Characterization of the Ground State Pluripotency in Planarian

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Ground State Pluripotency in Planarian Characterization of the ground state Pluripotency in Planarian Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der Naturwissenschaftlich-Technischen Fakult¨aten der Universit¨atdes Saarlandes von Thao Anh Tran M.Sc. Saarbr¨ucken 2019 Tag des Kolloquiums: 30.07.2019 Dekan: Prof. Dr. Gregor Jung Berichterstatter: Prof. Dr. Heiko Zimmermann Prof. Dr. J¨ornWalter Vorsitz: Prof. Dr. Uwe Walldorf Akad. Mitarbeiter: Dr. Judith Becker ACKNOWLEDGEMENTS I am grateful to my supervisor, Dr. Luca Gentile for his skillful guidance and his stoic patience with my mistakes. We had spent a long period of time cross-checking all the errors of many experiments and his positive attitude helped me go through and solve all of those problems. I could not have reached this state without his great support. I would like to express my sincere thanks to Professor Heiko Zimmermann for his support in both financial and academic aspects. Thanks for spending time to organize a presentation club, giving valuable advice to students' projects and improving our presentation skills. Special thanks to Professor J¨ornWalter for his supervision. As an expert in the genetic field, his feedbacks were very helpful and my thesis could not have been completed without his suggestion in using RNA sequencing for comprehensive molecular information. I would also like to acknowledge the supports from Dr. Kerstin Bartscherer and her lab members for an intensive training course, especially Henning Schmitz for his kindness to explain all of my questions with dozen of back and forth emails. I really appreciate the opportunity working with Dr. Karen Smeet, Annelies Wouters, Dr. Yvonne Kohl, Michelle Hesler. Thanks for their contributions in this thesis. I am also thankful to Professor Hagen von Briesen and Dr. Julia Neubauer for their supports and advice on my projects. I express my appreciation to Dr. Hannes Drexler, Annemarie Jungmann and Dr. Karl Nordstr¨omfor their help in Mass Spec and RNA sequencing. It was a great pleasure to work with Michael Gepp, Ina Meiser, Sabine M¨uller, Katharina Schmidt, Julia Majer. I would like to recognize the important roles of Linda Elberskirch, Soon Kyung, Andr² Schulz, Benjamin Fisher, Alba Romero, Anna Meier who made IBMT more joyful. Many thanks to Duy and my friends in Vietnam and Saarbr¨ucken for their supports and immediate help whenever I needed. My deepest appreciation belongs to my family for their love. Saarbr¨ucken,2019 - Thao Anh Tran ABSTRACT Planarian is an excellent model for regenerative studies due to its ability to regenerate the entire body from a tiny fragment. Thanks to a large number of adult stem cells, the mechanism of stem cell compartment could be studied in vivo, in the context of an adult organism. How pluripotent stem cells commit to prime states to regenerate new tissues without tumor formation? To answer this fundamental question, it is essential to characterize the ground state of the stem cell compartment. In this project, we proposed a novel surface antibody 6-9.2 that isolated pluripotent cells from a heterogeneous stem cell population. We concluded that the 6-9.2 antigen is a new biomarker for stem cell commitment and 6-9.2 antibody could be a useful tool for a live cell tracking method. Mass spectrometry and RNAi data showed a high relation of the 6-9.2 antibody with the transmembrane protein TMEM215/128. Knocking down of TMEM128/215 significantly affected the stem cell population and impaired the planarian regeneration and homeostasis. Our data contributed to defining the fluidic identity of stem cell transition. The gained knowledge will lead to a better understanding of regeneration and stem cell biology. ZUSAMMENFASSUNG Planarier