Computations and Circle Diagrams 1315 Φ B0 of the Exciting Circuit Are Assumed Constant, Then I0 and 0 Are Also Constant

Total Page:16

File Type:pdf, Size:1020Kb

Computations and Circle Diagrams 1315 Φ B0 of the Exciting Circuit Are Assumed Constant, Then I0 and 0 Are Also Constant CHAPTER35 Learning Objectives ➣ General ➣ Circle Diagram for a Series COMPUTATIONS Circuit ➣ Circle Diagram of the Approximate Equivalent AND CIRCLE Circle ➣ Determination of G0 and B0 ➣ No-load Test ➣ Blocked Rotor Test DIAGRAMS ➣ Construction of the Circle Diagram ➣ Maximum Quantities ➣ Starting of Induction Motors ➣ Direct-Switching or Line Starting of Induction Motors ➣ Squirrel-cage Motors ➣ Starting of Slip-ring Motors ➣ Starter Steps ➣ Crawling ➣ Cogging or Magnetic Locking ➣ Double Sqiurrel-cage Motor ➣ Equivalent circuit ➣ Speed Control of Induction Motor ➣ Three-Phase A.C. Commutator Motors ➣ Schrage Motor ➣ Motor Enclosures ➣ Standard type of Squirrel- cage Motors ➣ Class A Motors ➣ Class B Motors This chapter explains you how to derive ➣ Ç Class C Motors performance characteristics of induction ➣ Class D Motors motors using circular diagrams ➣ Class E Motors ➣ Class F Motors ➣ Questions and Answer on Induction Motors 1314 Electrical Technology 35.1. General In this chapter, it will be shown that the performance characteristics of an induction motor are derivable from a circular locus. The data necessary to draw the circle diagram may be found from no- load and blocked-rotor tests, corresponding to the open-circuit and short-circuit tests of a transformer. The stator and rotor Cu losses can be separated by drawing a torque line. The parameters of the motor, in the equivalent circuit, can be found from the above tests, as shown below. 35.2. Circle Diagram for a Series Circuit It will be shown that the end of the current vector for a series circuit with constant reactance and voltage, but with a variable resistance is a circle. With reference to Fig. 35.1, it is clear that VV I = = I X R Z ()RX22+ VXV×=φsin = ZX XX()RX22+ V X ∵ sin φ = – Fig. 35.2 f ()RX22+ R ∴ I =(V/X) sin φ Fig. 35.1 Fig. 35.2 It is the equation of a circle in polar co- ordinates, with diameter equal to V/X. Such a circle is drawn in Fig. 35.3, using the magnitude of the current and power factor angle φ as polar co-ordinates of the point A. In other words, as resistance R φ Y is varied (which means, in fact, is changed), the Y end of the current vector lies on a circle with diameter equal to V/X. For a lagging current, it is usual to orientate the circle of Fig. 35.3 (a) such that its diameter is horizontal and the voltage vector V C A X takes a vertical position, as shown in Fig. 35.3 (b). f I I C f O There is no difference between the two so far as X O X V the magnitude and phase relationships are X concerned. 35.3. Circle Diagram for the Approxi- ()a ()b Fig. 35.3 mate Equivalent Circuit The approximate equivalent diagram is redrawn in Fig. 35.4. It is clear that the circuit to the right of points ab is similar to a series circuit, having a constant voltage V 1 and reactance X 01 but variable resistance (corresponding to different values of slip s). ′ Hence, the end of current vector for I2 will lie on a circle with a diameter of V/X 01. In Fig. 35.5, I ′ is the rotor current referred to stator, I 2 0 XXX¢ is no-load current (or exciting current) and I 01=+ 1 2 RRR¢ aa1 01=+ 1 2 I is the total stator current and is the 1 I¢ ′ I 2 vector sum of the first two. When I2 is 0 φ lagging and 2 = 90º, then the position of ′ V G B vector for I2 will be along OC i.e. at right r 0 0 angles to the voltage vector OE. For any RR¢¢= 1 _ φ L2(S 1 ( other value of 2, point A will move along b the circle shown dotted. The exciting current I0 is drawn lagging V by an angle φ Fig. 35.4 0. If conductance G0 and susceptance Computations and Circle Diagrams 1315 φ B0 of the exciting circuit are assumed constant, then I0 and 0 are also constant. The end of current vector for I1 is also seen to lie on another circle which is displaced from the dotted circle by an amount I0. Its diameter is still V/X 01 and is parallel to the horizontal axis OC. Hence, we find that if an induction motor is tested at various loads, the locus of the end of the vector for the current (drawn by it) is a circle. E 35.4. Determination of G0 and B0 If the total