High-Level Phylogeny of Early Tertiary Rodents: Dental Evidence

Total Page:16

File Type:pdf, Size:1020Kb

High-Level Phylogeny of Early Tertiary Rodents: Dental Evidence See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229939299 High-level phylogeny of early Tertiary rodents: Dental evidence Article in Zoological Journal of the Linnean Society · September 2004 DOI: 10.1111/j.1096-3642.2004.00131.x CITATIONS READS 148 304 3 authors: Laurent Marivaux Monique vianey-liaud Université de Montpellier Université de Montpellier 189 PUBLICATIONS 3,368 CITATIONS 197 PUBLICATIONS 3,024 CITATIONS SEE PROFILE SEE PROFILE Jaeger jean-jacques French National Centre for Scientific Research 331 PUBLICATIONS 9,283 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: South Asian mammals View project DEcline of ArtioDactyls ENDemic to EuRope (DEADENDER) View project All content following this page was uploaded by Laurent Marivaux on 15 January 2019. The user has requested enhancement of the downloaded file. Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2004? 2004 1421 105134 Original Article L. MARIVAUX ET AL. PHYLOGENY OF EARLY TERTIARY RODENTS Zoological Journal of the Linnean Society, 2004, 142, 105–134. With 7 figures High-level phylogeny of early Tertiary rodents: dental evidence LAURENT MARIVAUX*, MONIQUE VIANEY-LIAUD and JEAN-JACQUES JAEGER Institut des Sciences de l’Évolution, Laboratoire de Paléontologie, c.c. 64, Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier cedex 05, France Received February 2003; accepted for publication June 2004 Major crown-groups of rodents were well established in the early Tertiary, and fossils provide an invaluable window into their evolutionary history. The main focus of this project was to perform a cladistic assessment of the dental evi- dence for early Tertiary rodent cladogenesis – the masticatory apparatus and teeth are the most frequently preserved anatomical features in the fossil record. We focused on groups that existed in a period corresponding to their early history, combining fossils belonging to extinct lineages and to stem-groups leading to modern lineages. While the monophyly of some groups is not systematically explored, our results have important implications for high-level rodent relationships and systematics. These results are consistent with those of recent molecular phylogenies and reliably congruent with the stratigraphic record, thus enhancing the pertinence of dental characters for phylogenetic inference. Our approach provides evidence of a fundamental dichotomy in early rodent history. Two major clades have been identified: (1) the earliest ‘ctenodactyloid’ (Ctenodactylidae, Chapattimyidae, Yuomyidae, Diatomyidae) and hystricognathous (Tsaganomyidae, Baluchimyinae, ‘phiomorphs’, ‘caviomorphs’) rodents, and (2) the earliest ‘ischyromyoid’ rodents with their closest relatives (Muroidea + Dipodoidea + Geomyoidea + Anomaluroidea + Cas- toroidea + Sciuravidae + Gliroidea, and Sciuroidea + Aplodontoidea + Theridomorpha). This topology has led us to endorse Ctenohystrica as the first clade and propose a new taxon, Ischyromyiformes, for the second. Although min- imized in our working hypothesis, the homoplasy in dental characters remains significant. However, a number of homoplasic characters reveal structuring in their internal distribution, allowing us to discern evolutionary morpho- logical patterns, notably the pentalophodonty of molars, zygomasseteric complex and incisor enamel microstructure. