20640Edfcb19c0bfb828686027c
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Host–Pathogen Interactions Between Xanthomonas Fragariae and Its Host Fragaria × Ananassa Investigated with a Dual RNA-Seq Analysis
microorganisms Article Host–Pathogen Interactions between Xanthomonas fragariae and Its Host Fragaria × ananassa Investigated with a Dual RNA-Seq Analysis 1, 2 1 1, Michael Gétaz y, Joanna Puławska , Theo H.M. Smits and Joël F. Pothier * 1 Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), CH-8820 Wädenswil, Switzerland; [email protected] (M.G.); [email protected] (T.H.S.) 2 Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland; [email protected] * Correspondence: [email protected]; Tel.: +41-58-934-53-21 Present address: Illumina Switzerland GmbH, CH-8008 Zurich, Switzerland. y Received: 22 July 2020; Accepted: 14 August 2020; Published: 18 August 2020 Abstract: Strawberry is economically important and widely grown, but susceptible to a large variety of phytopathogenic organisms. Among them, Xanthomonas fragariae is a quarantine bacterial pathogen threatening strawberry productions by causing angular leaf spots. Using whole transcriptome sequencing, the gene expression of both plant and bacteria in planta was analyzed at two time points, 12 and 29 days post inoculation, in order to compare the pathogen and host response between the stages of early visible and of well-developed symptoms. Among 28,588 known genes in strawberry and 4046 known genes in X. fragariae expressed at both time points, a total of 361 plant and 144 bacterial genes were significantly differentially expressed, respectively. The identified higher expressed genes in the plants were pathogen-associated molecular pattern receptors and pathogenesis-related thaumatin encoding genes, whereas the more expressed early genes were related to chloroplast metabolism as well as photosynthesis related coding genes. -
Análise Comparativa E Funcional Do Genoma De Xanthomonas Citri Pv
UNIVERSIDADE FEDERAL RURAL PROGRAMA DE PÓS-GRADUAÇÃO DE PERNAMBUCO EM FITOPATOLOGIA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO Tese de Doutorado Análise comparativa e funcional do genoma de Xanthomonas citri pv. viticola: aplicação sobre virulência, patogenicidade e posicionamento taxonômico Antonio Roberto Gomes de Farias Recife - PE 2020 ANTONIO ROBERTO GOMES DE FARIAS ANÁLISE COMPARATIVA E FUNCIONAL DO GENOMA DE Xanthomonas citri pv. viticola: APLICAÇÃO SOBRE VIRULÊNCIA, PATOGENICIDADE E POSICIONAMENTO TAXONÔMICO Tese apresentada ao Programa de Pós-Graduação em Fitopatologia da Universidade Federal Rural de Pernambuco, como parte dos requisitos para obtenção do título de Doutor em Fitopatologia. COMITÊ DE ORIENTAÇÃO: Orientadora: Profa. Dra. Elineide Brarbosa de Souza Coorientadores: Prof. Dr. Marco Aurélio Siqueira da Gama Prof. Dr. Valdir de Quiroz Balbino RECIFE-PE Agosto - 2020 Dados Internacionais de Catalogação na Publicação Universidade Federal Rural de Pernambuco Sistema Integrado de Bibliotecas Gerada automaticamente, mediante os dados fornecidos pelo(a) autor(a) F224a Farias, Antonio Roberto Gomes de Análise comparativa e funcional do genoma de Xanthomonas citri pv. viticola: aplicação sobre virulência, patogenicidade e posicionamento taxonômico / Antonio Roberto Gomes de Farias. - 2020. 173 f. : il. Orientadora: Elineide Barbosa de Souza. Inclui referências e anexo(s). Tese (Doutorado) - Universidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Fitopatologia, Recife, 2020. 1. Vitis vinifera. 2. cancro bacteriano. 3. caracterização genômica. 4. filogenômica. 5. sistema de secreção. I. Souza, Elineide Barbosa de, orient. II. Título CDD 632 ANÁLISE COMPARATIVA E FUNCIONAL DO GENOMA DE Xanthomonas citri pv. viticola: APLICAÇÃO SOBRE VIRULÊNCIA, PATOGENICIDADE E POSICIONAMENTO TAXONÔMICO ANTONIO ROBERTO GOMES DE FARIAS Tese defendida e aprovada pela Banca Examinadora em: 24/08/2020 ORIENTADORA: ___________________________________________________________ Profa. -
Xanthomonas Albinileans, Express-PRA Forschung Und
