Taxonomy and Systematics of Tetraodontiform Fishes

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomy and Systematics of Tetraodontiform Fishes Ichthyol Res DOI 10.1007/s10228-014-0444-5 REVIEW FOR IPFC9 SPECIAL ISSUE Ichthyology and Indo-Pacific Fish Conferences from the 1980s to the 2010s Taxonomy and systematics of tetraodontiform fishes: a review focusing primarily on progress in the period from 1980 to 2014 Keiichi Matsuura Received: 2 October 2014 / Revised: 12 October 2014 / Accepted: 13 October 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract When the first Indo-Pacific Fish Conference species in four genera, Balistidae 37 species in 12 genera, (IPFC1) was held in Sydney in 1981, there were still many Monacanthidae 102 species in 27 genera, Aracanidae 13 problems in the generic- and species-level taxonomy of all species in six genera, Ostraciidae 22 species in five genera, tetraodontiform families except for the recently reviewed Triodontidae monotypic, Tetraodontidae 184 species in 27 Triacanthodidae and Triacanthidae. The period from IPFC1 genera, Diodontidae 18 species in seven genera, and Mo- to IPFC9 (1981-2013) was a time of great progress in the lidae five species in three genera. Phylogenetic relation- taxonomy and systematics of the Tetraodontiformes: many ships of the families have been clarified by morphological review and revisional papers have been published for and molecular analyses and have provided well-supported various genera and species, with descriptions of many new sister relationships of the families: Triacanthodidae and taxa occurring mainly on coral reefs and in tropical Triacanthidae, Balistidae and Monacanthidae, and Tetra- freshwaters; and cladistic analyses of morphological char- odontidae and Diodontidae. However, there remain prob- acters have been performed to clarify phylogenetic rela- lems with the phylogenetic positions of the Triodontidae tionships of various families and molecular analyses have and Molidae due to conflicts of differing positions in greatly progressed to provide detailed phylogenetic rela- morphological and molecular studies (e.g., Molidae has tionships of families, genera, and even species. The pur- been placed differently among molecular studies). pose of this paper is to provide a review on developments in the taxonomy and systematics of the Tetraodontiformes, Keywords Tetraodontiformes Á Classification Á focusing primarily on contributions since 1980 (when Morphology Á Molecular Á Phylogenetic relationships James C. Tyler’s monumental work was published) through the period of IPFCs, including pertinent publica- tions before 1980. This paper recognizes 412 extant species Introduction in the 10 families of living Tetraodontiformes, with the allocation of species and genera as follows: Triacanthodi- Tetraodontiform fishes are distributed in tropical to tem- dae including 23 species in 11 genera, Triacanthidae seven perate seas and freshwaters of the world. They show a remarkable diversity in shape, size, and way of life (Fig. 1). A small filefish of the genus Rudarius Jordan and This article was registered in the Official Register of Zoological Fowler 1902 and a small pufferfish of the genus Carino- Nomenclature (ZooBank) as C37A57BA-30FF-48AD-8AEC- tetraodon Benl 1957 mature at about 2 cm in total length 14C084BBB4BA. This article was published as an Online First article on the online (TL) (Lim and Kottelat 1995; Tyler 1970), whereas ocean publication date shown on this page. The article should be cited by sunfishes of the genus Mola Koelreuter 1766 attain over using the doi number. 