Identification, Diversity and Detection of Xanthomonas Strains Associated Eith Pistachio Dieback in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Identification, Diversity and Detection of Xanthomonas Strains Associated Eith Pistachio Dieback in Australia “Identification, diversity and detection of Xanthomonas strains associated with pistachio dieback in Australia” Alireza Marefat Thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide Discipline of Plant and Pest Science Faculty of Sciences December 2005 Dedicated to my son, ‘ Armin’ ABSTRACT.....................................................................................................................I DECLARATION ...........................................................................................................III ACKNOWLEDGEMENTS .............................................................................................. IV ABBREVIATIONS......................................................................................................... VI CHAPTER 1: REVIEW OF THE LITERATURE ...................................................................1 1.1 Introduction...........................................................................................................1 1.2 The pistachio industry...........................................................................................2 1.2.1 Origin and history.............................................................................................2 1.2.2 World production..............................................................................................3 1.2.3 Australian production........................................................................................3 1.3 Pistachio dieback ...................................................................................................5 1.3.1 History, distribution and importance .................................................................5 1.3.2 Symptoms.........................................................................................................6 1.3.3 The causal agent ...............................................................................................7 1.4 Xanthomonas Dowson 1939 .................................................................................10 1.4.1 History, distribution and importance ...............................................................10 1.4.2 Description .....................................................................................................10 1.5 Identification and characterisation of xanthomonads........................................11 1.5.1 Non DNA-based methods ...............................................................................11 1.5.1.1 Morphological and structural description..................................................12 1.5.1.2 Metabolic testing......................................................................................12 1.5.1.3 Fatty acid methyl ester (FAME) analysis..................................................13 1.5.1.4 Gel electrophoresis of whole cell proteins ................................................15 1.5.1.5 Serological techniques..............................................................................15 1.5.2 DNA-based molecular techniques ...................................................................17 1.5.2.1 PCR-independent methods .......................................................................18 1.5.2.1.1 DNA-DNA hybridisation ......................................................................18 1.5.2.1.2 Restriction endonuclease analysis..........................................................19 1.5.2.1.3 Restriction fragment length polymorphism analysis (RFLP)..................19 1.5.2.2 PCR-based techniques..............................................................................20 1.5.2.2.1 Multiple arbitrary primed PCR (MAAP) ...............................................21 1.5.2.2.2 Amplified fragment length polymorphism analysis (AFLP)...................21 1.5.2.2.3 Repetitive sequence-based PCR ............................................................22 1.5.2.3 PCR-based detection techniques...............................................................23 1.6 Summary and objectives .....................................................................................25 CHAPTER 2: GENERAL MATERIALS AND METHODS.....................................................28 2.1 Collection of xanthomonad strains associated with pistachio dieback ..............28 2.2 Collection of other phytobacteria occurring in and around pistachio orchards ....................................................................................................................................29 2.3 Collection of type and reference strains of Xanthomonas ..................................31 2.4 Propagation and maintenance of bacteria..........................................................33 2.5 Collection of seeds and other plant materials for pathogenicity tests................33 2.6 DNA extraction from bacteria ............................................................................34 CHAPTER 3: GENETIC DIVERSITY WITHIN THE PISTACHIO DIEBACK PATHOGEN ........37 3.1 Introduction.........................................................................................................37 3.2 Materials and methods ........................................................................................38 3.2.1 Experimental protocol for rep-PCR fingerprinting ..........................................38 3.3 Data analysis........................................................................................................40 3.4 Results..................................................................................................................41 3.5 Discussion.............................................................................................................42 CHAPTER 4: CHARACTERISATION OF XANTHOMONADS CAUSING PISTACHIO DIEBACK ....................................................................................................................................57 4.1 Introduction.........................................................................................................57 4.2 Materials and methods ........................................................................................58 4.2.1 Biochemical and physiological tests................................................................58 4.2.2 Biolog GN2 Microplate System ......................................................................59 4.2.3 SDS-PAGE of whole cell proteins ..................................................................59 4.2.4 Sequencing of the 16S-23S rDNA spacer region .............................................61 4.2.5 16S rRNA gene sequencing ............................................................................62 4.2.6 DNA-DNA hybridisation................................................................................65 4.2.7 Comparison with pathovars of X. translucens using rep-PCR..........................66 4.3 Results..................................................................................................................66 4.3.1 Biochemical and physiological tests................................................................66 4.3.2 Biolog GN2 Microplate System ......................................................................70 4.3.3 SDS-PAGE of whole cell proteins ..................................................................72 4.3.4 Sequencing of the 16S-23S rDNA spacer region .............................................73 4.3.5 Sequencing of the 16S rRNA gene..................................................................73 4.3.6 DNA-DNA hybridisation................................................................................74 4.3.7 Comparison with pathovars of X. translucens using rep-PCR..........................78 4.4 Discussion.............................................................................................................87 CHAPTER 5: PATHOGENICITY OF XANTHOMONADS ASSOCIATED WITH PISTACHIO ....93 5.1 Introduction.........................................................................................................93 5.2 Materials and methods ........................................................................................94 5.2.1 Pathogenicity to members of the Anacardiaceae .............................................94 5.2.2 Pathogenicity to members of the Poaceae .......................................................97 5.3 Results................................................................................................................100 5.3.1 Pathogenicity to members of the Anacardiaceae ...........................................100 5.3.2 Pathogenicity to members of the Poaceae .....................................................101 5.4 Discussion...........................................................................................................110 CHAPTER 6: DETECTION OF XANTHOMONAD PATHOGENS OF PISTACHIO IN AUSTRALIA ...............................................................................................................116 6.1 Introduction.......................................................................................................116 6.2 Materials and methods ......................................................................................117 6.2.1 Detection of bacteria with X. translucens -specific primers, T1 & T2.............118 6.2.2 PCR assay for specific detection of the pistachio pathogens..........................119 6.2.2.1 Selection and design of primers..............................................................119
Recommended publications
  • 20640Edfcb19c0bfb828686027c
    FEMS Microbiology Reviews, fuz024, 44, 2020, 1–32 doi: 10.1093/femsre/fuz024 Advance Access Publication Date: 3 October 2019 Review article REVIEW ARTICLE Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas Shi-Qi An1, Neha Potnis2,MaxDow3,Frank-Jorg¨ Vorholter¨ 4, Yong-Qiang He5, Anke Becker6, Doron Teper7,YiLi8,9,NianWang7, Leonidas Bleris8,9,10 and Ji-Liang Tang5,* 1National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK, 2Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA, 3School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland, 4MVZ Dr. Eberhard & Partner Dortmund, Brauhausstraße 4, Dortmund 44137, Germany, 5State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China, 6Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universitat¨ Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany, 7Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA, 8Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA, 9Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA and 10Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA ∗Corresponding author: State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China.
    [Show full text]
  • As X. Vasicola Pv. Arecae Comb
    ORE Open Research Exeter TITLE Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and Description of X. vasicola pv. vasculorum pv. nov. AUTHORS Studholme, DJ; Wicker, E; Abrare, SM; et al. JOURNAL Phytopathology DEPOSITED IN ORE 24 January 2020 This version available at http://hdl.handle.net/10871/40555 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Phytopathology • XXXX • XXX:X-X • https://doi.org/10.1094/PHYTO-03-19-0098-LE Letters to the Editor Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and Description of X. vasicola pv. vasculorum pv. nov. David J. Studholme,1,† Emmanuel Wicker,2 Sadik Muzemil Abrare,3 Andrew Aspin,4 Adam Bogdanove,5 Kirk Broders,6 Zoe Dubrow,5 Murray Grant,7 Jeffrey B. Jones,8 Georgina Karamura,9 Jillian Lang,10 Jan Leach,10 George Mahuku,11 Gloria Valentine Nakato,12 Teresa Coutinho,13 Julian Smith,4 and Carolee T. Bull14 1 Biosciences, University of Exeter, Exeter, U.K. 2 IPME, University of Montpellier, CIRAD, IRD, Montpellier, France 3 Southern Agricultural Research Institute (SARI), Areka Agricultural Research Center, Areka, Ethiopia 4 Fera Science Ltd., York, U.K.