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 105–134. ADDITIONAL KEYWORDS: cladistics – evolutionary potential – microstructure – morphology – Palaeogene – phylogeny – Rodentia – stratigraphy – structured homoplasy – systematics – teeth. INTRODUCTION and complete mitochondrial DNA sequence analyses (Graur et al., 1991; Li, Hide & Graur, 1992; D’Erchia The order Rodentia includes nearly one-half of all et al., 1996; Reyes et al., 1998, 2000). On the other modern species of Eutherian mammals (Wilson & hand, studies based on nuclear genes do support Reeder, 1993), having achieved almost worldwide monophyly (Huchon et al., 2000, 2002; Adkins et al., distribution since the end of the Palaeogene (e.g. 2001; DeBry & Sagel, 2001; Murphy et al., 2001) – an Hartenberger, 1996). Suprafamilial phylogenetic rela- assessment of long-standing substantiated by both tionships among Rodentia have been subject of palaeontological and neontological (anatomical) evi- particular controversy because of differing results dence (e.g. Tullberg, 1899; Luckett & Hartenberger, provided by phylogenetic analyses based on either 1993). molecular or morphological data. Some molecular In fact, because these studies differ in many aspects phylogenies have even failed to find strong support for of data and methodology, it is difficult to isolate spe- the monophyly of the order on the basis of amino-acid cific causes of the discrepancy as well as the resultant poorly resolved internal relationships. One of the most *Corresponding author. E-mail: [email protected] important areas is taxonomic sampling (Lecointre montp2.fr et al., 1993), with molecular phylogenies necessarily © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142, 105–134 105 106 L. MARIVAUX ET AL. limited to living or subfossil species. In contrast, mor- Hystricognathi, Anomaluroidea, Castoroidea, Gliroi- phological analyses may combine extant and extinct dea, Geomyoidea, Muroidea). It may, therefore, be pos- forms. Fossils frequently reveal unusual combinations sible that branching patterns deduced from ancient of characters not found in modern forms (Smith & Lit- extinct forms could shed light on the suprafamilial tlewood, 1994), and provide the only spatiotemporal relationships of extant lineages. Palaeontological data glimpse into the evolutionary history of a group. are frequently open to criticism because they mostly The evolutionary history of rodents is characterized depend on the quality of the fossil record. Features by the acquisition of complex and specialized morpho- related to the masticatory apparatus and more espe- logical traits of the masticatory apparatus (incisors, cially teeth have contributed prominently to taxo- cheek teeth, zygomasseteric structure including inser- nomic and phylogenetic analyses of extinct rodents tion of the masseter muscles and shape of the infraor- because they are the most frequently preserved skel- bital foramen). Several studies, including the analyses etal parts. of dental wear facets by Butler (1980, 1985), have Does any significant phylogenetic signal reside in shown that most masticatory patterns developed in dental characters? In terms of evolution, these partic- rodents can be identified from their initial Palaeogene ular anatomical structures have been generally radiation. regarded as labile because of the great amount of The most common higher-level taxonomies of parallel evolutionary changes observed (Butler, 1985; Rodentia have been based on different patterns Vianey-Liaud, 1985; Meng, 1990; Novacek, 1992; related to the following: (1) the ‘zygomasseteric Hunter & Jernvall, 1995), predominantly linked to complex’ (three subdivisions: Sciuromorpha, Hystri- food intake (Hillson, 1986). Nevertheless, recent comorpha and Myomorpha; Brandt, 1855, plus investigations into levels of homoplasy in the evolu- Protrogomorpha; Wood, 1965); (2) the angle of the tion of the mammalian skeleton have shown that the lower jaw relative to the plane of the incisors (two sub- level in dental traits produced no statistically signifi- divisions: Hystricognathi and Sciurognathi; Tullberg, cant differences from those recorded for cranial or 1899); (3) dental patterns (two subdivisions: Pentalo- postcranial traits (Sanchez-Villagra & Williams, phodonta and Non-Pentalophodonta; Stehlin & 1998). Schaub, 1951; Schaub, 1953a); (4) molecular phyloge- In this paper, as a contribution to these debates on nies (e.g. Huchon et al., 2000). high-level phylogeny and taxonomy of Rodentia, we Whereas the classifications of Brandt (1855), Wood present a cladistic assessment of the dental evidence (1965) or Schaub (1953a) have, by and large, been for early Tertiary rodent cladogenesis during the ini- abandoned