A Molecular Phylogeny of the Caribbean Subtribe

Total Page:16

File Type:pdf, Size:1020Kb

A Molecular Phylogeny of the Caribbean Subtribe RESOLVING GENERIC BOUNDARIES IN RHYTIDOPHYLLUM AND GESNERIA: A MOLECULAR PHYLOGENY OF THE CARIBBEAN SUBTRIBE GESNERIINAE (GESNERIACEAE) by DAVID REECE WATSON JOHN L. CLARK, COMMITTEE CHAIR MARTHA POWELL LAURA REED SIMON JOLY A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biological Sciences in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2015 Copyright David Reece Watson 2015 ALL RIGHTS RESERVED Abstract The Caribbean subtribe Geseneriinae is comprised of 4 genera consisting of approximately 91 species. Most species are in Gesneria and Rhytidophyllum and fewer than five are currently recognized in Bellonia and Pheidoncarpa. Hispaniola is the most diverse region with 38 species followed by Cuba with 35 species. The Gesnerieae is nearly endemic to the Caribbean with only two species located in Venezuela and Colombia. Molecular sequence data from chloroplast (matKR) and nuclear markers (ITS and ETS) were used to generate a phylogenetic tree for evaluating the generic circumscription of Gesneria and Rhytidophyllum. Results from this study strongly support the monophyly of Rhytidophyllum and Gesneria. Phylogenetic results support and update classification for the circumscriptions of species previously recognized as Gesneria purpurascens and G. duchartreoides. Results also support the need for a re-evaluation of taxa currently recognized as Gesneria viridiflora complex. ii Dedication This thesis is dedicated to my grandparents. The wisdom they shared with me growing up helped lay the foundation for me to pursue my goal. It is their guidance and support that helped me to reach this point. It is in their memory that I endeavor to reach my academic and personal goals. iii Acknowledgements I would like to acknowledge all of the members of the faculty of the University of Alabama, colleagues in the lab and friends who have helped guide me in preparing this thesis. I would also like to acknowledge my committee members Dr. Laura Reed, Dr. Martha Powell, and Dr. Simon Joly whose guidance and instruction in performing this research was invaluable. Most notably I would like to acknowledge Dr. John L. Clark. This project would not have been possible without his expertise and belief in me. I would also like to acknowledge all of the members of the Clark Lab who have aided in my research and provided support. Laura Clavijo, Jason Martin, and Jon Grammar all provided invaluable assistance in lab work and support during analysis and editing of this study. This research was made possible by the support of the University of Alabama, the Graduate School, the Department of Biological Sciences, my friends, and family. I appreciate everyone who aided me during this process and the encouragement that helped make the completion of this project and thesis possible. iv Contents Abstract ........................................................................................................................................... ii Dedication ...................................................................................................................................... iii Acknowledgements ........................................................................................................................ iv List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii Introduction ......................................................................................................................................1 Materials and Methods .....................................................................................................................4 Taxon Sampling ......................................................................................................................4 DNA Extraction, Amplification and Sequencing ...................................................................6 Alignment and Phylogenetic Analyses ...................................................................................7 Results ..............................................................................................................................................9 DNA Sequencing and Alignment ...........................................................................................9 Phylogenetic Analyses ............................................................................................................9 Discussion ......................................................................................................................................13 Comparison to Previous Phylogenies ...................................................................................13 Resolving Generic Boundaries .............................................................................................13 Future Directions ..................................................................................................................15 References ......................................................................................................................................16 v List of Tables 1. Specimens in Analysis .........................................................................................................4 vi List of Figures 1. Maximum Likelihood Consensus Tree ..............................................................................10 2. Bayesian Consensus Tree ..................................................................................................11 3. Strict Consensus Tree Based on Maximum Parsimony Analysis ......................................12 4. Examination of the characters of Gesneria fruticosa ........................................................14 vii Introduction The subtribe Gesneriinae is a monophyletic lineage that has diversified in the Caribbean and is comprised of approximately 65 species of Gesneria, 26 species of Rhytidophyllum, two species of Bellonia, and two species of Pheidonocarpa. The majority of species are found on the islands of Cuba and Hispaniola with each having approximately 30 species (Skog 2012). The only other islands with more than five species are Puerto Rico and Jamaica. All other islands are limited to fewer than five species and most have only one or two (Skog 2012). Only two species are non-Caribbean and they are located along the coasts of Colombia and Venezuela. These two species are: Rhytidophyllum onacaense (Rusby) L.E. Skog (mostly found in Colombia) and Rhytidophyllum cumanense (Hanst.) L.E. Skog,(mostly found in Venezuela). The subtribe Gesneriinae as set forth by Linnaeus lacked sufficient definition for the circumscription of genera and thus many new species were incorrectly placed within the tribe. The group was treated as a single genus by Linnaeus (1753) and Swartz (1788) and then divided into two or more genera Martius (1829), Decaisne (1846), Hanstein (1854) and others, losing the name Gesneria L. in doing so. Most notably Kuntze (1891) resurrected the name Gesneria L. while synonymizing Rhytidophyllum while Fritsch (1893-94) reverted back to the system of Hanstein and Bentham, dividing the tribe back into Gesneria and Rhytidophyllum. Urban focused his work on Caribbean plants and as a result he described more than 60 species of Gesneria and Rhytidophyllum, which is more than any other botanist. Urban (1901) followed the classifications of Bentham (1876) and Fritsch (1894 lending support to the separation of Gesneria and Rhytidophyllum. 1 Recent generic boundaries in the tribe Gesnerieae are confusing because Wiehler (1983) and Skog (1976) had different generic concepts for circumscribing Rhytidophyllum and Gesneria. Wiehler recognized Rhytidophyllum as a synonym of Gesneria and therefore combined all Caribbean members of the family into Gesneria. In contrast, Skog recognized Gesneria and Rhytidophyllum as separate genera by the presence of trichomes on the stamens as well as adnation of the stamens to the corolla tube. In addition to Rhytidophyllum and Gesneria, Skog (1976) described Pheidonocarpa as a new genus. Rhytidophyllum are distinguished from Gesneria by large bullate or areolate leaves, campanulate flowers, isolated stomata raised on domes, undulate cell margins, stamens adnate to the base of the corolla, pubescence on the stamen filaments, and maroon to green flowers (Skog 1976). However, no single morphological character can be used to distinguish all species in one genus from another and several of the defining characteristics are only present on the corolla. Some species of Rhytidophyllum have red tubular flowers and have thus been historically classified as Gesneria but they exhibit adnation of the stamens at the base of the corolla tube and pubescence on the stamens which is more similar to Rhytidophyllum. Wiehler (1983) recognized that no single character could be used to differentiate between the entireties of each genus. However, the confusion over these morphological differences and the presence of species displaying intermediate characteristics led him to argue that the diversity is indicative of environmental adaptations of individual species and does not represent generic delimitation. Wiehler interpreted the adnation of the filaments to the corolla tube as minor differences that were only useful for recognizing
Recommended publications
  • Temporal and Spatial Origin of Gesneriaceae in the New World Inferred from Plastid DNA Sequences
    bs_bs_banner Botanical Journal of the Linnean Society, 2013, 171, 61–79. With 3 figures Temporal and spatial origin of Gesneriaceae in the New World inferred from plastid DNA sequences MATHIEU PERRET1*, ALAIN CHAUTEMS1, ANDRÉA ONOFRE DE ARAUJO2 and NICOLAS SALAMIN3,4 1Conservatoire et Jardin botaniques de la Ville de Genève, Ch. de l’Impératrice 1, CH-1292 Chambésy, Switzerland 2Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Bairro Bangu, Santo André, Brazil 3Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland 4Swiss Institute of Bioinformatics, Quartier Sorge, CH-1015 Lausanne, Switzerland Received 15 December 2011; revised 3 July 2012; accepted for publication 18 August 2012 Gesneriaceae are represented in the New World (NW) by a major clade (c. 1000 species) currently recognized as subfamily Gesnerioideae. Radiation of this group occurred in all biomes of tropical America and was accompanied by extensive phenotypic and ecological diversification. Here we performed phylogenetic analyses using DNA sequences from three plastid loci to reconstruct the evolutionary history of Gesnerioideae and to investigate its relationship with other lineages of Gesneriaceae and Lamiales. Our molecular data confirm the inclusion of the South Pacific Coronanthereae and the Old World (OW) monotypic genus Titanotrichum in Gesnerioideae and the sister-group relationship of this subfamily to the rest of the OW Gesneriaceae. Calceolariaceae and the NW genera Peltanthera and Sanango appeared successively sister to Gesneriaceae, whereas Cubitanthus, which has been previously assigned to Gesneriaceae, is shown to be related to Linderniaceae. Based on molecular dating and biogeographical reconstruction analyses, we suggest that ancestors of Gesneriaceae originated in South America during the Late Cretaceous.