gelten als Meister der Regeneration. Aufgrund eines großen Vorrats pluripotenter Stammzellen k¨onnen sie ihren gesamten K¨orper aus einem winzigen Fragment regenerieren. Planarien sind derzeit die einzigen Bilateria, bei denen pluripotente Stammzellen in vivo im Kontext zu einem erwachsenen Organismus untersucht werden k¨onnen. Wie erneuern oder differenzieren sich pluripotente Zellen, ohne dass sich ein Tumor bildet? Um diese grundlegenden Frage zu beantworten, ist es wichtig, den Grundzustand der Stammzellen zu charakterisieren. Hierzu wird in der vorliegenden Arbeit ein neuartiger Oberfl¨achenantik¨orper mit der Bezeichnung 6-9.2 vorgeschlagen. Wir konnten zeigen, dass das 6-9.2-Antigen ein neuartiger Biomarker f¨ur das Stammzellkompartiment ist und der 6-9.2-Antik¨orper ein n¨utzliches Werkzeug f¨ur die Beobachtung lebender Zellen sein k¨onnte. Daten aus massenspektrometrischen Analysen zeigten den engen Bezug dieses Antik¨orpers zum Transmembranprotein TMEM128/215. Zusammenfassend l¨asstsich sagen, dass die Daten aus diesem Projekt zur Entwicklung eines Modells zur Beobachtung lebender Zellen verwendet werden k¨onnen,was zu einem besseren Verst¨andnisder Regeneration und der Stammzellbiologie f¨uhrt. Project Scope The main objective of my Ph.D project is to unravel the complex biology behind planarian of pluripotent stem cells. Tracing the fate of individual stem cells during homeostasis and regeneration in the only animal that posses pluripotent stem cells in the adult will help identifying conserved mechanisms of pluripotency-based cell turnover and regeneration. Project objectives To achieve this goal, we need to find a novel way to characterize stem cell sub-populations and developing an in vivo tracking method via non-genetic labeling (e.g. FluoSpheres). The project included three major steps: - The development of surface antibody to recognize stem cell sub-populations. - A cell labeling system to transplant into planarians. - An immobilization method to trace fluorescent cells in vivo. Project achievement - We successfully developed a surface antibody 6-9.2 that can recognize sub- populations of stem cells: naive and committed stem cells. - We found the putative name for 6-9.2 antigen, the transmembrane protein TMEM215/128 by Mass Spec and RNAi methods. - We developed a labeling system using fluospheres that are biocompatible for planarians. - We showed the possibility to immobilize planarian in alginate hydrogels for at least five days and did not affect the animal's homeostasis and regeneration. - Our data provided an ability to trace the fluorescent signals of different stem cell sub-groups in planarians. - For applied researches, planarians can be used as a model system for tumorigenesis. We found that MMPB plays an essential role in controlling tumor formation in planariran. - Planarians were also used for environmental toxicity assessment of iron oxide nanoparticles (IOPs). Our data showed the non-toxic effect of IOPs and encourage the use of these particles in medical applications. iv Contents Project Scope iv Contentsv List of Figures ix List of Abbreviations xi 1 Introduction and Motivation1 1.1 Planarian: An excellent model for regenerative medicine research .1 1.2 Planarian overview . .6 1.2.1 What planarians are? . .6 1.2.2 Planarian structures . .7 1.2.3 Planarian neoblasts . .8 1.2.4 Planarian germ cells . 11 1.3 Planarian stem cell compartment - State of the Art- . 11 1.3.1 The heterogeneity of neoblast . 11 1.3.2 Pathway underlying pluripotent state transition . 15 1.3.3 A lineage CLOUD for neoblast . 17 1.3.4 Tissue remodeling in planarian . 21 1.3.5 Planarian stem cell compartment is more and more similar to other models . 22 2 Materials and Methods 25 2.1 Materials . 25 2.1.1 Chemicals and reagents . 25 2.1.2 Antibodies . 27 2.1.3 Solutions and buffers . 28 2.1.4 List of primers used in this study . 