due to suspected para- or polyphyly tial radiation – a morpho-palaeontological analysis (Hartenberger, 1985; Nedbal, Honeycutt & Schlitter, that has not hitherto been attempted. Our results are 1996), the classic basic subdivision introduced by Tull- compared with those inferred from molecular data berg (1899) remains in use. Hystricognathi appears to dealing with high-level rodent phylogeny. We use a be a valid taxon, well-defined in terms of its morpho- congruence-testing approach to assess which phyloge- logical and anatomical (Luckett & Hartenberger, netic hypotheses agree with each other and which fit 1993; Bryant & McKenna, 1995; Landry, 1999; the known fossil record best. Marivaux et al., 2002) and molecular (George, 1985; Nedbal et al., 1996; Huchon et al., 2000, 2002; Murphy et al., 2001; Huchon & Douzery, 2001) characters, and MATERIAL AND METHODS also supported by endoparasite studies (Hugot, 1999). SELECTED CHARACTERS In contrast, the taxonomic status of Sciurognathi as a natural group, as well as the internal relationships The fossil record of early Tertiary rodents predomi- within it, remains unclear, since the Hystricognathi nantly comprises isolated teeth or incomplete jaws; appear to be nested cladistically within
Recommended publications
  • The Paleocene-Eocene Thermal Maximum Super Greenhouse: Biotic and Geochemical Signatures, Age Models and Mechanisms of Climate Change
    Chapter 5 The Paleocene-Eocene thermal maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of climate change The geologically brief episode of global warming which occurred close to the Paleocene – Eocene boundary, termed the Paleocene – Eocene thermal maximum (PETM), has been extensively studied since its discovery in 1991. The PETM is characterized by a geographically quasi- uniform 5-8°C warming of Earth’s surface as well as the deep ocean, and large changes in ocean chemistry. There is general consensus that the PETM was associated with the geologically rapid input of large amounts of CO2 and/or CH4 into the exogenic (ocean-atmosphere) carbon pool, but the source of this carbon is still under discussion. The biotic response on land and in the oceans included radiations, extinctions and migrations, and was heterogeneous in nature and severity. Debate continues on the total duration of the PETM, as well as on the relative amount of time involved in its onset, its relatively stable middle part, and its recovery phase. Recently, several events that appear similar to the PETM in nature, but of smaller magnitude, were identified in the late Paleocene through early Eocene, of which the timing was possibly modulated by orbital forcing. If these events and their astronomical pacing are confirmed, the trigger was probably insolation forced, excluding unique events as the cause of the PETM. 61 PETM review Close to the boundary between the Paleocene and Eocene epochs, approximately 55.5 Ma ago (Berggren et al., 1992; Chapter 2), a distinct phase of global warming occurred, which has been called the Paleocene-Eocene thermal maximum (PETM), and which was superimposed on already warm conditions.
    [Show full text]
  • Classification of Mammals 61
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORCHAPTER SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Classification © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC 4 NOT FORof SALE MammalsOR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2ND PAGES 9781284032093_CH04_0060.indd 60 8/28/13 12:08 PM CHAPTER 4: Classification of Mammals 61 © Jones Despite& Bartlett their Learning,remarkable success, LLC mammals are much less© Jones stress & onBartlett the taxonomic Learning, aspect LLCof mammalogy, but rather as diverse than are most invertebrate groups. This is probably an attempt to provide students with sufficient information NOT FOR SALE OR DISTRIBUTION NOT FORattributable SALE OR to theirDISTRIBUTION far greater individual size, to the high on the various kinds of mammals to make the subsequent energy requirements of endothermy, and thus to the inabil- discussions of mammalian biology meaningful.