    [Show full text]
  • Towards Resolving Lamiales Relationships
    Schäferhoff et al. BMC Evolutionary Biology 2010, 10:352 http://www.biomedcentral.com/1471-2148/10/352 RESEARCH ARTICLE Open Access Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences Bastian Schäferhoff1*, Andreas Fleischmann2, Eberhard Fischer3, Dirk C Albach4, Thomas Borsch5, Günther Heubl2, Kai F Müller1 Abstract Background: In the large angiosperm order Lamiales, a diverse array of highly specialized life strategies such as carnivory, parasitism, epiphytism, and desiccation tolerance occur, and some lineages possess drastically accelerated DNA substitutional rates or miniaturized genomes. However, understanding the evolution of these phenomena in the order, and clarifying borders of and relationships among lamialean families, has been hindered by largely unresolved trees in the past. Results: Our analysis of the rapidly evolving trnK/matK, trnL-F and rps16 chloroplast regions enabled us to infer more precise phylogenetic hypotheses for the Lamiales. Relationships among the nine first-branching families in the Lamiales tree are now resolved with very strong support. Subsequent to Plocospermataceae, a clade consisting of Carlemanniaceae plus Oleaceae branches, followed by Tetrachondraceae and a newly inferred clade composed of Gesneriaceae plus Calceolariaceae, which is also supported by morphological characters. Plantaginaceae (incl. Gratioleae) and Scrophulariaceae are well separated in the backbone grade; Lamiaceae and Verbenaceae appear in distant clades, while the recently described Linderniaceae are confirmed to be monophyletic and in an isolated position. Conclusions: Confidence about deep nodes of the Lamiales tree is an important step towards understanding the evolutionary diversification of a major clade of flowering plants. The degree of resolution obtained here now provides a first opportunity to discuss the evolution of morphological and biochemical traits in Lamiales.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Molecular Species Delimitation, Taxonomy and Biogeography of Sri Lankan Gesneriaceae Subhani Wathsala Ranasinghe Doctor of Philosophy The University of Edinburgh Royal Botanic Garden Edinburgh 2017 Declaration I hereby declare that the work contained in this thesis is my own unless otherwise acknowledged and cited. This thesis has not in whole or in part been previously presented for any degree Subhani Wathsala Ranasinghe 24th January 2017. i Abstract The plant family Gesneriaceae is represented in Sri Lanka by six genera: Aeschynanthus, Epithema, Championia, Henckelia, Rhynchoglossum and Rhynchotechum, with 13 species (plus one subspecies/variety) of which ten are endemic including the monotypic genus Championia, according to the last revision in 1981. They are exclusively distributed in undisturbed habitats, and some have high ornamental value. The species are morphologically diverse, but face a problem of taxonomic delineation, which is further complicated by the presence of putative hybrids.
    [Show full text]
  • South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level.
