Complete Genome Sequence of Esterase-Producing Bacterium

Total Page:16

File Type:pdf, Size:1020Kb

Complete Genome Sequence of Esterase-Producing Bacterium Wu et al. Standards in Genomic Sciences (2017) 12:88 DOI 10.1186/s40793-017-0300-0 SHORT GENOME REPORT Open Access Complete genome sequence of esterase- producing bacterium Croceicoccus marinus E4A9T Yue-Hong Wu, Hong Cheng, Ying-Yi Huo, Lin Xu, Qian Liu, Chun-Sheng Wang and Xue-Wei Xu* Abstract Croceicoccus marinus E4A9Twas isolated from deep-sea sediment collected from the East Pacific polymetallic nodule area. The strain is able to produce esterase, which is widely used in the food, perfume, cosmetic, chemical, agricultural and pharmaceutical industries. Here we describe the characteristics of strain E4A9, including the genome sequence and annotation, presence of esterases, and metabolic pathways of the organism. The genome of strain E4A9T comprises 4,109,188 bp, with one chromosome (3,001,363 bp) and two large circular plasmids (761,621 bp and 346,204 bp, respectively). Complete genome contains 3653 coding sequences, 48 tRNAs, two operons of 16S–23S-5S rRNA gene and three ncRNAs. Strain E4A9T encodes 10 genes related to esterase, and three of the esterases (E3, E6 and E10) was successfully cloned and expressed in Escherichia coli Rosetta in a soluble form, revealing its potential application in biotechnological industry. Moreover, the genome provides clues of metabolic pathways of strain E4A9T, reflecting its adaptations to the ambient environment. The genome sequence of C. marinus E4A9T now provides the fundamental information for future studies. Keywords: Croceicoccus marinus E4A9T, Genome sequence, Esterase, Alphaproteobacteria Introduction isolated from deep-sea sediment collected from the East Lipolytic enzymes, including esterase (EC 3.1.1.1) and lipase Pacific polymetallic nodule area [6]. The strain was able to (EC 3.1.1.3), are a general class of carboxylic ester hydro- produce esterase as well as lipase [6]. To get insight into lases (EC 3.1.1), which catalyze the hydrolytic cleavage and the capability of esterase production, recently, we obtained formation of ester bonds [1, 2]. Esterase shows a preference the complete genome of C. marinus E4A9T and detected for water-soluble short chain fatty acids (< 10 carbon genes of esterase. This is the first genome report for the atoms), while lipase prefers water-insoluble longer chain strain in the genus of Croceicoccus.Wealsodescribethe fatty acids (> 10 carbon atoms) [3, 4]. Many esterases do genomic sequencing related to its annotation for under- not require cofactors and have high stereospecificity toward standing their metabolic and ecological functions in the chemicals, broad substrate specificity and high stability in environment. organic solvents [4]. They are extensively used in the food, perfume, cosmetic, chemical, agricultural and pharmaceut- Organism information ical industries [5]. Classification and features Croceicoccus [6], as a genus of the family C. marinus E4A9T was isolated from a deep-sea sedi- Erythrobacteraceae [7], can be found in the marine envi- ment sample collected from the East Pacific polymetallic ronments, including deep-sea sediment, surface seawater nodule area (8°22′38” N, 145°23′56” W) at a depth of and marine biofilm from a boat shell [6, 8, 9]. C. marinus 5280 m (temperature 2 °C, salinity 3.4%). Strain E4A9T E4A9T, the type strain of the genus Croceicoccus, was was obtained and routinely cultured on marine broth 2216 (MB, BD) at 30 °C. Subsequently polyphasic study * Correspondence: [email protected] of strain E4A9T was performed. A new species Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, 36th North BaoChu Road, Croceicoccus marinus gen. Nov. sp. nov. was proposed. T Hangzhou 310012, China Strain E4A9 is the type strain of the species of C. © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Wu et al. Standards in Genomic Sciences (2017) 12:88 Page 2 of 8 Fig. 1 Transmission electron microscopy showing the cell morphology (a) and ultrastructure (b)ofCroceicoccus marinus E4A9T. The flagella are present. Bars represent scales of 0.5 μm(a) and 0.2 μm(b), respectively marinus [6], and was deposited into the China General The general features of strain E4A9T was summarized Microbiological Culture Collection (CGMCC 1.6776T). in Table 1. C. marinus [6] is a valid species belonging to the family Erythrobacteraceae [7], in the order Sphingomonadales Genome sequencing information [10, 11], class Alphaproteobacteria [11, 12] and phylum Genome project history Proteobacteria [13] .C. marinus E4A9T is a Gram- C. marinus E4A9T [6] was selected for sequencing be- staining-negative and cocci-shaped bacterium (Fig. 1). It cause it is relevant to genomic sequencing of the whole grew aerobically and used a series of organic carbon, family of Erythrobacteraceae [7] and esterase production. such as L-arabinose, D-cellobiose, D-galactose and xy- The complete genome sequence was finished on May lose, as sole sources of carbon and energy [6, 8]. 