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • Updated Aragonian Biostratigraphy: Small Mammal Distribution and Its Implications for the Miocene European Chronology
    Geologica Acta, Vol.10, Nº 2, June 2012, 159-179 DOI: 10.1344/105.000001710 Available online at www.geologica-acta.com Updated Aragonian biostratigraphy: Small Mammal distribution and its implications for the Miocene European Chronology 1 2 3 4 3 1 A.J. VAN DER MEULEN I. GARCÍA-PAREDES M.A. ÁLVAREZ-SIERRA L.W. VAN DEN HOEK OSTENDE K. HORDIJK 2 2 A. OLIVER P. PELÁEZ-CAMPOMANES * 1 Faculty of Earth Sciences, Utrecht University Budapestlaan 4, 3584 CD Utrecht, The Netherlands. Van der Meulen E-mail: [email protected] Hordijk E-mail: [email protected] 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales MNCN-CSIC C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. García-Paredes E-mail: [email protected] Oliver E-mail: [email protected] Peláez-Campomanes E-mail: [email protected] 3 Netherlands Centre for Biodiversity-Naturalis Darwinweg 2, 2333 CR Leiden, The Netherlands. Van den Hoek Ostende E-mail: [email protected] 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid. IGEO-CSIC C/ José Antonio Novais 2, 28040 Madrid, Spain. Álvarez-Sierra E-mail: [email protected] * Corresponding author ABSTRACT This paper contains formal definitions of the Early to Middle Aragonian (Late Early–Middle Miocene) small- mammal biozones from the Aragonian type area in North Central Spain. The stratigraphical schemes of two of the best studied areas for the Lower and Middle Miocene, the Aragonian type area in Spain and the Upper Freshwater Molasse from the North Alpine Foreland Basin in Switzerland, have been compared.
    [Show full text]
  • Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)
    St. Cloud State University theRepository at St. Cloud State Culminating Projects in Cultural Resource Management Department of Anthropology 10-2019 Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) Samantha Mills Follow this and additional works at: https://repository.stcloudstate.edu/crm_etds Part of the Archaeological Anthropology Commons Recommended Citation Mills, Samantha, "Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska)" (2019). Culminating Projects in Cultural Resource Management. 28. https://repository.stcloudstate.edu/crm_etds/28 This Thesis is brought to you for free and open access by the Department of Anthropology at theRepository at St. Cloud State. It has been accepted for inclusion in Culminating Projects in Cultural Resource Management by an authorized administrator of theRepository at St. Cloud State. For more information, please contact [email protected]. Paleoenvironment of the Late Eocene Chadronian-Age Whitehead Creek Locality (Northwestern Nebraska) by Samantha M. Mills A Thesis Submitted to the Graduate Faculty of St. Cloud State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Functional Morphology October, 2019 Thesis Committee: Matthew Tornow, Chairperson Mark Muñiz Bill Cook Tafline Arbor 2 Abstract Toward the end of the Middle Eocene (40-37mya), the environment started to decline on a global scale. It was becoming more arid, the tropical forests were disappearing from the northern latitudes, and there was an increase in seasonality. Research of the Chadronian (37- 33.7mya) in the Great Plains region of North America has documented the persistence of several mammalian taxa (e.g. primates) that are extinct in other parts of North America.
    [Show full text]
  • The Beaver's Phylogenetic Lineage Illuminated by Retroposon Reads
    www.nature.com/scientificreports OPEN The Beaver’s Phylogenetic Lineage Illuminated by Retroposon Reads Liliya Doronina1,*, Andreas Matzke1,*, Gennady Churakov1,2, Monika Stoll3, Andreas Huge3 & Jürgen Schmitz1 Received: 13 October 2016 Solving problematic phylogenetic relationships often requires high quality genome data. However, Accepted: 25 January 2017 for many organisms such data are still not available. Among rodents, the phylogenetic position of the Published: 03 March 2017 beaver has always attracted special interest. The arrangement of the beaver’s masseter (jaw-closer) muscle once suggested a strong affinity to some sciurid rodents (e.g., squirrels), placing them in the Sciuromorpha suborder. Modern molecular data, however, suggested a closer relationship of beaver to the representatives of the mouse-related clade, but significant data from virtually homoplasy- free markers (for example retroposon insertions) for the exact position of the beaver have not been available. We derived a gross genome assembly from deposited genomic Illumina paired-end reads and extracted thousands of potential phylogenetically informative retroposon markers using the new bioinformatics coordinate extractor fastCOEX, enabling us to evaluate different hypotheses for the phylogenetic position of the beaver. Comparative results provided significant support for a clear relationship between beavers (Castoridae) and kangaroo rat-related species (Geomyoidea) (p < 0.0015, six markers, no conflicting data) within a significantly supported mouse-related clade (including Myodonta, Anomaluromorpha, and Castorimorpha) (p < 0.0015, six markers, no conflicting data). Most of an organism’s phylogenetic history is fossilized in their heritable genomic material. Using data from genome sequencing projects, particularly informative regions of this material can be extracted in sufficient num- bers to resolve the deepest history of speciation.