300 cm TL (Yoshita et al. 2009). Tetraodontiform fishes are characterized by a small mouth with either relatively & K. Matsuura ( ) few teeth that are often enlarged or massive beak-like tooth Division of Fishes, National Museum of Nature and Science, 4-1-1 Amakuobo, Tsukuba, Ibaraki 305-0005, Japan plates, a small gill opening restricted to the side of the e-mail: [email protected] body, scales usually modified as spines, enlarged plates, or 123 K. Matsuura 123 Taxonomy and systematics of tetraodontiforms b Fig. 1 Representatives of the 10 extant families of Tetraodontifor- systematics of the Tetraodontiformes, focusing primarily mes. a Triacanthodidae, Triacanthodes anomalus; b Triacanthidae, on contributions from 1980 (when James C. Tyler’s Triacanthus biaculeatus; c Balistidae, Abalistes filamentosus; d Mon- acanthidae, Thamnaconus hypargyreus; e Aracanidae, Kentrocapros monumental work was published) through the period of aculeatus; f Ostraciidae, Ostracion immaculatus; g Triodontidae IPFCs, but including pertinent publications before 1980. Triodon macropterus; h Tetraodonitidae, Arothron mappa; i Diodonti- This paper is composed of two parts, the first reviewing dae, Diodon liturosus; j Molidae, Masturus lanceolatus. Photographs taxonomic studies and the second focusing of studies on of a and e provided by BSKU; b, d, f, h, and i by KAUM; c and g by NSMT; j by Hideki Sugiyama systematics. Institutional abbreviations follow Fricke and Eschmeyer (2014). a carapace, and pelvic fins that are reduced or absent (Tyler 1980; Nelson 2006). In addition, many pufferfishes are Triacanthodidae (Spikefishes, Fig. 1a; Table 1) characterized by having a strong toxin in the viscera and skin, and even in the musculature of some species of Spikefishes of the family Triacanthodidae are usually Lagocephalus Swainson 1839 (Matsuura 1984). Because of found in depths of 100-600 m on continental shelves and their peculiar morphological characters, tetraodontiforms slopes (Tyler 1968; Matsuura and Tyler 1997). They are have long attracted the attention of ichthyologists and easily distinguished externally from other families of the biologists. order Tetraodontiformes by the following combination of Since Cuvier (1816) classified tetraodontiforms in the characters: body deep and slightly compressed, covered by order Plectognathi, tetraodontiforms were usually consid- moderately thick skin with numerous small scales not ered to form a monophyletic group among the advanced readily distinguishable to the unaided eye, with each scale percomorph fishes (Nelson 2006). Although the taxonomy bearing upright spinules and having a roughly shagreen- of tetraodontiform fishes progressed greatly in the nine- like appearance; two separate dorsal fins, six spines in the teenth century (see Tyler 1980, for a history of the clas- first dorsal fin and 12-18 soft rays in the second dorsal fin; sification of the order), information about tetraodontiform caudal fin rounded to almost truncate, not forked; most taxonomy was scattered in many articles, making it diffi- dorsal-, anal-, and pectoral-fin rays branched; pelvic fins cult to understand the taxonomic relationships of tetra- with a large spine and one or two inconspicuous and odontiforms overall. Alec Fraser-Brunner published an rudimentary soft rays; mouth small and usually terminal; important series of articles on various groups of tetra- teeth of moderate size, usually conical, 10 or more in an odontiforms as reviews of genera and families during the outer series in each jaw; caudal peduncle compressed, mid-1930s to early 1950s: however, many parts of his deeper than wide, not distinctly tapered (Matsuura 2001). publications were based on cursory examinations of rela- Spikefishes are still relatively poorly known in terms of tively few specimens. There were no comprehensive phy- taxonomy and biology among tetraodontiform families, logenetic studies until Winterbottom (1974) and Tyler although Tyler (1968) published an excellent monograph (1980) provided their interpretations of the phylogenetic on the superfamily Triacanthoidea including the Triacan- relationships of tetraodontiforms based on myology and thodidae and Triacanthidae. He recognized 19 triacantho- osteology, respectively. did species in 11 genera (Table 1): Atrophacanthus Fraser- When the first Indo-Pacific Fish Conference (IPFC1) Brunner 1950 (one species), Bathyphylax Myers 1934 (two was held in Sydney in 1981, many problems remained in species), Halimochirurgus Alcock 1899 (two species), the generic- and species-level taxonomy of all tetra- Hollardia Poey 1861 (three species), Johnsonina Myers odontiform families, except for the Triacanthodidae and 1934 (one species), Macrorhamphosodes Fowler 1934 (two Triacanthidae for which Tyler (1968) had