29, 2015. The gap closure and annotation processes were Based on phylogenetic analysis of 16S rRNA gene performed by the authors. The GenBank accession num- sequence, the strain falls into the cluster comprising ber of the genome is CP019602, CP019603 and the Croceicoccus species with a high bootstrap value CP019604. The main genome sequence information is (Fig. 2). Interestingly, strain E4A9T could hydrolyze present in Table 2 and Table 3. Tween 20, Tween 80 and tributyrin, indicating the presence of esterase as well as lipase [6]. The API Growth conditions and genomic DNA preparation ZYM system also supported the results that esterase C. marinus E4A9T was aerobically cultivated in Marine (C4) and esterase lipase (C8) activities are present. Broth (MB, BD Difco™) at 30 °C and stored at −80 °C Fig. 2 Phylogenetic tree based on 16S rRNA gene sequences was constructed by neighbor-joining algorithms. Related sequences were aligned with Clustal W. Evolutionary distances were calculated according to the algorithm of the Kimura two-parameter model. Bootstrap values (> 60%) based on 1000 replications are shown at branch nodes. Filled circles indicate that the corresponding nodes were also recovered in the trees generated with the maximum-likelihood and maximum-parsimony algorithms. Bar, 0.01 substitutions per nucleotide position Wu et al. Standards in Genomic Sciences (2017) 12:88 Page 3 of 8 Table 1 Classification and general features of Croceicoccus marinus E4A9T according to the MIGS recommendations [30] MIGS ID Property Term Evidence codea Classification Domain Bacteria TAS [31] Phylum Proteobacteria TAS [12] Class Alphaproteobacteria TAS [11] Order Sphingomonadales TAS [10] Family Erythrobacteraceae TAS [7] Genus Croceicoccus TAS [6] Species Croceicoccus marinus TAS [6] (Type) strain: Strain E4A9T (CGMCC 1.6776T= JCM 14846T) Gram stain Negative TAS [6] Cell shape Coccus TAS [6] Motility Motile TAS [6] Sporulation Non-sporulation TAS [6] Temperature range 4–42 °C TAS [6] Optimum temperature 28–30 °C TAS [6] pH range; Optimum 6.0–9.0; 7.0 TAS [6] Carbon source Organic carbon TAS [6] MIGS-6 Habitat Deep-sea sediment TAS [6] MIGS-6.3 Salinity Moderately halophilic, 0.5–10% NaCl TAS [6] MIGS-22 Oxygen requirement Aerobic TAS [6] MIGS-15 Biotic relationship Free-living TAS [6] MIGS-14 Pathogenicity Non-pathogen NAS MIGS-4 Geographic location East Pacific polymetallic nodule area TAS [6] MIGS-5 Sample collection Not reported MIGS-4.1 Latitude 8°22′38” N TAS [6] MIGS-4.2 Longitude 145°23′56” W TAS [6] MIGS-4.4 Altitude −5280 m TAS [6] aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement (i.e., a direct report exists in the literature), NAS Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from the Gene Ontology project [32] Table 2 Genome sequencing project information MIGS ID Property Term MIGS 31 Finishing quality Finished MIGS-28 Libraries used 10 kb MIGS 29 Sequencing platforms A PacBio RS II platform MIGS 31.2 Fold coverage 248-fold MIGS 30 Assemblers HGAP Assembly version 2, Pacific Biosciences MIGS 32 Gene calling method GeneMarkS+ (NCBI) Locus Tag A9D14 Genbank ID CP019602, CP019603, and CP019604 GenBank Date of Release June 13, 2017 GOLD ID Go0030822 BIOPROJECT PRJNA322659 MIGS 13 Source Material Identifier CGMCC(China General Microbiological Culture Collection) Project relevance Esterases production Wu et al. Standards in Genomic Sciences (2017) 12:88 Page 4 of 8 Table 3 Summary of genome: one chromosome and two plasmids Label Size (Mb) Topology INSDC identifier RefSeq ID Chromosome 3.001363 Linear CP019602.1 NZ_CP019602.1 Plasmid 1 (pCME4A9I) 0.761621 Linear CP019603.1 NZ_CP019603.1 Plasmid 2 (pCME4A9II) 0.346204 Linear CP019604.1 NZ_CP019604.1 with 30% (v/v) glycerol. High-quality genomic DNA was genes, 132 were assigned to pseudogene. The summary extracted using the Qiagen DNA extraction kit, accord- of features and statistics of the genome is shown in ing to its protocol. Table 4 and genes belonging to COG functional categor- ies are listed in Table 5. Genome sequencing and assembly Three replicons of the genome of strain E4A9, located The genome of strain E4A9T was sequenced using SMRT in a circular chromosome and two large plasmids, were technology with a PacBio RS II platform (Zhejiang Tianke detected. Two plasmid replication initiator protein genes Co. Ltd., China).