Express-PRA for Xanthomonas albilineans – Research and Breeding – Prepared by: Julius Kühn-Institute, Institute for national and international Plant Health; by: Dr. René Glenz, Dr. Anne Wilstermann; on: 19-10-2020 (Translation by Elke Vogt-Arndt) Initiation: Application for an Express-PRA by the Federal State Bavaria resulting from a request for a special authorisation for the movement and use of the organism for research and breeding purposes. Express-PRA Xanthomonas albilineans (Ashby 1929) Dowson 1943 Phytosanitary risk for Germany high medium low Phytosanitary risk for EU high medium low Member States Certainty of the assessment high medium low Conclusion The bacterium Xanthomonas albilineans is endemic to the tropics and subtropics. It causes leaf scald to sugarcane and so far, it is not present in Germany and the EU. So far, the bacterium is not listed, neither in the Annexes of Regulation (EU) 2019/2072 nor by EPPO. Xanthomonas albilineans infects plants of the grass family and is a significant pest on sugarcane. Under certain conditions, relevant damage occurred sporadically on maize, too. Due to inappropriate climatic conditions, it is assumed that X. albilineans cannot establish in the open field in Germany. The establishment in southern European EU Member States is not expected. However, there is a lack of sufficient data to completely rule out the possibility of the establishment of the bacterium. Due to its presumably low damage potential to maize, X. albilineans poses a low phytosanitary risk for Germany and other EU-Member States. Thus, Xanthomonas albilineans is not classified as a quarantine pest and Article 29 of Regulation (EU) 2016/2031 does not apply. -
Fitness, Molecular Characterization and Management of Bacterial Leaf Spot in Tomatoes
FITNESS, MOLECULAR CHARACTERIZATION AND MANAGEMENT OF BACTERIAL LEAF SPOT IN TOMATOES By PETER ABRAHAMIAN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Peter Abrahamian ACKNOWLEDGEMENTS I would like to thank my major advisor Dr. Gary Vallad for his extensive guidance, advising and help throughout my PhD studies. Dr. Vallad was always encouraging and supportive of pursuing new ideas. I also enjoyed all the times we discusses science. You are an awesome advisor! I also thank Dr. Jeffrey Jones my co-advisor for his extensive support, help and openness throughout my studies. I want to thank my committee members Drs. Erica Goss, Mathews Paret and Samuel Hutton for their constructive and insightful comments for improving the quality of my research. I would like to thank all the members of the Vallad Lab at GCREC. Thank you Ai-vy Riniker for being there for me when I first started working at Dr. Vallad’s lab. I also thank Rebecca Willis, Scott Hughes and Steve Kalb for their excellent technical help in securing, maintaining and harvesting tomato plants throughout the work conducted at GCREC. I also thank Dr. Aimen Wen, Heather Adkison and Late Wilson and my colleagues, Tyler Jacoby, Caroline Land, and Andy Shirley, for all the fun times and stimulating talks at the lab. Special thanks to Sujan Timilsina for all helping me with the bioinformatics work and to Sushmita KC for helping in collecting and processing samples in the field and greenhouse experiments. -
Genome Mining Reveals the Genus Xanthomonas to Be A
Royer et al. BMC Genomics 2013, 14:658 http://www.biomedcentral.com/1471-2164/14/658 RESEARCH ARTICLE Open Access Genome mining reveals the genus Xanthomonas to be a promising reservoir for new bioactive non-ribosomally synthesized peptides Monique Royer1, Ralf Koebnik2, Mélanie Marguerettaz1, Valérie Barbe3, Guillaume P Robin2, Chrystelle Brin4, Sébastien Carrere5, Camila Gomez1, Manuela Hügelland6, Ginka H Völler6, Julie Noëll1, Isabelle Pieretti1, Saskia Rausch6, Valérie Verdier2, Stéphane Poussier7, Philippe Rott1, Roderich D Süssmuth6 and Stéphane Cociancich1* Abstract Background: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. Results: We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. -
Open Capasso2016dissf.Pdf
The Pennsylvania State University The Graduate School College of Agricultural Sciences ANTIBIOTIC RESISTANCE IN PENNSYLVANIA STONE FRUIT ORCHARDS A Dissertation in Plant Pathology by Sarah J. Capasso © 2016 Sarah J. Capasso Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2016 ii The dissertation of Sarah Capasso was reviewed and approved* by the following: María del Mar Jiménez Gasco Associate Professor of Plant Pathology Dissertation Advisor Chair of Committee Beth K. Gugino Associate Professor of Vegetable Pathology Gary W. Moorman Professor Emeritus of Plant Pathology Kari A. Peter Assistant Professor of Tree Fruit Pathology Mary Ann Victoria Bruns Associate Professor of Soil Science/Microbial Ecology Carolee T. Bull Professor of Plant Pathology and Systematic Bacteriology Head of the Department of Plant Pathology and Environmental Microbiology *Signatures are on file in the Graduate School iii ABSTRACT Bacterial spot (caused by Xanthomonas arboricola pv. pruni) is the most important bacterial disease of peach and nectarine in the eastern United States. The antibiotic oxytetracycline is used to mitigate the yield limiting symptoms of this disease. Despite that, yield loss remains high in susceptible stone fruit cultivars, raising concern among growers over the development of antibiotic resistance in the causal pathogen. Previous surveys of the stone fruit orchard bacterial community indicated the presence of oxytetracycline resistant epiphytic bacteria. This was significant because epiphytic or nontarget bacteria are thought to harbor more resistance genes and often before coexisting pathogens. Under a strong selection pressure such as repeated antibiotic applications, transfer of resistance genes from epiphytic bacteria to pathogenic bacteria is favored. -