    [Show full text]
  • Bacteria-Killing Type IV Secretion Systems
    fmicb-10-01078 May 18, 2019 Time: 16:6 # 1 REVIEW published: 21 May 2019 doi: 10.3389/fmicb.2019.01078 Bacteria-Killing Type IV Secretion Systems Germán G. Sgro1†, Gabriel U. Oka1†, Diorge P. Souza1‡, William Cenens1, Ethel Bayer-Santos1‡, Bruno Y. Matsuyama1, Natalia F. Bueno1, Thiago Rodrigo dos Santos1, Cristina E. Alvarez-Martinez2, Roberto K. Salinas1 and Chuck S. Farah1* 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 2 Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Edited by: Campinas, Brazil Ignacio Arechaga, University of Cantabria, Spain Reviewed by: Bacteria have been constantly competing for nutrients and space for billions of years. Elisabeth Grohmann, During this time, they have evolved many different molecular mechanisms by which Beuth Hochschule für Technik Berlin, to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial Germany Xiancai Rao, and eukaryotic cells. These processes often employ large multimeric transmembrane Army Medical University, China nanomachines that have been classified as types I–IX secretion systems. One of the *Correspondence: most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have Chuck S. Farah [email protected] been shown to be able to secrete macromolecules directly into both eukaryotic and †These authors have contributed prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer equally to this work from one bacterium to another was restricted to protein-DNA complexes during ‡ Present address: bacterial conjugation. This view changed when it was shown by our group that many Diorge P.
    [Show full text]
  • Bacteria Associated with Vascular Wilt of Poplar
    Bacteria associated with vascular wilt of poplar Hanna Kwasna ( [email protected] ) Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu https://orcid.org/0000-0001- 6135-4126 Wojciech Szewczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Marlena Baranowska Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Jolanta Behnke-Borowczyk Poznan University of Life Sciences: Uniwersytet Przyrodniczy w Poznaniu Research Article Keywords: Bacteria, Pathogens, Plantation, Poplar hybrids, Vascular wilt Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-250846/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract In 2017, the 560-ha area of hybrid poplar plantation in northern Poland showed symptoms of tree decline. Leaves appeared smaller, turned yellow-brown, and were shed prematurely. Twigs and smaller branches died. Bark was sunken and discolored, often loosened and split. Trunks decayed from the base. Phloem and xylem showed brown necrosis. Ten per cent of trees died in 1–2 months. None of these symptoms was typical for known poplar diseases. Bacteria in soil and the necrotic base of poplar trunk were analysed with Illumina sequencing. Soil and wood were colonized by at least 615 and 249 taxa. The majority of bacteria were common to soil and wood. The most common taxa in soil were: Acidobacteria (14.757%), Actinobacteria (14.583%), Proteobacteria (36.872) with Betaproteobacteria (6.516%), Burkholderiales (6.102%), Comamonadaceae (2.786%), and Verrucomicrobia (5.307%).The most common taxa in wood were: Bacteroidetes (22.722%) including Chryseobacterium (5.074%), Flavobacteriales (10.873%), Sphingobacteriales (9.396%) with Pedobacter cryoconitis (7.306%), Proteobacteria (73.785%) with Enterobacteriales (33.247%) including Serratia (15.303%) and Sodalis (6.524%), Pseudomonadales (9.829%) including Pseudomonas (9.017%), Rhizobiales (6.826%), Sphingomonadales (5.646%), and Xanthomonadales (11.194%).
    [Show full text]
  • Control of Phytopathogenic Microorganisms with Pseudomonas Sp. and Substances and Compositions Derived Therefrom
    (19) TZZ Z_Z_T (11) EP 2 820 140 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 63/02 (2006.01) A01N 37/06 (2006.01) 10.01.2018 Bulletin 2018/02 A01N 37/36 (2006.01) A01N 43/08 (2006.01) C12P 1/04 (2006.01) (21) Application number: 13754767.5 (86) International application number: (22) Date of filing: 27.02.2013 PCT/US2013/028112 (87) International publication number: WO 2013/130680 (06.09.2013 Gazette 2013/36) (54) CONTROL OF PHYTOPATHOGENIC MICROORGANISMS WITH PSEUDOMONAS SP. AND SUBSTANCES AND COMPOSITIONS DERIVED THEREFROM BEKÄMPFUNG VON PHYTOPATHOGENEN MIKROORGANISMEN MIT PSEUDOMONAS SP. SOWIE DARAUS HERGESTELLTE SUBSTANZEN UND ZUSAMMENSETZUNGEN RÉGULATION DE MICRO-ORGANISMES PHYTOPATHOGÈNES PAR PSEUDOMONAS SP. ET DES SUBSTANCES ET DES COMPOSITIONS OBTENUES À PARTIR DE CELLE-CI (84) Designated Contracting States: • O. COUILLEROT ET AL: "Pseudomonas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB fluorescens and closely-related fluorescent GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO pseudomonads as biocontrol agents of PL PT RO RS SE SI SK SM TR soil-borne phytopathogens", LETTERS IN APPLIED MICROBIOLOGY, vol. 48, no. 5, 1 May (30) Priority: 28.02.2012 US 201261604507 P 2009 (2009-05-01), pages 505-512, XP55202836, 30.07.2012 US 201261670624 P ISSN: 0266-8254, DOI: 10.1111/j.1472-765X.2009.02566.x (43) Date of publication of application: • GUANPENG GAO ET AL: "Effect of Biocontrol 07.01.2015 Bulletin 2015/02 Agent Pseudomonas fluorescens 2P24 on Soil Fungal Community in Cucumber Rhizosphere (73) Proprietor: Marrone Bio Innovations, Inc.