leakage reactance X 01 of the motor, exciting conductance G and exciting 0 V susceptance B are found, then the position 0 B of the circle O′BC′ is determined uniquely. A ¢ One method of finding G and B consists in I 2 0 0 f running the motor synchronously so that slip 2 f I1 ¢ 1 O ¢ s = 0. In practice, it is impossible for an f C 0 V/X induction motor to run at synchronous speed, I0 01 due to the inevitable presence of friction and O V/X C windage losses. However, the induction 01 motor may be run at synchronous speed by Fig. 35.5 I X R another machine which supplies the friction and windage losses. In that case, the circuit to the right of points ab ∞ behaves like an open circuit, because with s = 0, RL = (Fig. 35.6). Hence, the current drawn by the motor is I ZX 0 V only. Let V = applied voltage/phase; I0 = motor current / f phase W = wattmeter reading i.e. input in watt ; Y 0 = R exciting admittance of the motor. Then, for a 3-phase Fig. 35.6 induction motor 2 W W = 3G0V or G0 = Also, I0 = VY0 or Y 0 = I0/V 3V 2 22−= 22 − B0 = ()[(/)]YG00 IVG 0 0 Hence, G0 and B0 can be found. 35.5. No-load Test In practice, it is neither necessary nor feasible to run the induction motor synchronously for getting G0 and B0. Instead, the motor is run without any external mechanical load on it. The speed of the rotor would not be synchronous, but very much near to it ; so that, for all practical purposes, the speed may be assumed synchronous. The no load test is carried out with different values of applied voltage, below and above the value of normal voltage. The power input is measured by two wattmeters, Fig. 35.7 Fig. 35.8 1316 Electrical Technology I0 by an ammeter and V by a voltmeter, which are included in the circuit of Fig. 35.7. As motor is running on light load, the p.f. would be low i.e. less than 0.5, hence total power input will be the difference of the two wattmeter readings W 1 and W 2. The readings of the total power input W 0 , I0 and voltage V are plotted as in Fig. 35.8. If we extend the curve for W 0, it cuts the vertical axis at point A. OA represents losses due to friction and windage. If we subtract loss corresponding to OA from W 0, then we get the no-load electrical and magnetic losses in the machine, because the no-load input W 0 to the motor consists of 2 2 (i) small stator Cu loss 3 I0 R1 (ii) stator core loss W CL = 3G0 V (iii) loss due to friction and windage. The losses (ii) and (iii) are collectively known as fixed losses, because they are independent of load. OB represents normal voltage. Hence, losses at normal voltage can be found by drawing a vertical line from B. BD = loss due to friction and windage DE = stator Cu loss EF = core loss Hence, knowing the core loss W CL, G0 and B0 can be found, as discussed in Art. 35.4. φ φ Additionally, 0 can also be found from the relation W 0 = 3 V L I0 cos 0 W ∴ φ 0 cos 0 = where V L = line voltage and W 0 is no-load stator input. 3 VIL 0 Example 35.1. In a no-load test, an induction motor took 10 A and 450 watts with a line voltage of 110 V. If stator resistance/phase is 0.05 Ω and friction and windage losses amount to 135 watts, calculate the exciting conductance and susceptance/phase. 2 × 2 × Solution. stator Cu loss = 3 I0 R1 = 3 10 0.05 = 15 W ∴ stator core loss = 450 − 135 − 15 = 300 W 2 Voltage/phase V = 110/ 3 V ; Core loss = 3 G0 V × 2 300 300 = 3 G0 (110/ 3 ) ; G0 = 3× (110/ 3)2 = 0.025 siemens/phase × Y0 = I0 / V = (10 3 )/110 = 0.158 siemens/ phase 22−= 2 − 2 B0 = (YG00 ) (0.158 0.025 ) = 0.156 siemens/phase. 35.6. Blocked Rotor Test It is also known as locked-rotor or short-circuit test. This test is used to find– 1. short-circuit current with normal voltage applied to sta- tor 2. power factor on short-circuit Both the values are used in the construction of circle dia- gram This vertical test stand is capable of absorbing up to 10,000 N-m of 3. total leakage reactance X 01 of the motor as referred to pri- torque at continuous load rating mary (i.e. stator) (max 150.0 hp at 1800 rpm). It helps 4. total resistance of the motor R as referred to primary. to develop speed torque curves and 01 performs locked rotor testing In this test, the rotor is locked (or allowed very slow rotation) Computations and Circle Diagrams 1317 and the rotor windings are short-circuited at slip-rings, if the motor has a wound rotor.
