198 9Apjs. . .70. .731L the Astrophysical Journal Supplement
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
III. the Young Open Cluster NGC 1893 in the HII Region W8
MNRAS 443, 454–473 (2014) doi:10.1093/mnras/stu1170 Sejong Open Cluster Survey (SOS) – III. The young open cluster NGC 1893 in the H II region W8 Beomdu Lim,1,2‹† Hwankyung Sung,2‹ Jinyoung S. Kim,3 Michael S. Bessell4 and Byeong-Gon Park1 1Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Korea 2Department of Astronomy and Space Science, Sejong University, 209 Neungdong-Ro, Gwangjin-gu, Seoul 143-747, Korea 3Steward Observatory, University of Arizona, 933 N. Cherry Ave. Tucson, AZ 85721-0065, USA 4Research School of Astronomy and Astrophysics, Australian National University, MSO, Cotter Road, Weston, ACT 2611, Australia Downloaded from Accepted 2014 June 11. Received 2014 June 10; in original form 2014 March 31 ABSTRACT http://mnras.oxfordjournals.org/ We present a UBVI and Hα photometric study of the young open cluster NGC 1893 in the H II region W8 (IC 410 or Sh 2-236). A total of 65 early-type members are selected from photometric diagrams. A mean reddening of the stars is E(B − V)=0.563 ± 0.083 mag. The published photometric data in the near- and mid-infrared passbands are used to test the reddening law towards the cluster, and we confirm that the reddening law is normal (RV = 3.1). Zero-age main-sequence fitting gives a distance modulus of V0 − MV = 12.7 ± 0.2 mag, equivalent to 3.5 ± 0.3 kpc. From Hα photometry, 125 Hα emission stars and candidates are identified as pre-main-sequence (PMS). The lists of young stellar objects and X-ray sources published by previous studies allow us to select a large number of PMS members down to at The Australian National University on September 16, 2014 1M. -
Filter Performance Comparisons for Some Common Nebulae
Filter Performance Comparisons For Some Common Nebulae By Dave Knisely Light Pollution and various “nebula” filters have been around since the late 1970’s, and amateurs have been using them ever since to bring out detail (and even some objects) which were difficult to impossible to see before in modest apertures. When I started using them in the early 1980’s, specific information about which filter might work on a given object (or even whether certain filters were useful at all) was often hard to come by. Even those accounts that were available often had incomplete or inaccurate information. Getting some observational experience with the Lumicon line of filters helped, but there were still some unanswered questions. I wondered how the various filters would rank on- average against each other for a large number of objects, and whether there was a “best overall” filter. In particular, I also wondered if the much-maligned H-Beta filter was useful on more objects than the two or three targets most often mentioned in publications. In the summer of 1999, I decided to begin some more comprehensive observations to try and answer these questions and determine how to best use these filters overall. I formulated a basic survey covering a moderate number of emission and planetary nebulae to obtain some statistics on filter performance to try to address the following questions: 1. How do the various filter types compare as to what (on average) they show on a given nebula? 2. Is there one overall “best” nebula filter which will work on the largest number of objects? 3. -
Winter Constellations
Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the Orion Nebula. -
Wide-Field Infrared Survey Explorer Observations of the Evolution of Massive Star-Forming Regions