32 v 2.1.4.1 List of primer sequences for qPCR . 32 2.1.4.2 List of primers for RNAi . 36 2.2 Methods . 37 2.2.1 Planarian maintenance . 37 2.2.2 Planarian irradiation . 37 2.2.3 Alginate preparation . 37 2.2.4 Cell dissociation and Flow cytometry . 37 2.2.5 Live immune staining with 6-9.2 antibody and cell sorting byFACS............................ 38 2.2.6 Immobilization using Alginate hydrogels . 38 2.2.7 RNA extraction . 39 2.2.8 Reverse Transcriptase PCR – cDNA synthesis . 39 2.2.9 Polymerase chain reaction (PCR) . 39 2.2.10 Quantitative Real-Time PCR (qRT-PCR) . 39 2.2.11 RNAi synthesis . 40 2.2.12 In vitro transcription . 40 2.2.13 Agarose gel electrophoresis . 41 2.2.14 RNAi injection . 41 2.2.15 RNA sequencing (RNAseq) . 42 2.2.16 Whole mount in situ hybridization (WISH) . 45 2.2.17 Fluorescent in situ hybridization (FISH) . 46 2.2.18 Protein extraction . 47 2.2.19 Western Blot . 47 2.2.20 Protein membrane protein isolation . 47 2.2.21 Immunoprecipitation . 48 2.2.22 Mass Spectrometry . 49 2.2.23 Bioinformatics . 53 2.2.24 Statistical analysis . 55 3 Results 57 3.1 Stem cell classification using novel surface antibody 6-9.2. 57 3.2 Surface antibody 6-9.2 recognized committed stem cells in neoblasts X1 FSC/SSC population. 58 3.3 The characterization of 6-9.2 antigen. 68 3.4 Live cell tracking method using 6-9.2 surface antibody. 81 3.5 Planarian - From basic science to applied researches . 85 vi CONTENTS 3.5.1 Planarian - A beautiful model for environment toxicological study . 85 3.5.2 Planarian - A suitable model for tumorigenesis . 91 4 Discussion and Future direction 97 References 105 vii viii List of Figures 1.1 Planarian Schmidtea mediterranea anatomy. .8 1.2 Planarian mucus and cilia under the Scanning electron microscope (SEM). .9 1.3 Planarian regeneration. .9 1.4 t-distributed stochastic neighbor embedding (t-SNE) for eye markers. 19 1.5 Planarian stem cell commitment models. 20 1.6 A lineage CLOUD for neoblasts on the badlands landscape. 20 2.1 Planarian injection experiment. 42 3.1 The overview of live cell tracking method using surface antibody and fluorescent bead-based labeling approach.
Recommended publications
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • Downloaded from the Planmine Database (31)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.183442; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A new species of planarian flatworm from Mexico: Girardia guanajuatiensis Elizabeth M. Duncan1†, Stephanie H. Nowotarski2,5†, Carlos Guerrero-Hernández2, Eric J. Ross2,5, Julia A. D’Orazio1, Clubes de Ciencia México Workshop for Developmental Biology3, Sean McKinney2, Longhua Guo4, Alejandro Sánchez Alvarado2,5* † Equal contributors. 1 University of Kentucky, Lexington KY, USA. 2 Stowers Institute for Medical Research, Kansas City MO, USA. 3 Clubes de Ciencia México, Guanajuato, GT, México. 4 University of California, Los Angeles CA, USA 5 Howard Hughes Medical Institute, Kansas City MO, USA. Keywords planarian, Girardia, Mexico, regeneration, stem cells ABSTRACT Background Planarian flatworms are best known for their impressive regenerative capacity, yet this trait varies across species. In addition, planarians have other features that share morphology and function with the tissues of many other animals, including an outer mucociliary epithelium that drives planarian locomotion and is very similar to the epithelial linings of the human lung and oviduct. Planarians occupy a broad range of ecological habitats and are known to be sensitive to changes in their environment. Yet, despite their potential to provide valuable insight to many different fields, very few planarian species have been developed as laboratory models for mechanism-based research. Results Here we describe a previously undocumented planarian species, Girardia guanajuatiensis (G.gua).