Recommended publications
  • Income? Bisone
    INCOME? BISONE ED 179 392 SP 029 296 $ AUTHOR Hamilton, Howard B. TITLE Problem Manual for Power Processiug, Tart 1. Electric Machinery Analysis. ) ,INSTITUTION Pittsbutgh Univ., VA. 51'014 AGENCY National Science Foundation, Weeshingtcni D.C. PUB DATE -70 GRANT NSF-GY-4138 NOTE 40p.; For_related documents', see SE 029 295-298 EDRS PRICE MF01/BCO2 Plus Postage. DESCRIPTORS *College Science: Curriculum Develoimeft: Electricity: Electromechanical lacshnology;- Electfonics: *Engineering Educatiob: Higher Education: Instructional Materials: *Problem Solving; Science CourAes:,'Science Curriculum: Science . Eductttion; *Science Materials: Scientific Concepts AOSTRACT This publication was developed as aPortion/ofa . two-semester se4uence commencing t either the-sixth cr seVenth.term of the undergraduate program in electrical engineering at the University of Pittsburgh. The materials of tfie two courses, produced by' National Science Foundation grant, are concernedwitli power con ion systems comprising power electronic devices, electromechanical energy converters, and,associnted logic configurations necessary to cause the systlp to behave in a, prescrib,ed fashion. The erphasis in this portion of the'two course E` sequende (Part 1)is on electric machinery analysis.. 7his publication is-the problem manual for Part 1, which provide's problems included in 4, the first course. (HM) 4 Reproductions supplied by EDPS are the best that can be made from the original document. * **************************v******************************************** 2
    [Show full text]
  • Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical
    Sri Venkateswara College of Engineering and Technology Department of Electrical & Electronics Engineering EE 6504-Electrical Machines-II UNIT-I 1. Why a 3-phase synchronous motor will always run at synchronous speed? Because of the magnetic coupling between the stator poles and rotor poles the motor runs exactly at synchronous speed. 2. What are the two classification synchronous machines? The classification synchronous machines are: i. Cylindrical rotor type ii. Salient pole rotor type 3. What are the essential features of synchronous machine? i. The rotor speed is synchronous with stator rotating field. ii. Varying its field current can easily vary the speed. iii. It is used for constant speed operation. 4. Mention the methods of starting of 3-phase synchronous motor. a. A D.C motor coupled to the synchronous motor shaft. b. A small induction motor coupled to its shaft.(pony method) c. Using damper windings –started as a squirrel cage induction motor. 5. What are the principal advantages of rotating field system type of construction of synchronous machines? · Form Stationary connection between external circuit and system of conditions enable the machine to handle large amount of volt-ampere as high as 500 MVA. · The relatively small amount of power required for field system can be easily supplied to the rotating field system via slip rings and brushes. · More space is available in the stator part of the machine for providing more insulation to the system of conductors. · Insulation to stationary system of conductors is not subjected to mechanical stresses due to centrifugal action. · Stationary system of conductors can easily be braced to prevent deformation.