provided a species), Mephisto Tyler 1966b (one species), Parahol- monographic revision. The period from IPFC1 to IPFC9 lardia Fraser-Brunner 1941b (two species), Paratri- (1981-2013) was a time of great progress in the taxon- acanthodes Fowler 1934 (two species), Triacanthodes omy and systematics of tetraodontiforms. Many review Bleeker 1857 (two species), and Tydemania Weber 1913 and revisional papers have been published for various (one species). Because all these genera and species were genera and species, with descriptions of new taxa found described in detail by Tyler (1968), their taxonomic fea- mainly in coral reefs and tropical freshwaters; and cla- tures are not repeated here, except for new information that distic analyses of morphological characters have clarified provides a better understanding of taxa. phylogenetic relationships of a number of families and Many species of the Triacanthodidae are known from molecular analyses greatly assisted our understanding of the tropical and warm regions of the Indo-Pacific. How- the detailed phylogenetic relationships of families, genera, ever, five species are distributed in the western Atlantic: and even species. The purpose of this paper is to present a Hollardia hollardi Poey 1861, Hollardia meadi Tyler review of the developments
Recommended publications
  • A Classification of Living and Fossil Genera of Decapod Crustaceans
    RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave.
    [Show full text]
  • Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School November 2017 Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary Megan E. Hepner University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Biology Commons, Ecology and Evolutionary Biology Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Hepner, Megan E., "Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary" (2017). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/7408 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Reef Fish Biodiversity in the Florida Keys National Marine Sanctuary by Megan E. Hepner A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Marine Science with a concentration in Marine Resource Assessment College of Marine Science University of South Florida Major Professor: Frank Muller-Karger, Ph.D. Christopher Stallings, Ph.D. Steve Gittings, Ph.D. Date of Approval: October 31st, 2017 Keywords: Species richness, biodiversity, functional diversity, species traits Copyright © 2017, Megan E. Hepner ACKNOWLEDGMENTS I am indebted to my major advisor, Dr. Frank Muller-Karger, who provided opportunities for me to strengthen my skills as a researcher on research cruises, dive surveys, and in the laboratory, and as a communicator through oral and presentations at conferences, and for encouraging my participation as a full team member in various meetings of the Marine Biodiversity Observation Network (MBON) and other science meetings.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3
    ACTA ICHTHYOLOGICA ET PISCATORIA (2018) 48 (4): 341–362 DOI: 10.3750/AIEP/02451 AN UPDATED CHECKLIST AND CHARACTERISATION OF THE ICHTHYOFAUNA (ELASMOBRANCHII AND ACTINOPTERYGII) OF THE LAGUNA DE TAMIAHUA, VERACRUZ, MEXICO Andrea RAZ-GUZMÁN1*, Leticia HUIDOBRO2, and Virginia PADILLA3 1 Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México 2 Instituto Nacional de Pesca y Acuacultura, SAGARPA, Ciudad de México 3 Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México Raz-Guzmán A., Huidobro L., Padilla V. 2018. An updated checklist and characterisation of the ichthyofauna (Elasmobranchii and Actinopterygii) of the Laguna de Tamiahua, Veracruz, Mexico. Acta Ichthyol. Piscat. 