For Publication European and Mediterranean Plant Protection Organization PM 7/24(3)
For publication European and Mediterranean Plant Protection Organization PM 7/24(3) Organisation Européenne et Méditerranéenne pour la Protection des Plantes 18-23616 (17-23373,17- 23279, 17- 23240) Diagnostics Diagnostic PM 7/24 (3) Xylella fastidiosa Specific scope This Standard describes a diagnostic protocol for Xylella fastidiosa. 1 It should be used in conjunction with PM 7/76 Use of EPPO diagnostic protocols. Specific approval and amendment First approved in 2004-09. Revised in 2016-09 and 2018-XX.2 1 Introduction Xylella fastidiosa causes many important plant diseases such as Pierce's disease of grapevine, phony peach disease, plum leaf scald and citrus variegated chlorosis disease, olive scorch disease, as well as leaf scorch on almond and on shade trees in urban landscapes, e.g. Ulmus sp. (elm), Quercus sp. (oak), Platanus sycamore (American sycamore), Morus sp. (mulberry) and Acer sp. (maple). Based on current knowledge, X. fastidiosa occurs primarily on the American continent (Almeida & Nunney, 2015). A distant relative found in Taiwan on Nashi pears (Leu & Su, 1993) is another species named X. taiwanensis (Su et al., 2016). However, X. fastidiosa was also confirmed on grapevine in Taiwan (Su et al., 2014). The presence of X. fastidiosa on almond and grapevine in Iran (Amanifar et al., 2014) was reported (based on isolation and pathogenicity tests, but so far strain(s) are not available). The reports from Turkey (Guldur et al., 2005; EPPO, 2014), Lebanon (Temsah et al., 2015; Habib et al., 2016) and Kosovo (Berisha et al., 1998; EPPO, 1998) are unconfirmed and are considered invalid. Since 2012, different European countries have reported interception of infected coffee plants from Latin America (Mexico, Ecuador, Costa Rica and Honduras) (Legendre et al., 2014; Bergsma-Vlami et al., 2015; Jacques et al., 2016). -
<I>Xanthomonas Fragariae</I>
ISPM 27 27 ANNEX 14 ENG DP 14: Xanthomonas fragariae INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in August 2016. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 14: Xanthomonas fragariae Adopted 2016; published 2017 CONTENTS 1. Pest Information ......................................................................................................................... 3 2. Taxonomic Information .............................................................................................................. 3 3. Detection ..................................................................................................................................... 3 3.1 Symptoms .................................................................................................................... 4 3.2 Sampling ..................................................................................................................... 5 3.3 Sample preparation ...................................................................................................... 5 3.4 Rapid screening tests ................................................................................................... 5 3.5 Isolation ...................................................................................................................... -
As X. Vasicola Pv. Arecae Comb
ORE Open Research Exeter TITLE Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and Description of X. vasicola pv. vasculorum pv. nov. AUTHORS Studholme, DJ; Wicker, E; Abrare, SM; et al. JOURNAL Phytopathology DEPOSITED IN ORE 24 January 2020 This version available at http://hdl.handle.net/10871/40555 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Phytopathology • XXXX • XXX:X-X • https://doi.org/10.1094/PHYTO-03-19-0098-LE Letters to the Editor Transfer of Xanthomonas campestris pv. arecae and X. campestris pv. musacearum to X. vasicola (Vauterin) as X. vasicola pv. arecae comb. nov. and X. vasicola pv. musacearum comb. nov. and Description of X. vasicola pv. vasculorum pv. nov. David J. Studholme,1,† Emmanuel Wicker,2 Sadik Muzemil Abrare,3 Andrew Aspin,4 Adam Bogdanove,5 Kirk Broders,6 Zoe Dubrow,5 Murray Grant,7 Jeffrey B. Jones,8 Georgina Karamura,9 Jillian Lang,10 Jan Leach,10 George Mahuku,11 Gloria Valentine Nakato,12 Teresa Coutinho,13 Julian Smith,4 and Carolee T. Bull14 1 Biosciences, University of Exeter, Exeter, U.K. 2 IPME, University of Montpellier, CIRAD, IRD, Montpellier, France 3 Southern Agricultural Research Institute (SARI), Areka Agricultural Research Center, Areka, Ethiopia 4 Fera Science Ltd., York, U.K. -