    [Show full text]
  • Diploma in Electrical and Electronics Engineering PAGE 1
    ` DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING COURSES OFFERED CODE COURSE CREDITS YEAR/SEMESTER 15O A) FOUNDATION COURSES : (49 CREDITS) (COMMON FOR ALL PROGRAMMES) 0101 Communicative English – I 5 I/ODD 0102 Engineering Mathematics-I 8 I/ODD 0103 Engineering Physics – I 5 I/ODD 0104 Engineering Chemistry – I 5 I/ODD 0105 Engineering Physics- I Practical 1 I/ODD 0106 Engineering Chemistry – I Practical 1 I/ODD 0107 Communicative English – II 4 I/EVEN 0108 Engineering Mathematics-II 5 I/EVEN 0109 Applied Mathematics 5 I/EVEN 0110 Engineering Physics – II 4 I/EVEN 0111 Engineering Chemistry – II 4 I/EVEN 0112 Engineering Physics – II Practical 1 I/EVEN 0113 Engineering Chemistry – II Practical 1 I/EVEN B) CORE TECHNOLOGY COURSES : ( 43 CREDITS) 0201A Workshop Practical 1 I/ODD 0202 Engineering Graphics-I 3 I/ODD 0203 Engineering Graphics-II 3 I/EVEN 0204 Computer Applications Practical – I 1 I/ODD 0205 Computer Applications Practical – II 1 I/EVEN 3201 Electrical Circuit Theory 6 II/ODD 3202 Electrical Machines - I 5 II/ODD 3203 Electronic Devices and Circuits 5 II/ODD 3204 Electrical Circuits and Machines Practical 3 II/ODD 3205 Electronic Devices and Circuits Practical 3 II/ODD 3206 Electrical Workshop Practical 2 II/ODD 3207 Life and Employability Skills Practical 2 II/ODD 3208 Digital Electronics 5 II/EVEN 3209 Integrated CircuitsPractical 3 II/EVEN Diploma in Electrical and Electronics Engineering PAGE 1 ` C) APPLIED TECHNOLOGY COURSES: (58 CREDITS) 3301 Electrical Machines – II 5 II/EVEN 3302 Measurements and Instruments 4 II/EVEN
    [Show full text]
  • Electricity Today Issue 4 Volume 17, 2005
    ET_4_2005 6/3/05 10:41 AM Page 1 A look at the upcoming PES IEEE General Meeting see page 5 ISSUE 4 Volume 17, 2005 INFORMATION TECHNOLOGIES: Protection & Performance and Transformer Maintenance PUBLICATION MAIL AGREEMENT # 40051146 Electrical Buyer’s Guides, Forums, On-Line Magazines, Industry News, Job Postings, www.electricityforum.com Electrical Store, Industry Links ET_4_2005 6/3/05 10:41 AM Page 2 CONNECTINGCONNECTING ...PROTECTING...PROTECTING ® ® ® HTJC, Hi-Temperature Joint Compound With a unique synthetic compound for "gritted" and "non-gritted" specifications, the HTJC high temperature "AA" Oxidation Inhibitor improves thermal and electrical junction performance for all connections: • Compression Lugs and Splices for Distribution and Transmission • Tees, Taps and Stirrups on any conductor • Pad to Pad Underground, Substation and Overhead connections For oxidation protection of ACSS class and other connector surfaces in any environment (-40 oC to +250 oC), visit the Anderson ® / Fargo ® connectors catalogue section of our website www.HubbellPowerSystems.ca Anderson® and Fargo® offer the widest selection of high performance inhibitor compounds: Hubbell Canada LP, Power Systems TM ® ® 870 Brock Road South Inhibox , Fargolene , Versa-Seal Pickering, ON L1W 1Z8 Phone (905) 839-1138 • Fax: (905) 831-6353 www.HubbellPowerSystems.ca POWER SYSTEMS ET_4_2005 6/3/05 10:41 AM Page 3 in this issue Publisher/Executive Editor Randolph W. Hurst [email protected] SPECIAL PREVIEW Associate Publisher/Advertising Sales 5 IEEE PES General Meeting has
    [Show full text]
  • Synchro Transmitter and Receiver Experiment Theory Pdf
    Synchro Transmitter And Receiver Experiment Theory Pdf Smoky Jeth immingle, his mirador troop pulverize rumblingly. Henry usually wimbled gradationally or precook unlimitedly when bruising Tabbie nicher thereabouts and plumb. Epigenetic and verbatim Normie attend her Villeneuve communicators fet and chancing lopsidedly. Military standard synchro system connected turns the outputstage and stators are indebted to determine the study unit and may even further isolate the receiver synchro and one must begin the The specific screens are synchro transmitter, its rotor shaft angle can share, some form factor does the ship. The ladder logic was implemented in SIMANTIC manager. These brushes provide continuous electrical contact to the rotor during its rotation. The receiver receives its own weight, which is very large number of using it. Synchro transmitter receives only by experiments. You do not energized and is stored in synchro transmitter and receiver experiment theory pdf powered down eg volts to differentials and indicate? Propagation theory detailed mathematical formulations or involved instrumentation. Approximate infinite geometry for most experiments the theory must be recast for the. How to overcome its drawback of AC servo motor? Improper wiring to study of its reference position heavy loads on a concentrated winding is, operations relative to antennas eachdriven by using a computer. In this experiment the values of and old be intelligent along-with. This mode of events causes the transmitter and receiver to oblige in correspondence. The domain theory of magnetism also Tlains how a magnet can attr. A theoretical overall architecture of an NPP I C system in accordance with crowd control. This chapter discusses plasma waves and echoes.
