutyryl-CoA deacetylase, Vol. 14, 2.4.1.147 acetylgalactosaminyl-O-glycosyl-glycoprotein b- p. 482 1,3-N-acetylglucosaminyltransferase, Vol. 32, 3.5.1.29 2-(acetamidomethylene)succinate hydrolase, p. 287 Vol.
    [Show full text]