    [Show full text]
  • Palinotaxonomia De Espécies Brasileiras De Gesneriaceae, Com Ênfase Nas Ocorrentes No Estado De São Paulo
    EDUARDO CUSTÓDIO GASPARINO Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTOR em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. SÃO PAULO 2008 EDUARDO CUSTÓDIO GASPARINO Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo Tese apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente, como parte dos requisitos exigidos para a obtenção do título de DOUTOR em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, na Área de Concentração de Plantas Vasculares em Análises Ambientais. ORIENTADORA: DRA. MARIA AMÉLIA VITORINO DA CRUZ-BARROS CO-ORIENTADOR: DR. ALAIN CHAUTEMS Ficha Catalográfica elaborada pela Seção de Biblioteca do Instituto de Botânica Gasparino, Eduardo Custódio G249p Palinotaxonomia de espécies brasileiras de Gesneriaceae, com ênfase nas ocorrentes no Estado de São Paulo / Eduardo Custódio Gasparino -- São Paulo, 2008. 197 p.il. Tese (Doutorado) -- Instituto de Botânica da Secretaria de Estado do Meio Ambiente, 2008 Bibliografia. 1. Pólen. 2. Palinotaxonomia. 3. Gesneriaceae. I. Título CDU : 581.33 Alfa, Ômega... princípio e fim, sim Ele é... sim Ele é.... Lírio dos vales, estrela da manhã, para sempre cantarei o Seu amor!!! À Ele a glória, À Ele o louvor, à Ele o domínio... Ele é o Senhor Aos meus pais, Luzia Custódia Pereira Gasparino e Francisco Gasparino, dedico. À minha Orientadora Dra. Maria Amélia Obrigado por todos os ensinamentos, pela amizade, dedicação e pela orientação de todos estes anos e em especial nesta Tese.
    [Show full text]
  • Gesneriads First Quarter 2018
    GesThe Journal forn Gesneriade Growersria ds Volume 68 ~ Number 1 First Quarter 2018 Return to Table of Contents RETURN TO TABLE OF CONTENTS The Journal for Gesneriad Growers Volume 68 ~ Number 1 Gesneriads First Quarter 2018 FEATURES DEPARTMENTS 5 Saintpaulia, the NEW Streptocarpus 3 Message from the President Winston Goretsky Julie Mavity-Hudson 9 Style Guide for Writers 4 From The Editor Jeanne Katzenstein Peter Shalit 10 Gesneriads at the Liuzhou Arts Center 18 Gesneriad Registrations Wallace Wells Irina Nicholson 24 Flower Show Awards 42 Changes to Hybrid Seed List 4Q17 Paul Susi Gussie Farrice 25 Gesneriads POP in New England! 46 Coming Events Maureen Pratt Ray Coyle and Karyn Cichocki 28 62nd Annual Convention of The 47 Flower Show Roundup Gesneriad Society 51 Back to Basics: Gesneriad Crafts 37 Convention Speakers Dale Martens Dee Stewart 55 Seed Fund – Species 39 Petrocosmeas in the United Kingdom Carolyn Ripps Razvan Chisu 61 Information about The Gesneriad 43 Gasteranthus herbaceus – A white- Society, Inc. flowered Gasteranthus from the northern Andes Dale Martens with John L. Clark Cover Eucodonia ‘Adele’ grown by Eileen McGrath Back Cover and exhibited at the New York State African Petrocosmea ‘Stone Amethyst’, hybridized, Violet Convention Show, October 2017. grown, and photographed by Andy Kuang. Photo: Bob Clark See New Registrations article, page 18. Editor Business Manager The Gesneriad Society, Inc. Peter Shalit Michael A. Riley The objects of The Gesneriad [email protected] [email protected] Society are to afford
    [Show full text]
  • Chemical Basis of Floral Color Signals in Gesneriaceae: the Effect of Alternative Anthocyanin Pathways