    [Show full text]
  • Three-Phase Induction Motor
    Three-Phase Induction Motor EXPERIMENT Induction motor Three-Phase Induction Motors 208VLL OBJECTIVE This experiment demonstrates the performance of squirrel-cage induction motors and the method for deriving electrical equivalent circuits from test data. REFERENCES 1. “Electric Machinery”, Fitzgerald, Kingsley, and Umans, McGraw-Hill Book Company, 1983, Chapter 9. 2. “Electric Machinery and Transformers”, Kosow, Irving L., Prentice-Hall, Inc., 1972. 3. “Electromechanical Energy Conversion”, Brown, David, and Hamilton, E. P., MacMillan Publishing Company, 1984. 4. “Electromechanics and Electric Machines”, Nasar, S. A., and Unnewehr, L. E., John Wiley and Sons, 1979. BACKGROUND INFORMATION The three-phase squirrel-cage induction motor can, and many times does, have the same armature (stator) winding as the three-phase synchronous motor. As in the synchronous motor, applying three-phase currents to the armature creates a synchronously-rotating magnetic field. The induction motor rotor is a completely short-circuited conductive cage. Figures 1 and 2 illustrate the rotor construction. Revised: April 11, 2013 1 of 10 Three-Phase Induction Motor Figure 1: Induction machine construction. Figure 2: Squirrel-case rotor. Revised: April 11, 2013 2 of 10 Three-Phase Induction Motor The rotor receives its excitation by induction from the armature field. Hence, the induction machine is a doubly-excited machine in the same sense as the synchronous and DC machines. The basic principle of operation is described by Faraday’s Law. If we assume that the machine rotor is at a standstill and the armature is excited, then the armature-produced rotating field is moving with respect to the rotor. In fact, the relative speed between the rotating field and the rotor is synchronous speed.
    [Show full text]
  • Birmingham Local Section
    264 MORRIS AND LISTER: THE TESTING OF [Birmingham, BIRMINGHAM LOCAL SECTION. THE TESTING OF TRANSFORMERS AND TRANSFORMER IRON. By D. K. MORRIS, Ph.D., and G. A. LISTER, Associate Members. (Paper read on April 25, 1906.) SYNOPSIS.—1. Introduction. 2. Regulation diagram. 3. Diagram of voltage charac- teristic. 4. The short-circuit test. 5. Proposed standard transformer test. 6. The 3-point wattmeter method. 7. Standard tests for—(a) core losses: separation by constant-frequency test ; (6) copper losses; (c) efficiency; (d) heating ; (e) regulation. 8. The auxiliary transformer. 9. Special tests— (a) by means of extra turns ; (b) at half power factor; (c) out-of-phase test; (<i) 3-phase transformers. 10. Hysteresis by slow cyclic change—(a) method of constant induced voltage ; (b) theory; (c) application to testing of small samples. 11. Conclusion. APPENDIX.—The 3-point method. Temperature by the wattmeter. Improvements in the constant induced voltage method. Separation of hysteresis from eddy- current loss. 1. INTRODUCTION. In the testing of transformers the principal- qualities which may have to be investigated are :— (a)' Core losses. (b) Copper losses at all loads. (c) Efficiency at light loads as well as full load. (d) Heating at full load. (e) Regulation on all loads and power factors. (/) Insulation (not dealt with in the paper). The designer and manufacturer of the transformers may also require to know the extent to which the core loss is caused by hysteresis or eddy currents. In addition, it would be useful to deter- mine the excellence of the built-up magnetic circuit, having reference to the permeability of the iron and the low magnetic resistance of the joints.