    [Show full text]
  • Planarian Regeneration in Space: Persistent Anatomical, Behavioral, and Bacteriological Changes Induced by Space Travel
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Morokuma, J., F. Durant, K. B. Williams, J. M. Finkelstein, D. J. Blackiston, T. Clements, D. W. Reed, et al. 2017. “Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel.” Regeneration 4 (2): 85-102. doi:10.1002/reg2.79. http://dx.doi.org/10.1002/reg2.79. Published Version doi:10.1002/reg2.79 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33490944 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Received: 19 January 2017 Revised: 27 March 2017 Accepted: 21 April 2017 DOI: 10.1002/reg2.79 RESEARCH ARTICLE Planarian regeneration in space: Persistent anatomical, behavioral, and bacteriological changes induced by space travel Junji Morokuma1 Fallon Durant1 Katherine B. Williams1 Joshua M. Finkelstein1 Douglas J. Blackiston1 Twyman Clements2 David W. Reed3 Michael Roberts4 Mahendra Jain2 Kris Kimel5 Sunia A. Trauger6 Benjamin E. Wolfe1 Michael Levin1 1Allen Discovery Center at Tufts Univer- sity, Biology Department, Tufts University, Abstract 200 Boston Ave., Suite 4600, Medford, Regeneration is regulated not only by chemical signals but also by physical processes, such as bio- MA 02155-4243, USA electric gradients.
    [Show full text]
  • Biology Environmental Engineering
    Sections: BIOLOGY ENVIRONMENTAL ENGINEERING Series: 9 Biology ANNALS OF THE 9 Horticulture UNIVERSITY OF CRAIOVA 9 Food produce processing technology Vol. XXIII (LIX) - 2018 9 Environmental engineering ON THE FRESHWATER TRICLADID FLATWORMS (PLATYHELMINTHES, TRICLADIDA) IN THE URBAN AREAS OF CRAIOVA (ROMANIA) – PRELIMINARY DATA Babalean Anda Felicia1* *University of Craiova, Faculty of Horticulture, e-mail: [email protected] Keywords: Polycelis tenuis, Dendrocoelum lacteum, Girardia tigrina ABSTRACT The paper presents preliminary data on the freshwater tricladid flatworms sampled in some springs and running waters of three urban areas in Craiova municipality: The Botanical Garden, The Romanescu Park and Balta Craioviţei area.The faunistic account comprises: Polycelis tenuis Ijima, 1884; Dendrocoelum lacteum (Müller, 1774) and Girardia tigrina (Girard, 1850) (an asexual population of presumable Girardia tigrina). The gross anatomy of the copulatory complex is presented and briefly discussed for P. tenuis and D. lacteum in relation with the literature. P. tenuis is for the second time reported in Romania. Short notes on the above mentioned species biology are given. INTRODUCTION Craiova is a town located in Oltenia Plain, SW Romania. The literature on the history of Craiova since the medieval period (Ciobotea et al., 1999) mentions numerous springs, watercourses, lakes and marshlands on the present territory of the city: Valea Vlăicii Brook, Stan Jianu Brook and the spring of Hagi Stan Jianu, Valea Orbeţilor Brook, Valea Episcopiei Brook, Valea Tabacilor Brook, Şerca Brook, Belcineanu Pond, Valea Fetii Brook and pool, Bibescu Pond with many springs, Valea Hanului Doctorului Brook, Craioviţa and Geanoglu pools. During the development of the city, there have been elaborated several plans of urban systematization and most watercourses have disappeared as they were integrated in the sewerage system and introduced into the underground.
    [Show full text]
  • Platyhelminthes, Tricladida)
    Systematics and historical biogeography of the genus Dugesia (Platyhelminthes, Tricladida) Eduard Solà Vázquez ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Pontificia Universidad Católica Del Ecuador
    PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR FACULTAD DE CIENCIAS EXACTAS Y NATURALES ESCUELA DE CIENCIAS BIOLÓGICAS Descripción comparada de la regeneración en planarias acuáticas de bosque montano y páramo Disertación previa a la obtención del título de Lincenciada en Ciencias Biológicas ERIKA SAMARY PINTO NOGALES Quito, 2020 A mi familia, quienes me apoyan incondicionalmente en cada etapa de mi vida A mi madre, la que me presiona para seguir adelante A mi hermana, la que me corrige y me mima A mi padre, el que me enseña cosas nuevas A mi abuelita, la que me inspira a cumplir mis metas 1 Descripción comparada de la regeneración en planarias acuáticas de bosque montano y páramo Comparative description of regeneration in aquatic planarians from paramo and montane forest Autores: Erika Pinto 1, 2 y Andrés Romero-Carvajal1, 3 1 Escuela de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito-Ecuador 2 [email protected] 3 [email protected] 2 RESUMEN La regeneración en planarias es un tema ampliamente estudiado en especies modelo como Schmidtea mediterránea, sin embargo, la capacidad de regeneración es variable entre los cientos de especies existentes. Esta capacidad puede estar ausente o ser restringida en algunas planarias como Bdelloura candida o Dendrocoelum lacteum. Entender esta variabilidad es importante para comprender la evolución de la capacidad regenerativa en planarias adaptadas a distintos ambientes. Sin embargo, la información sobre patrones de regeneración y proliferación celular en otras especies de planaria es limitada. En este estudio se describen las etapas de regeneración y patrones de proliferación celular en planarias acuáticas de una población de páramo del Río Pita (3359 m.s.n.m.) en Ecuador.