    fpls-11-604389 December 8, 2020 Time: 18:44 # 1 ORIGINAL RESEARCH published: 14 December 2020 doi: 10.3389/fpls.2020.604389 Chemical Basis of Floral Color Signals in Gesneriaceae: The Effect of Alternative Anthocyanin Pathways Ezgi Ogutcen1, Karine Durand1, Marina Wolowski2, Laura Clavijo3, Catherine Graham4, Gaétan Glauser5 and Mathieu Perret1* 1 Conservatoire et Jardin botaniques de la Ville de Genève, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland, 2 Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil, 3 Instituto de Ciencias Naturales, National University of Colombia, UNAL, Bogotá, Colombia, 4 Swiss Federal Research Institute (WSL), Birmensdorf, Switzerland, 5 Neuchatel Platform of Analytical Chemistry, University of Neuchatel, Neuchâtel, Switzerland Changes in floral pigmentation can have dramatic effects on angiosperm evolution by making flowers either attractive or inconspicuous to different pollinator groups. Flower color largely depends on the type and abundance of pigments produced in the petals, but it is still unclear whether similar color signals rely on same biosynthetic pathways and to which extent the activation of certain pathways influences the course of floral color evolution. To address these questions, we investigated the physical and chemical aspects of floral color in the Neotropical Gesnerioideae Edited by: (ca. 1,200 spp.), in which two types of anthocyanins, hydroxyanthocyanins, and Eduardo Narbona, deoxyanthocyanins, have been recorded as floral pigments. Using spectrophotometry, Universidad Pablo de Olavide, Spain we measured flower reflectance for over 150 species representing different clades Reviewed by: Maximilian Larter, and pollination syndromes. We analyzed these reflectance data to estimate how the Naturalis Biodiversity Center, Gesnerioideae flowers are perceived by bees and hummingbirds using the visual Netherlands Jair E.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Évolution Des Syndromes De Pollinisation Et Des Niches Bioclimatiques Au Sein Des Genres Antillais Gesneria Et Rhytidophyllum (Gesneriaceae)
    Université de Montréal ÉVOLUTION DES SYNDROMES DE POLLINISATION ET DES NICHES BIOCLIMATIQUES AU SEIN DES GENRES ANTILLAIS GESNERIA ET RHYTIDOPHYLLUM (GESNERIACEAE) Hermine Alexandre Institut de Recherche en Biologie Végétale Département de Sciences Biologiques Faculté des Arts et Sciences Thèse présentée en vue de l’obtention du grade de PhilosophæDoctor en sciences biologiques Avril 2016 c Hermine Alexandre, 2016 Université de Montréal Faculté des études supérieures et postdoctorales Ce mémoire intitulé: Évolution des syndromes de pollinisation et des niches bioclimatiques au sein des genres Antillais Gesneria et Rhytidophyllum (Gesneriaceae) Présenté par: Hermine Alexandre a été évalué par un jury composé des personnes suivantes: Simon Joly, directeur de recherche Virginie Millien, évaluatrice externe Sébastien Renaut, membre du jury Thimothée Poisot, président du jury Résumé Contexte : Gesneria et Rhytidophyllum (Gesneriaceae) sont deux genres de plantes An- tillais aillant subi une forte diversification et qui présentent une forte variabilité de modes de pollinisation associés à des traits floraux particuliers. Les spécialistes des colibris ont des fleurs tubulaires rouges, alors que les spécialistes des chauves-souris et les généralistes présentent des fleurs campanulées de couleur pâle. La capacité d’être pollinisé par des chauves-souris (en excluant les colibris ou en devenant généraliste) a évolué plusieurs fois indépendamment au sein du groupe. Ces caractéristiques font de ces plantes un bon modèle pour étudier les relations entre l’évolution des modes de pollinisation et la diversification spécifique et écologique. Pour ceci, nous avons étudié les bases génétiques des changements de mode de pollinisation et les liens entre ces modes de pollinisations et la diversification des niches bioclimatiques.