    [Show full text]
  • The Analysis, Simulation, and Implementation of Control Strategies
    Purdue University Purdue e-Pubs ECE Technical Reports Electrical and Computer Engineering 4-1-1996 THE ANALYSIS, SIMULATION, AND IMPLEMENTATION OF CONTROL STRATEGIES FOR A PULSEWIDTH MODULATED INDUCTION MOTOR DRIVE Scott .D Roller Purdue University School of Electrical and Computer Engineering Chee Mun Ong Purdue University School of Electrical and Computer Engineering Follow this and additional works at: http://docs.lib.purdue.edu/ecetr Part of the Electrical and Computer Engineering Commons Roller, Scott .D and Ong, Chee Mun, "THE ANALYSIS, SIMULATION, AND IMPLEMENTATION OF CONTROL STRATEGIES FOR A PULSEWIDTH MODULATED INDUCTION MOTOR DRIVE" (1996). ECE Technical Reports. Paper 101. http://docs.lib.purdue.edu/ecetr/101 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. THEA NALYSIS, SIMULATION, AND IMPLEMENTATION OF CONTROL STRATEGIES FOR A PULSEWIDTH MOD~~LATEDINDUCTION MOTOR DRIVE TR-ECE 96-7 APRIL1996 THE ANALYSIS. SIMULATION AND IMPLEMENTATION OF CONTROL STRATEGIES FOR A PULSEWIDTH MODCTLATED INDUCTION MOTOR DRIVE by Scott D. Roller Professor Chee-Mun Ong Purdue Electric Power Center School of Electrical Engineering Purdue University 1285 Electrical Engineering Building West Lafayette, IN 47907- 1285 May 1996 TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................... v .. LIST OF FIGURES ..........................................................................................
    [Show full text]
  • SCHEME of EXAMINATION for B.TECH DEGREE Ist Semester Examination (Common to All Branches)
    ANNEXURE - SCHEME 1 SCHEME OF EXAMINATION FOR B.TECH DEGREE Ist Semester Examination (Common to all Branches) Course Subject Teaching Schedule Examination Schedule Total Duration No L T P/D Total Theory Sessional Practical/ of Exam. Viva HUT-102 English Language Or MET-102 Manufacturing Process HUT-104 Engineering Economics Or ECT-103 Basic Electronics Engineering MAT-103 Mathematics-I PHT-104 Physics-I CHT-104 Chemistry-I ELT-105 Basic Electrical Engineering 2 2/2 3 50 50 100 3 OR COT-102 Computer Engineering CET-102 Engineering Graphics-I PHT-105 Physics-I Practical CHT-103 Chemistry-I Practical ECT-105 Basic Electronics Engineering- Practical ELT-107 Basic Electrical Engineering Practical - - 3 3 60 40 100 3 OR COT-105 Computer Lab.* MET-103 Workshop Practical-I *All Engineering Departments will share in teaching & Exams. HUT-102 and HUT-104 will be offered to first half of the students strength, and MET –102 and ECT-103 will be offered to second half of the students strength. Similar Procedure for (ELT-102,ELT-104) and (COT-103,COT-105) will be adopted 2 SCHEME OF EXAMINATION FOR B.TECH DEGREE 2nd Semester Examination (Common to all Branches) Course Subject Teaching Schedule Examination Schedule Total Duration No L T P/D Total Theory Sessional Practical/ of Exam. Viva MET-102Manufacturing Process Or HUT-102 English Language ECT-103 Basic Electronics Engineering Or HUT-104 Engineering Economics MAT-104 Mathematics-II PHT-106 Physics-II CHT-106 Chemistry-II *COT-102 Computer Engineering OR ELT-102 Basic Electrical Engineering 2 2/2 - 3 50 50 100 3 MET-105 Engineering Graphics-II PHT-105 Physics-II Practical CHT-103 Chemistry-II Practical ECT-105 Basic Electronics Engineering- Practical MET-103 Workshop Practical-II COT-105 Computer Lab.* OR ELT-103 Basic Electrical Engineering - - 2/2 1 60 40 100 3 Practical *All Engineering Departments will share in teaching & Exams.