48 (4): 341–362. Background. Laguna de Tamiahua is ecologically and economically important as a nursery area that favours the recruitment of species that sustain traditional fisheries. It has been studied previously, though not throughout its whole area, and considering the variety of habitats that sustain these fisheries, as well as an increase in population growth that impacts the system. The objectives of this study were to present an updated list of fish species, data on special status, new records, commercial importance, dominance, density, ecotic position, and the spatial and temporal distribution of species in the lagoon, together with a comparison of Tamiahua with 14 other Gulf of Mexico lagoons. Materials and methods. Fish were collected in August and December 1996 with a Renfro beam net and an otter trawl from different habitats throughout the lagoon. The species were identified, classified in relation to special status, new records, commercial importance, density, dominance, ecotic position, and spatial distribution patterns.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • A Survey of the Order Tetraodontiformes on Coral Reef Habitats in Southeast Florida
    Nova Southeastern University NSUWorks HCNSO Student Capstones HCNSO Student Work 4-28-2020 A Survey of the Order Tetraodontiformes on Coral Reef Habitats in Southeast Florida Anne C. Sevon Nova Southeastern University, [email protected] This document is a product of extensive research conducted at the Nova Southeastern University . For more information on research and degree programs at the NSU , please click here. Follow this and additional works at: https://nsuworks.nova.edu/cnso_stucap Part of the Marine Biology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Share Feedback About This Item NSUWorks Citation Anne C. Sevon. 2020. A Survey of the Order Tetraodontiformes on Coral Reef Habitats in Southeast Florida. Capstone. Nova Southeastern University. Retrieved from NSUWorks, . (350) https://nsuworks.nova.edu/cnso_stucap/350. This Capstone is brought to you by the HCNSO Student Work at NSUWorks. It has been accepted for inclusion in HCNSO Student Capstones by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Capstone of Anne C. Sevon Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science M.S. Marine Environmental Sciences M.S. Coastal Zone Management Nova Southeastern University Halmos College of Natural Sciences and Oceanography April 2020 Approved: Capstone Committee Major Professor: Dr. Kirk Kilfoyle Committee Member: Dr. Bernhard Riegl This capstone is available at NSUWorks: https://nsuworks.nova.edu/cnso_stucap/350 HALMOS
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
    Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes.
    [Show full text]
  • Bülent's High Energy Reef
    FOURTH QUARTER 2016 I VOLUME 10 Plectranthias pelicieri: ONE ASTONISHING PERCHLET BÜLENT’S HIGH ENERGY REEF BOXING SHRIMPS in the ring! Reef Hobbyist Magazine 1 FOURTH QUARTER 2016 | Volume 10 FEATURES Copyright © 2016 Reef Hobbyist Magazine. All rights reserved. ANNOUNCEMENTS KEEPING LPS HAPPY • Care to share your breeding or husbandry success with the world? We are Debora Długopolska lives in Poland always looking for interesting articles to share with our readers. Email us your 6 and has been keeping reefs for ideas through the "Contact Us" tab on our website. 4 years. During that time, she has refined her • Hard copy subscriptions are available to hobbyists in the United States! Scan the methodology with LPS and explains the approach that QR code below or visit us at www.reefhobbyistmagazine.com to subscribe. has brought her success and led to this beautiful tank. RHM-SPONSORED EVENTS PLECTRANTHIAS PELICIERI: ONE (our latest issues are available at these sponsored events) 12 ASTONISHING PERCHLET • Red River Reef & Reptile Expo: October 1, Fargo, ND Mindy van Leur has been a reefkeeper since the redriverreefandreptileexpo.com early 90s with an affinity for SPS corals and helping • Mid-Atlantic Marine Aquarium Expo: October 8, Chesapeake, VA new hobbyists. Mindy is understandably enchanted midatlanticmas.org/mamax-2016/ with her Pelicier’s Perchlet and shares its charms • Ladies Frag Swapping Bi-annual Frag Party: October 8, Sturgis, MI with our readers. • Reeftoberfest: October 15, Las Vegas, NV reefsoflasvegas.com/events NOT ANOTHER BRINE • Aquatic Experience: November 4-6, Chicago, IL SHRIMP ARTICLE aquaticexperience.org 18 Jason Oneppo is a 25-year veteran • Lonestar Marine Aquarist Rally: November 6, San Antonio, TX in the aquarium industry and has been doing R&D maast.org/lmar for San Francisco Bay Brand for more than a • Reef-A-Palooza: November 19-20, Costa Mesa, CA decade.