Identification and Analysis of Seven Effector Protein Families with Different Adaptive and Evolutionary Histories in Plant-Associated Members of the Xanthomonadaceae
UC Davis UC Davis Previously Published Works Title Identification and analysis of seven effector protein families with different adaptive and evolutionary histories in plant-associated members of the Xanthomonadaceae. Permalink https://escholarship.org/uc/item/1t8016h3 Journal Scientific reports, 7(1) ISSN 2045-2322 Authors Assis, Renata de AB Polloni, Lorraine Cristina Patané, José SL et al. Publication Date 2017-11-23 DOI 10.1038/s41598-017-16325-1 Peer reviewed eScholarship.org Powered by the California Digital Library University of California www.nature.com/scientificreports OPEN Identifcation and analysis of seven efector protein families with diferent adaptive and Received: 8 August 2017 Accepted: 9 November 2017 evolutionary histories in plant- Published: xx xx xxxx associated members of the Xanthomonadaceae Renata de A. B. Assis 1, Lorraine Cristina Polloni2, José S. L. Patané3, Shalabh Thakur4, Érica B. Felestrino1, Julio Diaz-Caballero4, Luciano Antonio Digiampietri 5, Luiz Ricardo Goulart2, Nalvo F. Almeida 6, Rafael Nascimento2, Abhaya M. Dandekar7, Paulo A. Zaini2,7, João C. Setubal3, David S. Guttman 4,8 & Leandro Marcio Moreira1,9 The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect diferent hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identifed seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. -
Genome Sequencing of Xanthomonas Vasicola Pathovar Vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharid
Pathogens 2014, 3, 211-237; doi:10.3390/pathogens3010211 OPEN ACCESS pathogens ISSN 2076-0817 www.mdpi.com/journal/pathogens Article Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors Arthur Wasukira 1,2, Max Coulter 1, Noorah Al-Sowayeh 1, Richard Thwaites 3, Konrad Paszkiewicz 1, Jerome Kubiriba 2, Julian Smith 3, Murray Grant 1 and David J. Studholme 1,* 1 Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK; E-Mails: [email protected] (A.W.); [email protected] (M.C.); [email protected] (N.A.-S.); [email protected] (K.P.); [email protected] (M.G.) 2 National Crops Resources Research Institute (NaCRRI), Kampala 7084, Uganda; E-Mail: [email protected] 3 The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK; E-Mails: [email protected] (R.T.); [email protected] (J.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-(0)-1392-72-4678. Received: 13 December 2013; in revised form: 10 February 2014 / Accepted: 3 March 2014 / Published: 18 March 2014 Abstract: Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. -
Bacteria-Killing Type IV Secretion Systems
fmicb-10-01078 May 18, 2019 Time: 16:6 # 1 REVIEW published: 21 May 2019 doi: 10.3389/fmicb.2019.01078 Bacteria-Killing Type IV Secretion Systems Germán G. Sgro1†, Gabriel U. Oka1†, Diorge P. Souza1‡, William Cenens1, Ethel Bayer-Santos1‡, Bruno Y. Matsuyama1, Natalia F. Bueno1, Thiago Rodrigo dos Santos1, Cristina E. Alvarez-Martinez2, Roberto K. Salinas1 and Chuck S. Farah1* 1 Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil, 2 Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, University of Campinas (UNICAMP), Edited by: Campinas, Brazil Ignacio Arechaga, University of Cantabria, Spain Reviewed by: Bacteria have been constantly competing for nutrients and space for billions of years. Elisabeth Grohmann, During this time, they have evolved many different molecular mechanisms by which Beuth Hochschule für Technik Berlin, to secrete proteinaceous effectors in order to manipulate and often kill rival bacterial Germany Xiancai Rao, and eukaryotic cells. These processes often employ large multimeric transmembrane Army Medical University, China nanomachines that have been classified as types I–IX secretion systems. One of the *Correspondence: most evolutionarily versatile are the Type IV secretion systems (T4SSs), which have Chuck S. Farah [email protected] been shown to be able to secrete macromolecules directly into both eukaryotic and †These authors have contributed prokaryotic cells. Until recently, examples of T4SS-mediated macromolecule transfer equally to this work from one bacterium to another was restricted to protein-DNA complexes during ‡ Present address: bacterial conjugation. This view changed when it was shown by our group that many Diorge P.