Recommended publications
  • Investigation of the Thermophilic Mechanism in the Genus
    Xu et al. BMC Genomics (2018) 19:385 https://doi.org/10.1186/s12864-018-4789-4 RESEARCHARTICLE Open Access Investigation of the thermophilic mechanism in the genus Porphyrobacter by comparative genomic analysis Lin Xu1,2, Yue-Hong Wu1, Peng Zhou1, Hong Cheng1, Qian Liu1 and Xue-Wei Xu1,3* Abstract Background: Type strains of the genus Porphyrobacter belonging to the family Erythrobacteraceae and the class Alphaproteobacteria have been isolated from various environments, such as swimming pools, lake water and hot springs. P. cryptus DSM 12079T and P. tepidarius DSM 10594T out of all Erythrobacteraceae type strains, are two type strains that have been isolated from geothermal environments. Next-generation sequencing (NGS) technology offers a convenient approach for detecting situational types based on protein sequence differences between thermophiles and mesophiles; amino acid substitutions can lead to protein structural changes, improving the thermal stabilities of proteins. Comparative genomic studies have revealed that different thermal types exist in different taxa, and few studies have been focused on the class Alphaproteobacteria, especially the family Erythrobacteraceae. In this study, eight genomes of Porphyrobacter strains were compared to elucidate how Porphyrobacter thermophiles developed mechanisms to adapt to thermal environments. Results: P. cryptus DSM 12079T grew optimally at 50 °C, which was higher than the optimal growth temperature of other Porphyrobacter type strains. Phylogenomic analysis of the genus Porphyrobacter revealed that P. cryptus DSM 12079T formed a distinct and independent clade. Comparative genomic studies uncovered that 1405 single-copy genes were shared by Porphyrobacter type strains. Alignments of single-copy proteins showed that various types of amino acid substitutions existed between P.
    [Show full text]
  • Downloaded from the NCBI Genome Portal (Table S1)
    J. Microbiol. Biotechnol. 2021. 31(4): 601–609 https://doi.org/10.4014/jmb.2012.12054 Review Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M Sang-Hyeok Cho1, Yujin Jeong1, Eunju Lee1, So-Ra Ko3, Chi-Yong Ahn3, Hee-Mock Oh3, Byung-Kwan Cho1,2*, and Suhyung Cho1,2* 1Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 2KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 3Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan- genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species.