    [Show full text]
  • Girardia Dorotocephala Transcriptome Sequence, Assembly, and Validation Through Characterization of Piwi Homologs and Stem Cell Progeny Markers
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Dev Biol Manuscript Author . Author manuscript; Manuscript Author available in PMC 2018 January 15. Published in final edited form as: Dev Biol. 2018 January 15; 433(2): 433–447. doi:10.1016/j.ydbio.2017.07.022. Girardia dorotocephala transcriptome sequence, assembly, and validation through characterization of piwi homologs and stem cell progeny markers Eugene Matthew P. Almazana, Sydney L. Leskoa, Michael P. Markeyb, and Labib Rouhanaa,* aDepartment of Biological Sciences, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States bDepartment of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, United States Abstract Planarian flatworms are popular models for the study of regeneration and stem cell biology in vivo. Technical advances and increased availability of genetic information have fueled the discovery of molecules responsible for stem cell pluripotency and regeneration in flatworms. Unfortunately, most of the planarian research performed worldwide utilizes species that are not natural habitants of North America, which limits their availability to newcomer laboratories and impedes their distribution for educational activities. In order to circumvent these limitations and increase the genetic information available for comparative studies, we sequenced the transcriptome of Girardia dorotocephala, a planarian species pandemic and commercially available in North America. A total of 254,802,670 paired sequence reads were obtained from RNA extracted from intact individuals, regenerating fragments, as well as freshly excised auricles of a clonal line of G. dorotocephala (MA-C2), and used for de novo assembly of its transcriptome. The resulting transcriptome draft was validated through functional analysis of genetic markers of stem cells and their progeny in G.
    [Show full text]
  • Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia Dorotocephala Flatworms
    Article Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms Maya Emmons-Bell 1, Fallon Durant 1, Jennifer Hammelman 1, Nicholas Bessonov 2, Vitaly Volpert 3, Junji Morokuma 1, Kaylinnette Pinet 1, Dany S. Adams 1, Alexis Pietak 4, Daniel Lobo 5 and Michael Levin 1,* Received: 1 August 2015; Accepted: 10 November 2015; Published: 24 November 2015 Academic Editor: Francesc Cebrià 1 Center for Regenerative and Developmental Biology and Department of Biology, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA; [email protected] (M.E.-B.); [email protected] (F.D.); [email protected] (J.H.); [email protected] (J.M.); [email protected] (K.P.); [email protected] (D.S.A.) 2 Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, Saint Petersburg 199178, Russia; [email protected] 3 Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne 69622, France; [email protected] 4 Octane Biotechnology, Kingston, ON K7K 6Z1, Canada; [email protected] 5 Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-617-627-6161; Fax: +1-617-627-6121 Abstract: The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced.