    [Show full text]
  • 000468384900002.Pdf
    UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP Versão do arquivo anexado / Version of attached file: Versão do Editor / Published Version Mais informações no site da editora / Further information on publisher's website: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01078/full DOI: 10.3389/fmicb.2019.01078 Direitos autorais / Publisher's copyright statement: ©2019 by Frontiers Research Foundation. All rights reserved. DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br fmicb-10-01078 May 18, 2019 Time: 16:6 # 1 REVIEW published: 21 May 2019 doi: 10.3389/fmicb.2019.01078 Bacteria-Killing Type IV Secretion Systems Germán G. Sgro1†, Gabriel U. Oka1†, Diorge P. Souza1‡, William Cenens1, Ethel Bayer-Santos1‡, Bruno Y. Matsuyama1, Natalia F. Bueno1, Thiago Rodrigo dos Santos1, Cristina E. Alvarez-Martinez2, Roberto K. Salinas1 and Chuck S. Farah1* 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 2 Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Edited by: Campinas, Brazil Ignacio Arechaga, University of Cantabria, Spain Reviewed by: Bacteria have been constantly competing for nutrients and space for billions of years. Elisabeth Grohmann, During this time, they have evolved many different molecular mechanisms by which Beuth Hochschule für Technik Berlin, to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial Germany Xiancai Rao, and eukaryotic cells. These processes often employ large multimeric transmembrane Army Medical University, China nanomachines that have been classified as types I–IX secretion systems.
    [Show full text]
  • Taxonomie Et Classification En Pathovars Des Xanthomonas Associés Aux Anacardiacées Par Une Approche Polyphasique
    UNIVERSITE DE LA REUNION Faculté des Sciences et Technologies UMR 53 : Peuplements Végétaux et Bioagresseurs en Milieu Tropical CIRAD-Université de la Réunion THESE Présentée à l’Université de La Réunion pour obtenir le titre de Docteur en Sciences Formation doctorale : Ecole Doctorale Interdisciplinaire Taxonomie et classification en pathovars des Xanthomonas associés aux Anacardiacées par une approche polyphasique Par Nathalie AH-YOU devant la commission d’examen : W. ACHOUAK Chargée de recherche HDR- CEA Cadarache Rapporteur C. MANCEAU Ingénieur de recherche HDR– INRA, Angers Rapporteur P. BESSE Professeur – Université de la Réunion Examinateur L. GAGNEVIN Chercheur – CIRAD, La Réunion Examinateur P. A. D. GRIMONT Professeur – Institut Pasteur Paris Directeur de Thèse O. PRUVOST Chercheur-HDR – CIRAD, La Réunion Directeur de Thèse Remerciements Ce travail a été financé par le Conseil Régional de La Réunion, le Fonds Social Européen et le CIRAD. Aujourd’hui encore, on m’a dit que si j’en étais à écrire les remerciements, c’est que mon travail de rédaction en est à sa fin. C’est sûrement vrai, mais je serai convaincue que c’est vraiment terminé lorsque ce manuscrit sera entre les mains de qui de droit. Donc tout d’abord, merci à Olivier Pruvost, mon directeur de thèse de m’avoir fait confiance pour ce projet de thèse. Merci d’avoir su m’orienter tout au long de ces années qui n’ont pas toujours été tranquilles. Sans la qualité de ton encadrement scientifique, ta motivation ponctuée de ton humour, ce travail de thèse ne serait pas. Merci à Lionel, tuteur et correcteur au moment où j’écris ces lignes.