    [Show full text]
  • Artificial Neural Network Analysis of Microbial Diversity in the Central and Southern Adriatic
    www.nature.com/scientificreports OPEN Artifcial neural network analysis of microbial diversity in the central and southern Adriatic Sea Danijela Šantić1*, Kasia Piwosz2, Frano Matić1, Ana Vrdoljak Tomaš1, Jasna Arapov1, Jason Lawrence Dean3, Mladen Šolić1, Michal Koblížek3,4, Grozdan Kušpilić1 & Stefanija Šestanović1 Bacteria are an active and diverse component of pelagic communities. The identifcation of main factors governing microbial diversity and spatial distribution requires advanced mathematical analyses. Here, the bacterial community composition was analysed, along with a depth profle, in the open Adriatic Sea using amplicon sequencing of bacterial 16S rRNA and the Neural gas algorithm. The performed analysis classifed the sample into four best matching units representing heterogenic patterns of the bacterial community composition. The observed parameters were more diferentiated by depth than by area, with temperature and identifed salinity as important environmental variables. The highest diversity was observed at the deep chlorophyll maximum, while bacterial abundance and production peaked in the upper layers. The most of the identifed genera belonged to Proteobacteria, with uncultured AEGEAN-169 and SAR116 lineages being dominant Alphaproteobacteria, and OM60 (NOR5) and SAR86 being dominant Gammaproteobacteria. Marine Synechococcus and Cyanobium- related species were predominant in the shallow layer, while Prochlorococcus MIT 9313 formed a higher portion below 50 m depth. Bacteroidota were represented mostly by uncultured lineages (NS4, NS5 and NS9 marine lineages). In contrast, Actinobacteriota were dominated by a candidatus genus Ca. Actinomarina. A large contribution of Nitrospinae was evident at the deepest investigated layer. Our results document that neural network analysis of environmental data may provide a novel insight into factors afecting picoplankton in the open sea environment.
    [Show full text]
  • Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales
    GBE Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales Vandana Viswanathan1,2, Anushree Narjala1, Aravind Ravichandran1, Suvratha Jayaprasad1,and Shivakumara Siddaramappa1,* 1Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Bengaluru, Karnataka, India 2Manipal University, Manipal, Karnataka, India *Corresponding author: E-mail: [email protected]. Accepted: February 10, 2017 Data deposition: Genome sequences were downloaded from GenBank, and their accession numbers are provided in table 1. Abstract The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales.In17genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase.
    [Show full text]
  • Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure
    Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure Authors: Suzanne L. Ishaq, Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled The final publication is available at Springer via http://dx.doi.org/10.1007/s00248-016-0861-2. Ishaq, Suzanne L. , Stephen P. Johnson, Zach J. Miller, Erik A. Lehnhoff, Sarah Olivo, Carl J. Yeoman, and Fabian D. Menalled. "Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure." Microbial Ecology 73, no. 2 (February 2017): 417-434. DOI: 10.1007/s00248-016-0861-2. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Impact of Cropping Systems, Soil Inoculum, and Plant Species Identity on Soil Bacterial Community Structure 1,2 & 2 & 3 & 4 & Suzanne L. Ishaq Stephen P. Johnson Zach J. Miller Erik A. Lehnhoff 1 1 2 Sarah Olivo & Carl J. Yeoman & Fabian D. Menalled 1 Department of Animal and Range Sciences, Montana State University, P.O. Box 172900, Bozeman, MT 59717, USA 2 Department of Land Resources and Environmental Sciences, Montana State University, P.O. Box 173120, Bozeman, MT 59717, USA 3 Western Agriculture Research Center, Montana State University, Bozeman, MT, USA 4 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM, USA Abstract Farming practices affect the soil microbial commu- then individual farm. Living inoculum-treated soil had greater nity, which in turn impacts crop growth and crop-weed inter- species richness and was more diverse than sterile inoculum- actions.
    [Show full text]
  • A Novel Bacterial Thiosulfate Oxidation Pathway Provides a New Clue About the Formation of Zero-Valent Sulfur in Deep Sea
    The ISME Journal (2020) 14:2261–2274 https://doi.org/10.1038/s41396-020-0684-5 ARTICLE A novel bacterial thiosulfate oxidation pathway provides a new clue about the formation of zero-valent sulfur in deep sea 1,2,3,4 1,2,4 3,4,5 1,2,3,4 4,5 1,2,4 Jing Zhang ● Rui Liu ● Shichuan Xi ● Ruining Cai ● Xin Zhang ● Chaomin Sun Received: 18 December 2019 / Revised: 6 May 2020 / Accepted: 12 May 2020 / Published online: 26 May 2020 © The Author(s) 2020. This article is published with open access Abstract Zero-valent sulfur (ZVS) has been shown to be a major sulfur intermediate in the deep-sea cold seep of the South China Sea based on our previous work, however, the microbial contribution to the formation of ZVS in cold seep has remained unclear. Here, we describe a novel thiosulfate oxidation pathway discovered in the deep-sea cold seep bacterium Erythrobacter flavus 21–3, which provides a new clue about the formation of ZVS. Electronic microscopy, energy-dispersive, and Raman spectra were used to confirm that E. flavus 21–3 effectively converts thiosulfate to ZVS. We next used a combined proteomic and genetic method to identify thiosulfate dehydrogenase (TsdA) and thiosulfohydrolase (SoxB) playing key roles in the conversion of thiosulfate to ZVS. Stoichiometric results of different sulfur intermediates further clarify the function of TsdA − – – – − 1234567890();,: 1234567890();,: in converting thiosulfate to tetrathionate ( O3S S S SO3 ), SoxB in liberating sulfone from tetrathionate to form ZVS and sulfur dioxygenases (SdoA/SdoB) in oxidizing ZVS to sulfite under some conditions.
