Urban Interface Processes: Fluxes, Transport, Interactions Core Course 1
Total Page:16
File Type:pdf, Size:1020Kb
Urban interface processes: fluxes, transport, interactions Core Course 1 UWI Orientation Seminar, TU Berlin, 9th September 2015 Prof. Dr. Gunnar Nützmann (December 14 – 18, 2015) Outline 1. An overview about the urban water system of Berlin: surface and ground water, water use, drinking water production, waste water treatment 2. The groundwater- surface water interface 3. Examples 4. Contents of the course Slide 2 JoH, 2014 Urban Surface Waters in Berlin Rivers (Stadtspree) Lakes (Müggelsee…) Canals (Teltow canal) Wetlands (Buch) Creeks (Fredersdorfer Mühlenfliess) Slide 3 Berlins water cycle Have l Stolpe Buch Tegel Spandau Jungfernheide Kaulsdorf Wuhlheide Tiefwerder Friedrichshagen Kladow Beelitzhof Johannisthal Teltowkanal Spree BWB, 2006 Dahme Groundwater – Surface Water Interface Streams: gaining loosing DWA, 2013 Slide 5 Groundwater – Surface Water Interface Flow paths of groundwater DWA, 2013 Slide 6 Groundwater – Surface Water Interface Hyporheic zone of streams DWA, 2013 Slide 7 Examples • Bank filtration: hydraulic conductivity of Lake bed affects infiltration rates (Lake Tegel) • Artificial groundwater recharge: degradation of micropollutants (Lake Tegel) • Exchange between groundwater and River Spree Slide 8 Lake Tegel bank filtration Wiese, 2006 Slide 9 Lake Tegel bank filtration Correlation between leakage and pumping Wiese & Nützmann Ground Water, 2009 Assumption of a variable unsaturated zone depending on pumping rates Slide 10 Slide Greskowiak et al., ES&T 2006 11 Artificial recharge area Infiltration pond Monitoring wells Symmetry axis (center of pond) Bottom of aquifer Slide Greskowiak et al., ES&T 2006 ~ 13012 m Redox - reactions See Biologischer Abbau von Sauerstoff-Reduktion Aerob Nitrat,- Mangan,- und Eisen-Reduktion G Sulfat-Reduktion/Methanbildung run dw ass erstr ömung : Änderung des hyd roc hemischen Millieus Anaerob TEG368OP 30 Temperature 20 C ° 10 0 -4 x 10 4 Dissolved oxygen mol/l 2 0 0.6 Non-reactive simulation Phenazone 0.4 gl/l Reactive simulation µ 0.2 0 0 200 400 600 800 1000 Slidedays Greskowiak et al., ES&T 2006 14 Groundwater exchange with River Spree Levers, 2009 Slide 15 Flow paths of groundwater Nützmann et al., HP, 2014 Slide 16 Temperature distribution (modelled) Nützmann et al., HP, 2014 Slide 17 Contents of Course 1 Contributions: Prof. Dr. Reinhard Hinkelmann: fluid properties, hydrostatics, open channel hydraulics: normal flow, wave velocity, flow transitions, stationary non-uniform flow, flow over weirs, pipe hydraulics, environmental hydraulics, transport of mass and heat Prof. Dr. Martin Jekel: processes of water purification (natural, technical), particle-water interactions, coagulation and flocculation, filtration, adsorption, membrane processes, disinfection, bio- filtration including purification in the underground, combined processes. Wastewater treatment and water reuse. Slide 18 Fluid mechanics • Lecturer: Hinkelmann • Time: December 15, 2015; 9-10.30, 11-12.30, 14-15.30 • Location: IGB, Lecture Hall Content: dv • Fundamentals: fluid properties, ρ g − ∇ p + µ ∇ 2 v = ρ hydrostatics, balance equations for dt control volume, flow forces • Open channel hydraulics: normal flow, wave velocity, sub- and supercritical flow, flow transitions, basic equations for 1D open channel flow, stationary non-uniform flow, flow over weirs Slide 19 • Environmental hydraulics: general form of balance equation, Navier- Stokes equations (3D), shallow water equations (3D, 2D,1D), friction, wind, turbulence models; transport of mass (substances, sediments) and heat: advection, diffusion, turbulent mixing, density-induced flow • Interface processes and fluxes: surface water – groundwater / unsaturated zone (in- and exfiltration), surface water – atmosphere (rain, evaporation, dissolution, degassing) Slide 20 Interfaces in water and wastewater treatment - 1 • Lecturer: Jekel • Time: December 16, 2015; 9-10.30, 11-12.30, 14-15.30 • Location: TUB Solid-water interfaces: 100100 nm a) Particles in water nm b) Adsorption processes on solids c) Precipitation processes Slide 21 Interfaces in water and wastewater treatment - 2 • Gas-water interfaces: Aeration Ozonation Stripping • Gas-solid-water interfaces: Unsaturated zone in groundwater recharge Trickling and dry filters Flotation Activated sludge process • For all interfaces: mass transfer phenomena are important, like film diffusion Slide 22 Particle size distribution in 2 river waters – high numbers of small particles Ruhr 89.600/ml Donau 40.000/ml Anzahlverteilung [%] Slide Teilchendurchmesser [µm] 23 Purification processes in water treatment • Particulate substances • Sedimentation: ρp > 1 g/cm³, dp > 10 µm • Coagulation: Addition of coagulants for colloid agglomeration (Fe3+-, Al3+-Salts) • Filtration: sand filter, dk ≈ 1 mm; removal of turbidity; • Flotation: Air bubbles for floating the flocs Bildquelle: http://www.buck-umwelt.de/fachartikel/reaktion/reaktionstr-00.jpg, 14.10.2009 Flotation und Sedimentation Slide 24 Principle of Membrane Filtration Retention R =( c1 – c2)/ c1 Js = 1 – c2/c1 0 < R < 1 Jw osmotisches Yield / recovery c2 Gleichgewichtc1 WCF = QP / QF 0 < WCF < 1 QR QF Slide QP 25 Different membranes for separation of particles and dissolved substances Virus 0,1 µm Water Giardia Lamblia and 0,0002 Cryptosporidium Hämoglobin 3-6 µm 0,007 µm µm . Pseudomonas Diminuta Sodium-Ion 0,28 µm 0,00037 µm Streptokokke 1 µm Reverse Nano- Ultra- Mikro- osmosis filtration filtration filtration 0,0001 0,001 0,01 0,1 1 10 100 µm µm µm µm µm µm µm Diameter of membrane pores Slide 26 Ultrafiltration-Membrane plant at Aachen-Roetgen: 7000 m3/h, largest in Germany for a reservoir drinking water plant Slide 27 Contents of Course 1 Contributions: Prof. Dr. Gerd Wessolek: modeling and measuring in the vadose zone: the soil plant atmosphere interface, hydraulic and thermal soil properties, soil moisture & tension measurements, hydraulic and thermal gradients, modeling soil moisture and solute transport, on predicting groundwater recharge, capillary rise, actual evapotranspiration, and heat flux Prof. Dr. Dietmar Stephan: the role of water for the production, durability and environmental impact of building materials: basics of the hydration of inorganic binders; the role of water for the direct and indirect deterioration of typical building materials; possible impacts of building materials onto the quality of surface and ground water Slide 28 Modeling and measuring in the vadose zone • Lecturer: Wessolek, Gerd, Steffen Trinks • Time: December 18, 2015; 9-10.30, 11-12.30 • Location: TUB, BH- 812 Content • the soil plant atmosphere interface • hydraulic and thermal soil properties • soil moisture & tension measurements • hydraulic and thermal gradients • modeling soil moisture and solute transport • on predicting groundwater recharge, capillary rise, actual evapotranspiration, and heat flux • Open questions Slide 29 Environmental impact of water on building materials • Lecturer: Stephan • Time: December 18, 2015; 13 – 14:30 • Location: TUB, BH- 812 Content • the role of water for the production • durability and environmental impact of building materials: basics of the hydration of inorganic binders • the role of water for the direct and indirect deterioration of typical building materials • possible impacts of building materials onto the quality of surface and ground water Slide 30 Influence of water on resistance of cement high water/cement (w/c) ratio high porosity lower resistance against aggressive waters increasing porosity Slide 31 Examples of building damages: Biogenic biogenic sulphuric acid corrosion Rod bacteria on SEM photo Concrete corrosion in a sewage plant Slide 32 Examples of building damages: carbonation of concrete and depassivation of reinforcement Carbonation of portlandite (Ca(OH)2) decreas of pH value corrosion of steel reinforcement Examining the carbonation depth by phenolphthalein test: colourless carbonised magenta alkaline Slide 33 Thank You!.