    [Show full text]
  • Thesis Vania Passo
    A Thesis Submitted for the Degree of PhD at the University of Warwick Permanent WRAP URL: http://wrap.warwick.ac.uk/90321 Copyright and reuse: This thesis is made available online and is protected by original copyright. Please scroll down to view the document itself. Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page. For more information, please contact the WRAP Team at: [email protected] warwick.ac.uk/lib-publications Molecular genetics of interactions between Xanthomonas campestris pv. raphani and Arabidopsis thaliana Vânia Isabel Horta de Passo Thesis submitted for the degree of Doctor of Philosophy in Plant and Environmental Sciences School of Life Sciences, University of Warwick August 2016 TABLE OF CONTENTS LIST OF FIGURES ................................................................................................. vi LIST OF TABLES ................................................................................................... ix LIST OF ABBREVIATIONS ................................................................................ xii ACKNOWLEDGEMENTS .................................................................................. xiv DECLARATION ................................................................................................... xvi SUMMARY ........................................................................................................... xvii CHAPTER 1. General introduction .......................................................................
    [Show full text]
  • DEEPT Genomics) Reveals Misclassification of Xanthomonas Species Complexes Into Xylella, Stenotrophomonas and Pseudoxanthomonas
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.933507; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep phylo-taxono-genomics (DEEPT genomics) reveals misclassification of Xanthomonas species complexes into Xylella, Stenotrophomonas and Pseudoxanthomonas Kanika Bansal1,^, Sanjeet Kumar1,$,^, Amandeep Kaur1, Shikha Sharma1, Prashant Patil1,#, Prabhu B. Patil1,* 1Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh. $Present address: Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany. #Present address: Department of Microbiology, School of Medicine, University of Washington, Seattle, WA, USA. ^Equal Contribution *Corresponding author Running Title: Comprehensive phylo-taxono-genomics of Xanthomonas and its relatives. Correspondence: Prabhu B. Patil Email: [email protected] Principal Scientist CSIR- Institute of Microbial Technology Sector 39-A, Chandigarh, India- 160036 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.933507; this version posted February 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Genus Xanthomonas encompasses specialized group of phytopathogenic bacteria with genera Xylella, Stenotrophomonas and Pseudoxanthomonas being its closest relatives. While species of genera Xanthomonas and Xylella are known as serious phytopathogens, members of other two genera are found in diverse habitats with metabolic versatility of biotechnological importance. Few species of Stenotrophomonas are multidrug resistant opportunistic nosocomial pathogens. In the present study, we report genomic resource of genus Pseudoxanthomonas and further in-depth comparative studies with publically available genome resources of other three genera.
    [Show full text]
  • 1.3 Xanthomonas Arboricola Pv. Pruni
    UNIVERSITAT POLITÈCNICA DE VALÈNCIA Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural Programa de doctorado en Recursos y Tecnologías Agrícolas INSTITUTO VALENCIANO DE INVESTIGACIONES AGRARIAS Centro de Protección Vegetal y Biotecnología Tesis doctoral Especies de Xanthomonas causantes de enfermedades en frutales de hueso y almendro: diagnóstico, diversidad genética y taxonomía PABLO LÓPEZ SORIANO Directoras: Dra. María Milagros López Dra. Ester Marco Noales Tutor: Dr. Josep Armengol Fortí Valencia, mayo de 2017 I II Dra. María Milagros López González, Profesora de Investigación del Instituto Valenciano de Investigaciones Agrarias, Dra. Ester Marco Noales, colaboradora científica adjunta del Instituto Valenciano de Investigaciones Agrarias y Dr. Josep Armengol Fortí, Catedrático del Departamento de Ecosistemas Agroforestales de la Universitat Politècnica de València CERTIFICAN: Que D. Pablo López Soriano ha realizado bajo su dirección en el Laboratorio de Bacteriología del Centro de Protección Vegetal y Biotecnología del Instituto Valenciano de Investigaciones Agrarias, el trabajo que con el título “Especies de Xanthomonas causantes de enfermedades en frutales de hueso y almendro: diagnóstico, diversidad genética y taxonomía”, presenta para optar al grado de Doctor. Para que así conste a los efectos oportunos, firman el presente certificado en Valencia, a 15 de mayo de 2017. Dra. María M. López González Dra. Ester Marco Noales Dr. Josep Armengol Fortí III IV Agradecimientos En primer lugar, deseo expresar mi agradecimiento a mis dos directoras, por aceptar la dirección de esta tesis y por haberme dado la oportunidad de formar parte del Laboratorio de Bacteriología del IVIA. A María Milagros López, Chiqui, muchas gracias por haber confiado en mí desde el primer momento, por tu gran profesionalidad y enorme dedicación a esta tesis, y por haberme transmitido una pequeña parte de tu amplio conocimiento científico, que ya es mucho.