The Astrophysical Journal, 744:130 (24pp), 2012 January 10 doi:10.1088/0004-637X/744/2/130 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. WIDE-FIELD INFRARED SURVEY EXPLORER OBSERVATIONS OF THE EVOLUTION OF MASSIVE STAR-FORMING REGIONS X. P. Koenig1,4,D.T.Leisawitz1, D. J. Benford1, L. M. Rebull2, D. L. Padgett1, and R. J. Assef3,4 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2 Spitzer Science Center (SSC), California Institute of Technology, M/S 220-6, 1200 East California Boulevard, Pasadena, CA 91125, USA 3 Jet Propulsion Laboratory, MS 169-530, 4800 Oak Grove Drive, Pasadena, CA 91109, USA Received 2011 July 8; accepted 2011 October 18; published 2011 December 22 ABSTRACT We present the results of a mid-infrared survey of 11 outer Galaxy massive star-forming regions and 3 open clusters with data from the Wide-field Infrared Survey Explorer (WISE). Using a newly developed photometric scheme to identify young stellar objects and exclude extragalactic contamination, we have studied the distribution of young stars within each region. These data tend to support the hypothesis that latter generations may be triggered by the interaction of winds and radiation from the first burst of massive star formation with the molecular cloud material leftover from that earlier generation of stars. We dub this process the “fireworks hypothesis” since star formation by this mechanism would proceed rapidly and resemble a burst of fireworks. We have also analyzed small cutout WISE images of the structures around the edges of these massive star-forming regions. -
2012 年發表 53 篇 1. Chang,Chan-Kao , Lai,Shao-Yu
2012 年發表 53 篇 1. Chang,Chan-Kao , Lai,Shao-Yu , Ko,Chung-Ming, et al. , Information on the Milky Way from the 2MASS All Sky Star Count: Bimodal Color Distributions ,The Astrophysical Journal, Volume 759, Issue 2, 94, 10 p..( 2012) 2. Chen,W.P. , Hu,S.C.-L. , Errmann,R., et al. , A Possible Detection of Occultation by a Proto-planetary Clump in GM Cephei ,The Astrophysical Journal, Volume 751, Issue 2, 118, 5 p..( 2012) 3. Hwang,Chorng-Yuan , Tsai,Mengchun, Star Formation in the Central Kiloparsec of Nearby Active Galaxies ,Journal of Physics: Conference Series, Volume 372, Issue 1, id. 0120..( 2012) 4. Ip, W.-H., ENA diagnostics of auroral activity at Mars ,Planetary and Space Science, v. 63, pp. 83, (2012) 5. J.M. Nester and C.-H. Wang, Can torsion be treated as just another tensor field? ,International Journal of Modern Physics: Conference Series, v. 7, pp. 158, (2012) 6. Lee, C.-H., Riffeser, A., Koppenhoefer, J., et al., PAndromeda?First Results from the High-cadence Monitoring of M31 with Pan-STARRS 1 ,The Astronomical Journal, Volume 143, Issue 4, article id. 89, 16 pp. (2012) 7. Lin, Z.-Y., Lara, L. M., Vincent, J. B., and Ip, W.-H., Physical studies of 81P/Wild 2 from the last two apparitions ,Astronomy and Astrophysics, v. 537, pp. A101, (2012) 8. Ngeow, C.-C., On the Application of Wesenheit Function in Deriving Distance to Galactic Cepheids ,The Astrophysical Journal, v. 747, pp. 50, (2012) 9. Ngeow, C.-C., Kanbur, S. M., Bellinger, E. P., et al., Period- luminosity relations for Cepheid variables: from mid-infrared to multi- phase, Astrophysics and Space Science, v. -
Astronomy Magazine Special Issue
γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Astronomy 2008 Index
Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs. -
Interstellar Extinction in the Direction of Young Open Star Clusters
ISSN (Online) 2393-8021 ISSN (Print) 2394-1588 IARJSET International Advanced Research Journal in Science, Engineering and Technology Vol. 6, Issue 5, May 2019 Interstellar Extinction in the Direction of Young Open Star Clusters Alok K. Durgapal* Center of Advanced Study, Department of Physics, D. S. B. Campus, Kumaun University Nainital, India Abstract: The total to selective extinction law in optical and near-IR wavelengths for twenty young open star clusters namely Berkeley 7, Collinder 69, Hogg 10, NGC 2362, Czernik 43, NGC 6530, NGC 6871, Bochum 10, Haffner 18, IC 4996, NGC 2384, NGC 6193, NGC 6618, NGC 7160, Collinder 232, Haffner 19, NGC 2401, NGC 6231, NGC 6823, NGC 7380 have been studied. It is found that fifteen clusters follow normal extinction law and five clusters show an anomalous behavior. Keywords: Star cluster: Reddening, interstellar dust- Interstellar extinction I. INTRODUCTION The interstellar dust which is remnant of star formation process can transmit and redirect the light of stars ([2]). As a result it becomes very difficult to determine accurate distances and magnitudes of astronomical objects ([11]); to overcome this difficulty we must have knowledge of composition of interstellar dust in every line of sight. The interstellar extinction is caused either by general interstellar medium (ISM) or by localized region of higher mean density ([9], [15]). Study of interstellar extinction provides information about components of the molecular cloud from which a star was formed. Young stars contain dust around them so young open star clusters are the ideal objects for extinction study ([5], [8], [10], [16], [17]). First started with Trumpler in 1920 and then many investigators studied extinction in the Galaxy. -