    [Show full text]
  • Electrical Machines Lab Ii
    Electrical & Electronics Engineering Department BRCM COLLEGE OF ENGINEERING & TECHNOLOGY BAHAL – 127028 ( Distt. Bhiwani ) Haryana, India ELECTRICAL MACHINES LAB II EE-327-F ELECTRICAL MACHINES-II LAB L T P CLASS WORK : 25 Marks 0 0 2 EXAM : 25 Marks TOTAL : 50 Marks DURATION OF EXAM : 3 HRS List of Experiments: 1. Study of the No Load and Block Rotor Test in a Three Phase Slip Ring Induction Motor & draw its circle diagram 2. To Study the Starting of Slip Ring Induction Motor by Rotor Resistance Starter. 3. To Study and Measure Direct and Quadrature Axis Reactance of a 3 phase alternator by Slip Test 4. To Study and Measure Positive, Negative and Zero Sequence Impedance of a Alternator 5. To Study and Measure Synchronous Impedance and Short circuit ratio of Synchronous Generator. 6. Study of Power (Load) sharing between two Three Phase alternators in parallel operation condition 7. Synchronization of two Three Phase Alternators, by a) Synchroscope Method b) Three dark lamp Method c) Two bright one dark lamp Method 8. To plot V- Curve of synchronous motor. 7. To study and verify Load characteristics of Long Shunt & short shunt Commutatively Compound Generator using 3 phase induction motor as prime mover. 10. To perform O.C. test on synchronous generator. And determine the full load regulation of a three phase synchronous generator by synchronous impedance method NOTE: At least 10 experiments are to be performed, with at least 7 from above list, remaining three may either be performed from above list or designed & set by concerned institution as per scope of syllabus.
    [Show full text]
  • Modeling, Analogue and Tests of an Electric Machine
    MODELING, ANALOGUE AND TESTS OF AN ELECTRIC MACHINE VOLTAGE CONTROL SYSTEM 'by GRAHAM E.' DAWSON ( j B.A.Sc, University of British. Columbia, 1963. A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS, FOR THE DEGREE OF MASTER OF APPLIED SCIENCE. in the Department of Electrical Engineering We accept this thesis as conforming to the required standard Members of the Committee Head of the Department .»»«... Members of the Department of Electrical Engineering THE UNIVERSITY OF BRITISH COLUMBIA September, 1966 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely.avai1able for reference and study. I further agree that permission for ex• tensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives.. It is understood that copying or publication of this thesis for finan• cial gain shall not be allowed without my.written permission. Department of Electrical Engineering The University of British Columbia Vancou ve r.,8, Canada Date 7. MM ABSTRACT This thesis is concerned with the modeling, analogue and tests of an interconnected four electric machine voltage control system. Many analogue studies of electric machines have been done but most are concerned with the development of analogue techniques and only a few give substantiation of the validity of the analogue models through comparison of results from analogue studies and from real machine tests. Chapter 2 describes the procedure and the system under study. Chapter 3 describes the methods used for the determination of the electrical and mechanical system parameters.
    [Show full text]
  • FOR PREDICTING INIJJ'c'l'ion MOTOR CHARACTERISTICS I
    AN IMPROVED METHOD FOR PREDICTING INIJJ'C'l'ION MOTOR CHARACTERISTICS i AN D ROVED FOR REDICTlNG llTDUC'l'ION MOTO CHA.RAOTERIBT'IOS I' Bachelor of Science :Montana State College BOZtX!lM , , onto.na 1944 j;;)u.bmitt to tho De artnont of leotricnl EngiMeri g Cklaho J..gricultur and rcohenieul College In purtiul Ful.:f'illmen'l; of t e Re0ui ents tor the gree of' STER OF ..:>C ~en 1947 ii OKY.l~fl:\H .1:J:?RO D BY: !GIUCrL TFP..U i M' nwrn· 11, c·m 1, L J B R ,\ • v . DE'C 8 1947 llea! of £fie bepartiii.ent ') r ·> P , .... I ) ~ ~1 J . iii PREFiVJE The induction motor is one o.. f' the most u.se:tul · electrie maohines in industry today. Since its inverrtion in 1888 by !'Jikola Telsa, it has eonstantl;r bee:n replacing other types of machines, both eleotrio .ru1.d meehanieal, as a raeans of supply­ ing 111sehanioal po;:er. Ma.de in its diversified for.ID1J,. an induction riaotor et:.m be made t;.o fit a.lm.ost any torq_ue-speed requirement. In its most common form., the normal-starting-current. normal-starting-torque, squirrel-cage induction motor., it offers such a.dvantae;es as high effioiency:t practioally constant speed, extremely sirn.plo ope:rationt a11d s:m.s.11 electrical na.intenance requirements. Because e:f the induction moto~•s wide use, it is advantageous to both the roanu:faoturer and the consumer to be able to ascertain, as aoeurately and si:Ll1ply as possible, hmv a given motor vrill operate under varying eondi tions of load.
    [Show full text]