    [Show full text]
  • Complete List of Gesneriad Species
    Gesneriaceae Currently Aeschynanthus batakiorum Aeschynanthus jouyi Accepted Species Names Aeschynanthus batesii Aeschynanthus kermesinus Aeschynanthus brachyphyllus Aeschynanthus lancilimbus Updated 4/1/21 Aeschynanthus bracteatus Aeschynanthus lasianthus (originally SI Checklist 6-15-12 Aeschynanthus breviflorus Aeschynanthus lasiocalyx previously updated to 6/1/16) Aeschynanthus burttii Aeschynanthus lepidospermus https://padme.rbge.org.uk/grc Aeschynanthus buxifolius Aeschynanthus leptocladus Aeschynanthus calanthus Aeschynanthus leucothamnos Gesnereaceae Resource Centre - Aeschynanthus cambodiensis # Aeschynanthus ligustrinus create a checklist (rbge.org.
    [Show full text]
  • A New Formal Classification of Gesneriaceae Is Proposed
    Selbyana 31(2): 68–94. 2013. ANEW FORMAL CLASSIFICATION OF GESNERIACEAE ANTON WEBER* Department of Structural and Functional Botany, Faculty of Biodiversity, University of Vienna, A-1030 Vienna, Austria. Email: [email protected] JOHN L. CLARK Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA. MICHAEL MO¨ LLER Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, U.K. ABSTRACT. A new formal classification of Gesneriaceae is proposed. It is the first detailed and overall classification of the family that is essentially based on molecular phylogenetic studies. Three subfamilies are recognized: Sanangoideae (monospecific with Sanango racemosum), Gesnerioideae and Didymocarpoideae. As to recent molecular data, Sanango/Sanangoideae (New World) is sister to Gesnerioideae + Didymocarpoideae. Its inclusion in the Gesneriaceae amends the traditional concept of the family and makes the family distinctly older. Subfam. Gesnerioideae (New World, if not stated otherwise with the tribes) is subdivided into five tribes: Titanotricheae (monospecific, East Asia), Napeantheae (monogeneric), Beslerieae (with two subtribes: Besleriinae and Anetanthinae), Coronanthereae (with three subtribes: Coronantherinae, Mitrariinae and Negriinae; southern hemisphere), and Gesnerieae [with five subtribes: Gesneriinae, Gloxiniinae, Columneinae (5the traditional Episcieae), Sphaerorrhizinae (5the traditional Sphaerorhizeae, monogeneric), and Ligeriinae (5the traditional Sinningieae)]. In the Didymocarpoideae (almost exclusively
    [Show full text]
  • Lamiales – Synoptical Classification Vers
    Lamiales – Synoptical classification vers. 2.6.2 (in prog.) Updated: 12 April, 2016 A Synoptical Classification of the Lamiales Version 2.6.2 (This is a working document) Compiled by Richard Olmstead With the help of: D. Albach, P. Beardsley, D. Bedigian, B. Bremer, P. Cantino, J. Chau, J. L. Clark, B. Drew, P. Garnock- Jones, S. Grose (Heydler), R. Harley, H.-D. Ihlenfeldt, B. Li, L. Lohmann, S. Mathews, L. McDade, K. Müller, E. Norman, N. O’Leary, B. Oxelman, J. Reveal, R. Scotland, J. Smith, D. Tank, E. Tripp, S. Wagstaff, E. Wallander, A. Weber, A. Wolfe, A. Wortley, N. Young, M. Zjhra, and many others [estimated 25 families, 1041 genera, and ca. 21,878 species in Lamiales] The goal of this project is to produce a working infraordinal classification of the Lamiales to genus with information on distribution and species richness. All recognized taxa will be clades; adherence to Linnaean ranks is optional. Synonymy is very incomplete (comprehensive synonymy is not a goal of the project, but could be incorporated). Although I anticipate producing a publishable version of this classification at a future date, my near- term goal is to produce a web-accessible version, which will be available to the public and which will be updated regularly through input from systematists familiar with taxa within the Lamiales. For further information on the project and to provide information for future versions, please contact R. Olmstead via email at [email protected], or by regular mail at: Department of Biology, Box 355325, University of Washington, Seattle WA 98195, USA.
    [Show full text]