    [Show full text]
  • Platyhelminthes, Geoplanidae), on Menorca (Balearic Islands, Spain)
    A peer-reviewed open-access journal ZooKeys 199: 91–105First (2012) report of the exotic blue land planarian, Caenoplana coerulea... 91 doi: 10.3897/zookeys.199.3215 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research First report of the exotic blue land planarian, Caenoplana coerulea (Platyhelminthes, Geoplanidae), on Menorca (Balearic Islands, Spain) Karin Breugelmans1, Josep Quintana Cardona2, Tom Artois3, Kurt Jordaens4,5, Thierry Backeljau1,5 1 Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium 2 Institut Catala de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, edifici ICP Campus de la UAB, s/n 08193 Cerdanyola del Vallés, Barcelona, Spain 3 Research Group Zoology: Biodiversity & Toxicology, Centre for Environmental Sciences, Hasselt University, Campus Diepenbeek, Agoralaan Building D, B-3590 Die- penbeek, Belgium 4 Joint Experimental Molecular Unit, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium 5 Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium Corresponding author: Thierry Backeljau ([email protected]) Academic editor: David Gibson | Received 10 April 2012 | Accepted 15 May 2012 | Published 4 June 2012 Citation: Breugelmans K, Cardona JQ, Artois T, Jordaens K, Backeljau T (2012) First report of the exotic blue land planarian, Caenoplana coerulea (Platyhelminthes, Geoplanidae), on Menorca (Balearic Islands, Spain). ZooKeys 199: 91–105. doi: 10.3897/zookeys.199.3215 Abstract In April 2009 two specimens of a terrestrial flatworm were collected from under a rock in an orchard at Ciutadella de Menorca on the easternmost Balearic island of Menorca (Spain). Their external morphol- ogy suggested that both specimens belonged to the invasive blue planarian Caenoplana coerulea, a species which is native to eastern Australia.
    [Show full text]
  • An Animal Model That Integrates Development, Regeneration and Pharmacology ONÉ R
    Int. J. Dev. Biol. 61: 519-529 (2017) doi: 10.1387/ijdb.160328op www.intjdevbiol.com Planaria: an animal model that integrates development, regeneration and pharmacology ONÉ R. PAGÁN* Department of Biology, West Chester University, West Chester, PA, USA ABSTRACT Although planarians are established model organisms in developmental biology and regeneration studies, in the last forty years or so, they have caught the attention of pharmacolo- gists, especially to study the pharmacology of drugs of abuse. This review covers the following topics: some fundamentals of the history of animal models and planarians in biomedical research; an abbreviated story of systematic pharmacology research using planarians as a model organism; an example of how planarians are contributing to the search for compounds against acute cocaine toxicity; an analysis of the number of papers on planarians and pharmacological topics from 1900- 2016; some perspectives on pharmacology in developmental and regeneration studies, arguing in favor of the planarian model as a leading subject for this interdisciplinary area of research, and finally some concluding thoughts. KEY WORDS: regeneration, pharmacology, development, planaria, Dugesia, Girardia, Schmidtea, Polycelis, Phagocata Introduction This statement lies at the heart of modern biomedical research, and was eventually formalized as “The Krogh Principle”. This The study of model organisms for the purpose of uncovering formalization was an idea of another Nobelist, Hans Krebs of the fundamental biological principles is a leading source of multiple Tricarboxylic Acid Cycle fame—among several other important applications relevant to the medical sciences. When the original biochemical discoveries—(Krebs, 1975). Biologists have applied natural philosophers studied nature for pure knowledge’s sake, Krogh’s Principle to virtually every aspect of the life sciences, but they mainly followed Aristotle’s maxim: “Philosophy starts in won- most importantly for the purposes of this review, to developmental der and wonderment” (Aristotle, 384 BC).