    [Show full text]
  • In Marine Fishes, Abalistes Stellaris (Balistidae) from the Red Sea, Coast of Yemen
    JKAU: Mar. Sci., Vol. 22, No. 1, pp: 3-13 (2011 A.D. / 1432 A.H.) DOI : 10.4197/Mar. 22-1.1 Hypocreadium cavum (Digenea: Lepocreadiidae: Hypocreadium) in Marine Fishes, Abalistes stellaris (Balistidae) From the Red Sea, Coast of Yemen. Ali B. Al-Zubaidy Department of Marine Biology and Fisheries, Faculty of Marine Science and Environment, Hodeidah University, Yemen Abstract. Specimens of the marine fish, Abalistes stellaris (Balistidae) were collected from local fish market in Hodeidah during the period between September 2008 and July 2010 . Six out of 80 (7.5%) of these fish were found to harbour intestinal trematodes, Hypocreadium cavum Bray and Cribb, 1996 (Lepocreadiidae). Since there is no previous report on these digenetic trematode from any fish host in Yemen, the present recording may well be considered the first in this country. Introduction Members of the Lepocreadiidae Odhner, 1905 have a cosmopolitan distribution as intestinal parasites of marine teleosts (Bartoli and Bray, 2004). They are recognizable as worms with widely distributed Vitelline folices, a spinous tegument, a cirrus-sac, usually with a distinct external seminal vesicle and a typically I-shaped excretory vesicle (Bray, 2005). Ozaki (1936) erected the genus Hypocreadium to include H.symmetrorchis in Monocanthus cirrhifer from Japan. Manter (1940), Arai (1962) and Nahhas and Cable (1964) concluded that Hypocreadium Ozaki,1936 should be considered as a synonym to Pseudocreadium Layman,1930. However, Yamaguti (1971) refused these conclusions and preferred to retain the genus Hypocreadium Ozaki, 1936 as a separate 3 4 Ali B. Al-Zubaidy genus which could be easily separated from other related genera according to the position of genital pore, ovary and prostate cells as well as the extension of the excretory vesicle.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Checklist of Marine Demersal Fishes Captured by the Pair Trawl Fisheries in Southern (RJ-SC) Brazil
    Biota Neotropica 19(1): e20170432, 2019 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Checklist of marine demersal fishes captured by the pair trawl fisheries in Southern (RJ-SC) Brazil Matheus Marcos Rotundo1,2,3,4 , Evandro Severino-Rodrigues2, Walter Barrella4,5, Miguel Petrere Jun- ior3 & Milena Ramires4,5 1Universidade Santa Cecilia, Acervo Zoológico, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil 2Instituto de Pesca, Programa de Pós-graduação em Aquicultura e Pesca, Santos, SP, Brasil 3Universidade Federal de São Carlos, Programa de Pós-Graduação em Planejamento e Uso de Recursos Renováveis, Rodovia João Leme dos Santos, Km 110, CEP 18052-780, Sorocaba, SP, Brasil 4Universidade Santa Cecília, Programa de Pós-Graduação de Auditoria Ambiental, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil 5Universidade Santa Cecília, Programa de Pós-Graduação em Sustentabilidade de Ecossistemas Costeiros e Marinhos, R. Oswaldo Cruz, 266, CEP11045-907, Santos, SP, Brasil *Corresponding author: Matheus Marcos Rotundo: [email protected] ROTUNDO, M.M., SEVERINO-RODRIGUES, E., BARRELLA, W., PETRERE JUNIOR, M., RAMIRES, M. Checklist of marine demersal fishes captured by the pair trawl fisheries in Southern (RJ-SC) Brazil. Biota Neotropica. 19(1): e20170432. http://dx.doi.org/10.1590/1676-0611-BN-2017-0432 Abstract: Demersal fishery resources are abundant on continental shelves, on the tropical and subtropical coasts, making up a significant part of the marine environment. Marine demersal fishery resources are captured by various fishing methods, often unsustainably, which has led to the depletion of their stocks. In order to inventory the marine demersal ichthyofauna on the Southern Brazilian coast, as well as their conservation status and distribution, this study analyzed the composition and frequency of occurrence of fish captured by pair trawling in 117 fishery fleet landings based in the State of São Paulo between 2005 and 2012.
    [Show full text]