    [Show full text]
  • The Impact of Locomotion on the Brain Evolution of Squirrels and Close Relatives ✉ Ornella C
    ARTICLE https://doi.org/10.1038/s42003-021-01887-8 OPEN The impact of locomotion on the brain evolution of squirrels and close relatives ✉ Ornella C. Bertrand 1 , Hans P. Püschel 1, Julia A. Schwab 1, Mary T. Silcox 2 & Stephen L. Brusatte1 How do brain size and proportions relate to ecology and evolutionary history? Here, we use virtual endocasts from 38 extinct and extant rodent species spanning 50+ million years of evolution to assess the impact of locomotion, body mass, and phylogeny on the size of the brain, olfactory bulbs, petrosal lobules, and neocortex. We find that body mass and phylogeny are highly correlated with relative brain and brain component size, and that locomotion strongly influences brain, petrosal lobule, and neocortical sizes. Notably, species living in 1234567890():,; trees have greater relative overall brain, petrosal lobule, and neocortical sizes compared to other locomotor categories, especially fossorial taxa. Across millions of years of Eocene- Recent environmental change, arboreality played a major role in the early evolution of squirrels and closely related aplodontiids, promoting the expansion of the neocortex and petrosal lobules. Fossoriality in aplodontiids had an opposing effect by reducing the need for large brains. 1 School of GeoSciences, University of Edinburgh, Grant Institute, Edinburgh, Scotland, UK. 2 Department of Anthropology, University of Toronto Scarborough, ✉ Toronto, ON, Canada. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:460 | https://doi.org/10.1038/s42003-021-01887-8 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01887-8 hat ecological and evolutionary factors affect brain size striking differences between living sciurids and aplodontiids raise in mammals? Studies have assessed the impact of the question of how this modern rodent assemblage emerged.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Liste Fascicules
    LISTE DES FASCICULES PARUS VOLUME 1 Fasc. 1 (1967) J.A. REMY.— Les Palaeotheridae (Perissodactyla) de la faune de mammifères de Fons 1 (Eocène supérieur), 1-46, 20 fig., 12 tabl., 8 pl. Fasc. 2 (1967) J.-L. HARTENBERGER.— Contribution à l'étude de l'anatomie crânienne des rongeurs. I. - Principaux types de cricétodontinés, 47-64, 2 fig., 4 pl. Fasc. 3 (1968) B. SIGÉ.— Les chiroptères du Miocène inférieur de Bouzigues. I. - Etude systématique, 65-133, 28 fig., 10 tabl. Fasc. 4 (1968) J. MICHAUX.— Les Paramyidae (Rodentia) de l'Eocène inférieur du Bassin de Paris, 135-194, 4 fig., 2 tabl., 10 pl. VOLUME 2 Fasc. 1 (1968) M. HUGUENEY.— Les gliridés (Rodentia) de l'Oligocène supérieur de St-Victor-la-Coste (Gard), 1-16, 3 pl. Fasc. 2 (1969) J.E. GUILDAY, H.W. HAMILTON & A.D. McCRADY.— Pleistocene vertebrate fauna of Robinson Cave, Overton County, Tennessee, 25-75, 15 fig., 28 tabl. J. de PORTA.— Les vertébrés fossiles de Colombie et les problèmes posés par l'isolement du continent sud-américain, 77-94, 2 fig. Fasc. 3 (1969) J. SUDRE.— Les gisements de Robiac (Eocène supérieur) et leurs faunes de mammifères, 95-156, 21 fig., 5 tabl. Fasc. 4 (1969) M.R. DAWSON.— Osteology of Prolagus sardus, a Quaternary ochotonid (Mammalia, Lagomorpha), 157-190, 38 fig., 1 tabl., 1 pl. Fasc. 5 (1969) L. THALER.— Rongeurs nouveaux de l'Oligocène moyen d'Espagne, 191-207, 9 fig. M. VIANEY-LIAUD.— Rongeurs de l'Oligocène moyen provenant de nouvelles fouilles dans les Phosphorites du Quercy, 209-239, 16 fig.