    [Show full text]
  • Bacterial Diversity in the Rhizosphere of AVP1 Transgenic Cotton (Gossypium Hirsutum L.) and Wheat (Triticum Aestivum L.)
    Bacterial Diversity in the Rhizosphere of AVP1 Transgenic Cotton (Gossypium hirsutum L.) and Wheat (Triticum aestivum L.) Muhammad Arshad 2016 Department of Biotechnology Pakistan Institute of Engineering & Applied Sciences Nilore-45650 Islamabad, Pakistan Reviewers and Examiners Foreign Reviewers 1. Dr. Dittmar Hahn Department of Biology, Texas State University, 601 University Drive San Marcos, Fax +1 (512) 245 8713 Telephone: +1 (512) 245 3372 E-mail Address: [email protected] 2. Dr. Philippe Normad Microbial Ecology Laboratory, UMR CNRS 5557, F-69622 Villeurbanne Cedex Telephone: 33 (0)4-7243-1377 E-mail Address: [email protected] University of Arkansas, 3. Dr. Katharina Pawlowski Stockholm University Mailing Address: SE-106 91 Stockholm, Sweden Telephone (With Country Code): +46 8 16 37 72 E-mail Address: [email protected] Thesis Examiners 1. Dr. Asghari Bano, Department of Biosciences university of Wah cant Telephone # 03129654341 E-mail Address: [email protected] 2. Dr. Muhammad Arshad Department of Botany, PMAS AAU, Murree Road, Rawalpindi Telephone: 051-9062207 E-mail Address: [email protected] 3. Dr. Amer Jamil, Molecular Biochemistry Lab, Dept. of Chemistry and Biochemistry, University of Agriculture Faisalabad Telephone: 41-9201104 E-mail Address: [email protected] Head of the Department (Name): Prof. Dr. Shahid Mansoor, S.I. Signature with date: _____________________ Thesis Submission Approval This is to certify that the work contained in this thesis entitled Bacterial Diversity in the Rhizosphere of AVP1 Transgenic Cotton (Gossypium hirsutum L.) and Wheat (Triticum aestivum L.), was carried out by Muhammad Arshad, and in my opinion, it is fully adequate, in scope and quality, for the degree of M.
    [Show full text]
  • Taxonomic Hierarchy of the Phylum Proteobacteria and Korean Indigenous Novel Proteobacteria Species
    Journal of Species Research 8(2):197-214, 2019 Taxonomic hierarchy of the phylum Proteobacteria and Korean indigenous novel Proteobacteria species Chi Nam Seong1,*, Mi Sun Kim1, Joo Won Kang1 and Hee-Moon Park2 1Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea 2Department of Microbiology & Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea *Correspondent: [email protected] The taxonomic hierarchy of the phylum Proteobacteria was assessed, after which the isolation and classification state of Proteobacteria species with valid names for Korean indigenous isolates were studied. The hierarchical taxonomic system of the phylum Proteobacteria began in 1809 when the genus Polyangium was first reported and has been generally adopted from 2001 based on the road map of Bergey’s Manual of Systematic Bacteriology. Until February 2018, the phylum Proteobacteria consisted of eight classes, 44 orders, 120 families, and more than 1,000 genera. Proteobacteria species isolated from various environments in Korea have been reported since 1999, and 644 species have been approved as of February 2018. In this study, all novel Proteobacteria species from Korean environments were affiliated with four classes, 25 orders, 65 families, and 261 genera. A total of 304 species belonged to the class Alphaproteobacteria, 257 species to the class Gammaproteobacteria, 82 species to the class Betaproteobacteria, and one species to the class Epsilonproteobacteria. The predominant orders were Rhodobacterales, Sphingomonadales, Burkholderiales, Lysobacterales and Alteromonadales. The most diverse and greatest number of novel Proteobacteria species were isolated from marine environments. Proteobacteria species were isolated from the whole territory of Korea, with especially large numbers from the regions of Chungnam/Daejeon, Gyeonggi/Seoul/Incheon, and Jeonnam/Gwangju.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Altererythrobacter Xiamenensis Sp. Nov., an Algicidal Bacterium Isolated from Red Tide Seawater