    [Show full text]
  • 1 a Horizontally Acquired Expansin Gene Increases Virulence of the Emerging Plant
    bioRxiv preprint doi: https://doi.org/10.1101/681643; this version posted July 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 A horizontally acquired expansin gene increases virulence of the emerging plant 2 pathogen Erwinia tracheiphila 3 Jorge Rochaa,b*#, Lori R. Shapiroa,c*, Roberto Koltera 4 5 #Address correspondence to Jorge Rocha, [email protected] 6 a Department of Microbiology, Harvard Medical School, Boston MA. 7 b Present Address: Conacyt-Centro de Investigación y Desarrollo en Agrobiotecnología 8 Alimentaria, San Agustin Tlaxiaca, Mexico 9 c Present Address: Department of Applied Ecology, North Carolina State University, 10 Raleigh, NC 11 12 * JR and LRS contributed equally to this work. 13 Word count: Abstract 219, Main Text (Introduction, Results, Discussion) 4354 14 15 Running title: An expansin increases Erwinia tracheiphila virulence 16 #Address correspondence to Jorge Rocha, [email protected] 17 Keywords: expansin, virulence, glycoside hydrolase, Cucurbita, Erwinia, squash, plant 18 cell wall, cellulose, pectin, horizontal gene transfer, plant pathogen, xylem 19 20 Author Contributions: JR and LRS conceived of the study. JR designed and conducted 21 molecular protocols and lab experiments. LRS conducted computational analyses and 22 performed experiments. JR, LRS and RK interpreted experimental data. JR and LRS 23 wrote the first draft of the manuscript, and JR, LRS and RK added critical revisions. bioRxiv preprint doi: https://doi.org/10.1101/681643; this version posted July 2, 2019.
    [Show full text]
  • Studholme Et Al. Letter to the Editor of Phytopathology 1 Transfer Of
    bioRxiv preprint doi: https://doi.org/10.1101/571166; this version posted March 25, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Studholme et al. Letter to the editor of Phytopathology 1 Transfer of Xanthomonas campestris pv. arecae, and Xanthomonas campestris pv. 2 musacearum to Xanthomonas vasicola (Vauterin) as Xanthomonas vasicola pv. arecae comb. 3 nov., and Xanthomonas vasicola pv. musacearum comb. nov. and description of Xanthomonas 4 vasicola pv. vasculorum pv. nov. 5 Authors 6 David J. Studholme, Emmanuel Wicker, Sadik Muzemil Abrare, Andrew Aspin, Adam 7 Bogdanove, Kirk Broders, Zoe Dubrow, Murray Grant, Jeffrey B. Jones, Georgina Karamura, 8 Jillian Lang, Jan Leach, George Mahuku, Gloria Valentine Nakato, Teresa Coutinho, Julian 9 Smith, Carolee T. Bull 10 11 Corresponding author: David J. Studholme ([email protected]) 12 13 14 Author addresses 15 16 David J. Studholme: Biosciences, University of Exeter, Exeter, United Kingdom 17 Emmanuel Wicker: IPME, Univ Montpellier, CIRAD, IRD, Montpellier, France 18 Sadik Muzemil Abrare: Southern Agricultural Research Institute (SARI), Areka 19 Agricultural Research Center, Areka, Ethiopia 20 Andrew Aspin: Fera Science Ltd. York, UK 21 Adam Bogdanove: Plant Pathology and Plant-Microbe Biology Section, School of Integrative 22 Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA 23 Kirk Broders: Department of Bioagricultural Sciences and Pest Management, Colorado State 24 University 25 Zoe Dubrow: Plant Pathology and Plant-Microbe Biology Section, School of Integrative 26 Plant Science, Cornell University, 334 Plant Science Building, Ithaca, NY 14853, USA 27 Murray Grant: School of Life Sciences, Gibbet Hill, University of Warwick, Coventry, 28 CV4 7AL, UK 29 Jeffrey B.
    [Show full text]