    [Show full text]
  • A New List of Japanese Freshwater Planarians Based Upon a New Higher Classification of Planarian Flatworms Proposed by Sluys, Kawakatsu, Riutort & Baguñà (2009)
    Kawakatsu’s Web Library on Planarians: December 25, 2009. A New List of Japanese Freshwater Planarians Based upon a New Higher Classification of Planarian Flatworms Proposed by Sluys, Kawakatsu, Riutort & Baguñà (2009) By Masaharu KAWAKATSU, Hitoshi MURAYAMA, Miyuki KAWAKATSU and Tetsuya KAWAKATSU 川勝正治 · 村山 均 · 川勝 みゆき · 川勝 哲哉 (2009): 高次分類大系の改定 に基づく日本産淡水生三岐腸類の新分類表 (英文) 摘 要 扁形動物門の三岐腸目に属する動物群は<プラナリア類>として知られており, 重要な実験動物を含んでいる. 最近, その高次分類体系 (綱·目·亜目·上科·科·亜 科·族など) が大幅に改定された (Sluys, Kawakatsu, Riutort & Baguñà, 2009). 従って, 日本産淡水生三岐腸類の新分類表が必要になった. 本稿では新分類体系を示す系 統樹 (Fig. 1, 科以上) と, 日本から記録されている淡水生三岐腸類の種類を示す新 分類表 (Table 1) を掲げた. 各タクサの和名 (新称を含む) も示した. なお, “渦虫 (ウズムシ綱)”という表現が長い間使われてきたが, それは特定のま とまった高次分類群を指す用語ではない. ただ, 通称としては便利な表現でもあり, 綱では無く, “渦虫 (ウズムシ) 類” のように表記するのが望ましい. ░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░ - 1 - 図 1. 高次分類群を示す系統樹 (Sluys, Kawakatsu, Riutort & Baguñà, 2009 から改 写) Fig. 1. Phylogenetic tree of the higher taxa (order, suborders and superfamilies) within the Order Tricladida (after Sluys, Kawakatsu, Riutort, & Baguñà, 2009: 1767, fig. 1; modified). Japanese terms (including new ones) were added by Kawakatsu. See Table 1. Table 1 (表1). 高次分類体系の改定に基づく日本産淡水生プラナリア類の新しい 一覧表 (Sluys, Kawakatsu, Riutort & Baguñá, 2009 を参照) 扁形動物門 PLATHELMINTHES Schneider, 1873 / PLATYHELMINTHES Claus, 1887 桿系統 Rhabditophora Ehlers, 1985 新卵黄亜系統 Eulecithophora De Beauchamp, 1961 sence in Sopott-Ehlers, 1997 順列上目 Seriata Bresslau, 1933 sence in Sopott-Ehlers, 1997 三岐腸目 Tricladida Lang, 1884 I. 地下水生三岐腸亜目 Cavernicola Sluys, 1990 a. メキシコホラアナウズムシ科 Dimarcusidae Mitchell et Kawakatsu, 1972 a). ブラジルウズムシ属 Rhodax Marcus, 1946 1. ブラジルウズムシ Rhodax evelinae Marcus, 1946? [EX] - 2 - II. 結合三岐腸亞目 Continenticola Carranza, Littlewood, Clough, Ruiz-Trillo, Baguñà et Riutort, 1998 A. ヒラタウズムシ上科 Planarioidea Stimpson, 1857 b. ヒラタウズムシ科 Planariidae Stimpson, 1857 b). カズメウズムシ属 Polycelis Ehrenberg, 1831 2. キタシロカズメウズムシ Polycelis sapporo (Ijima et Kaburaki, 1916) c). キタカズメウズムシ属 Seidlia Zabusov, 1911 3.
    [Show full text]
  • An Experiment on Precognition with Planarian Worms
    Journal of Scientifi c Exploration, Vol. 30, No. 2, pp. 217–226, 2016 0892-3310/16 RESEARCH ARTICLE An Experiment on Precognition with Planarian Worms FERNANDO ALVAREZ Calle del Molino 4, Tomares (Sevilla), Spain [email protected] Submitted October 9, 2015; Accepted April 27, 2016; Published June 15, 2016 Abstract—The ability to predict a random noxious stimulus (a startle sound) was explored in the black planarian Girardia dorotocephala. During the experiment, planarians were put individually and only once into a test- ing chamber and after 3 minutes either an audio startle stimuli or a control moment of silence was randomly presented (corresponding, respectively, to the 43 experimental and the 37 control subjects, all of them having the same time courses of observation). All worms were filmed during the ex- periment, and the frequency of their Head Movements (this behavior being indicative of distress and/or ambient exploration) was registered in the two 10-second segments immediately before and one minute before stimulus presentation for the experimental subjects and immediately before and one minute before the time point 3 minutes from start for the controls, which received no stimulus. Nonparametric comparisons of the frequencies of Head Movements showed that the values obtained during the two ob- servation periods for the experimental planarians were significantly higher than those during the corresponding observation periods for the control planarians. Additionally, in both the experimental and control subjects no significant difference was observed between the values for the two obser- vation periods within the same session. These results suggest that planar- ians are able to anticipate future events at least one minute before they occur.
    [Show full text]