    International Journal of Systematic and Evolutionary Microbiology (2014), 64, 631–637 DOI 10.1099/ijs.0.057257-0 Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater Xueqian Lei,1,23 Yi Li,1,23 Zhangran Chen,1 Wei Zheng,1 Qiliang Lai,1,3 Huajun Zhang,1 Chengwei Guan,1 Guanjing Cai,1 Xujun Yang,1 Yun Tian1 and Tianling Zheng1,2 Correspondence 1State Key Laboratory of Marine Environmental Science and Key Laboratory of MOE for Coast and Tianling Zheng Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, PR China [email protected] 2ShenZhen Research Institute of Xiamen University, ShenZhen, 518057, PR China 3Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, PR China A Gram-stain-negative, yellow-pigmented, aerobic bacterial strain, designated LY02T, was isolated from red tide seawater in Xiamen, Fujian Province, China. Growth was observed at temperatures from 4 to 44 6C, at salinities from 0 to 9 % and at pH from 6 to 10. Phylogenetic analysis based on 16S rRNA gene sequencing revealed that the isolate was a member of the genus Altererythrobacter, which belongs to the family Erythrobacteraceae. Strain LY02T was related most closely to Altererythrobacter marensis MSW-14T (97.2 % 16S rRNA gene sequence similarity), followed by Altererythrobacter ishigakiensis JPCCMB0017T (97.1 %), Altererythrobacter epoxidivorans JCS350T (97.1 %) and Altererythrobacter luteolus SW-109T (97.0 %). The dominant fatty acids were C18 : 1v7c,C17 : 1v6c and summed feature 3 (comprising T C16 : 1v7c and/or C16 : 1v6c). DNA–DNA hybridization showed that strain LY02 possessed low DNA–DNA relatedness to A.
    [Show full text]
  • COMMUNITY ANALYSIS of SOUTHERN APPALACHIAN FENS, and CHARACTERIZATION and ISOLATION of a NOVEL BACTERIUM and ORDER a Thesis By
    COMMUNITY ANALYSIS OF SOUTHERN APPALACHIAN FENS, AND CHARACTERIZATION AND ISOLATION OF A NOVEL BACTERIUM AND ORDER A Thesis by AUSTIN B. HARBISON Submitted to the Graduate School at Appalachian State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE MAY 2016 Department of BIOLOGY COMMUNITY ANALYSIS OF SOUTHERN APPALACHIAN FENS, AND CHARACTERIZATION AND ISOLATION OF A NOVEL BACTERIUM AND ORDER A Thesis by AUSTIN B. HARBISON MAY 2016 APPROVED BY: Suzanna L Bräuer, Ph.D. Chairperson, Thesis Committee Maryam Ahmed, Ph.D. Member, Thesis Committee Leslie Sargent Jones, Ph.D. Member, Thesis Committee Zack Murrell, Ph.D. Chairperson, Department of Biology Max C. Poole, Ph.D. Dean, Cratis D. Williams School of Graduate Studies Copyright by Austin B. Harbison 2016 All Rights Reserved Abstract COMMUNITY ANALYSIS OF SOUTHERN APPALACHIAN FENS, AND CHARACTERIZATION AND ISOLATION OF A NOVEL BACTERIUM AND ORDER Austin B. Harbison B.S., Appalachian State University M.S., Appalachian State University Chairperson: Suzanna L. Bräuer Peatlands of all latitudes play an integral role in global climate change by serving as a carbon sink and a primary source of atmospheric methane; however, the microbial ecology of mid-latitude peatlands is vastly understudied. Herein, next generation Illumina amplicon sequencing of small subunit rRNA genes was utilized to elucidate the microbial communities in three southern Appalachian peatlands. In contrast to northern peatlands, Proteobacteria dominated over Acidobacteria in all three sites. Members of the Proteobacteria, including Alphaproteobacteria are known to utilize simple sugars and methane among other substrates. However, results described here and in previous studies, indicate that bacteria of the candidate order, Ellin 329, may also be involved in poly- and di-saccharide hydrolysis.
    [Show full text]
  • Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
    Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food.
    [Show full text]