    [Show full text]
  • Problems of Classification As Applied to the Rodentia
    263 PROBLEMS OF CLASSIFICATION AS APPLIED TO THE RODENTIA by Albert E. WOOD* ABSTRACT A classification should be both usable and useful, not too complex either in the amount of splitting or in the number of hierarchies involved, and not so simple as to give a false assurance of knowledge of relationships. Classifi­ cations are only possible because we do not have complete knowledge of the evolution of the organisms concerned, because gaps in the record are necessary to allow the separation of the various taxa. Rodent classification is compli­ cated by the large number of organisms involved and by the great amount of parallelism that has taken place In the evolution of any and all features. If several independent features are characteristic of a certain taxon, should an effort be made to define the group on the basis of all the features, or should only one be selected as the determi­ nant ? Unless the evolution of the several features was closely linked, the former solution will sooner or later lead to insurmountable problems. A classification is a formal arrangement that expresses the author's opinion of the relationships of the organisms concerned. It should be an attempt to approximate the actual genetic relationships existing, or that formerly existed, among the pertinent organisms. During the course of organizing a classification of the mammalian Order Rodentia, I encountered a number of problems of a general nature, some of which are discussed below. Usually, there are extensive gaps in our knowledge of organisms, particularly of fossil ones. These are useful in classification, because we use the gaps to delimit the various units being classified.
    [Show full text]
  • Appendix A. Supplementary Material
    Appendix A. Supplementary material Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes) David Cernˇ y´ 1,* & Rossy Natale2 1Department of the Geophysical Sciences, University of Chicago, Chicago 60637, USA 2Department of Organismal Biology & Anatomy, University of Chicago, Chicago 60637, USA *Corresponding Author. Email: [email protected] Contents 1 Fossil Calibrations 2 1.1 Calibrations used . .2 1.2 Rejected calibrations . 22 2 Outgroup sequences 30 2.1 Neornithine outgroups . 33 2.2 Non-neornithine outgroups . 39 3 Supplementary Methods 72 4 Supplementary Figures and Tables 74 5 Image Credits 91 References 99 1 1 Fossil Calibrations 1.1 Calibrations used Calibration 1 Node calibrated. MRCA of Uria aalge and Uria lomvia. Fossil taxon. Uria lomvia (Linnaeus, 1758). Specimen. CASG 71892 (referred specimen; Olson, 2013), California Academy of Sciences, San Francisco, CA, USA. Lower bound. 2.58 Ma. Phylogenetic justification. As in Smith (2015). Age justification. The status of CASG 71892 as the oldest known record of either of the two spp. of Uria was recently confirmed by the review of Watanabe et al. (2016). The younger of the two marine transgressions at the Tolstoi Point corresponds to the Bigbendian transgression (Olson, 2013), which contains the Gauss-Matuyama magnetostratigraphic boundary (Kaufman and Brigham-Grette, 1993). Attempts to date this reversal have been recently reviewed by Ohno et al. (2012); Singer (2014), and Head (2019). In particular, Deino et al. (2006) were able to tightly bracket the age of the reversal using high-precision 40Ar/39Ar dating of two tuffs in normally and reversely magnetized lacustrine sediments from Kenya, obtaining a value of 2.589 ± 0.003 Ma.
    [Show full text]