2014 Observers Challenge List
2014 TMSP Observer's Challenge Atlas page #s # Object Object Type Common Name RA, DEC Const Mag Mag.2 Size Sep. U2000 PSA 18h31m25s 1 IC 1287 Bright Nebula Scutum 20'.0 295 67 -10°47'45" 18h31m25s SAO 161569 Double Star 5.77 9.31 12.3” -10°47'45" Near center of IC 1287 18h33m28s NGC 6649 Open Cluster 8.9m Integrated 5' -10°24'10" Can be seen in 3/4d FOV with above. Brightest star is 13.2m. Approx 50 stars visible in Binos 18h28m 2 NGC 6633 Open Cluster Ophiuchus 4.6m integrated 27' 205 65 Visible in Binos and is about the size of a full Moon, brightest star is 7.6m +06°34' 17h46m18s 2x diameter of a full Moon. Try to view this cluster with your naked eye, binos, and a small scope. 3 IC 4665 Open Cluster Ophiuchus 4.2m Integrated 60' 203 65 +05º 43' Also check out “Tweedle-dee and Tweedle-dum to the east (IC 4756 and NGC 6633) A loose open cluster with a faint concentration of stars in a rich field, contains about 15-20 stars. 19h53m27s Brightest star is 9.8m, 5 stars 9-11m, remainder about 12-13m. This is a challenge obJect to 4 Harvard 20 Open Cluster Sagitta 7.7m integrated 6' 162 64 +18°19'12" improve your observation skills. Can you locate the miniature coathanger close by at 19h 37m 27s +19d? Constellation star Corona 5 Corona Borealis 55 Trace the 7 stars making up this constellation, observe and list the colors of each star asterism Borealis 15H 32' 55” Theta Corona Borealis Double Star 4.2m 6.6m .97” 55 Theta requires about 200x +31° 21' 32” The direction our Sun travels in our galaxy. -
Cassiopeia - the Queen
May 18 2021 Cassiopeia - The Queen Observed: No Object Her Type Mag Alias/Notes NGC 7801 Non-Existent IC 11 Non-Existent NGC 358 Non-Existent NGC 629 Non-Existent IC 155 Non-Existent NGC 771 Non-Existent IC 1795 Non-Existent NGC 896 IC 1824 Non-Existent Single Star IC 1831 Non-Existent IC 1851 Non-Existent NGC 7438 Non-Existent IC 5366 Non-Existent NGC 7795 Non-Existent Sub Total: 13 Observed: Yes Object Her Type Mag Alias/Notes ABELL 82 Pl Neb 12.7 IC 1454 BERK 2 Open Cl I 1 m BERK 58 Open Cl IV 2 p 9.7 CR 15 Open Cl II 2 p 8.1 Tr 1 CR 26 Open Cl II 3 m n 6.5 Mel 15 Inside IC 1805 LBN CR 34 Open Cl I 3 p 6.8 CR 36 Open Cl III 2 m 7 Tr 3 CR 463 Open Cl III 2 m 5.7 IC 10 Glxy IBm 11.8 UGC 192 MCG 10-1-1 IRAS 177+5900 PGC 1305 IC 59 Brt Nebula E+R Sh2-185 Gamma Cassiopiae LBN 620 IC 63 Brt Nebula E+R LBN 623 Ghost Nebula IC 166 Open Cl II 1 r 11.7 IC 289 Pl Neb 4+2 12.3 Hubble 1 PK 138+2.1 PNG 138.8+2.8 IC 1590 Open Cl n 7.4 Cr 8 (Inside of NGC 281) IC 1747 Pl Neb 3b 13.6 PK 130+1.1 PNG 130.2+1.3 IC 1805 Brt Nebula E Sh2-190 LBN 654 (Cr 26 in brightest part) Heart Nebula IC 1848 Open Cl I 3 p n 6.5 Cr 32 (Inside LBN 667 Soul Nebula) IC 1871 Brt Nebula E KING 13 Open Cl II 2 m KING 14 Open Cl III 1 p 8.5 KING 16 Open Cl I 2 m 10.3 LBN 667 Brt Nebula E Soul Nebula (Surrounds IC1848) NGC 103 Open Cl II 1 m 9.8 NGC 110 Open Cl IV 1 p NGC 129 H79-8 Open Cl III 2 m 6.5 Cr 2 NGC 133 Open Cl IV 1 p 9.4 NGC 136 H35-6 Open Cl II 1 p Cr 4 Page 1 of 2 May 18 2021 Cassiopeia - The Queen Observed: Yes Object Her Type Mag Alias/Notes NGC 146 Open Cl II -
Sejong Open Cluster Survey (SOS)-IV. the Young Open Clusters
Sejong Open Cluster Survey (SOS) - IV. The Young Open Clusters NGC 1624 and NGC 1931 Beomdu Lim1,5, Hwankyung Sung2, Michael S. Bessell3, Jinyoung S. Kim4, Hyeonoh Hur2, and Byeong-Gon Park1 [email protected] Received ; accepted Not to appear in Nonlearned J., 45. 1Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Korea 2Department of Astronomy and Space Science, Sejong University, 209 Neungdong-ro, arXiv:1502.00105v1 [astro-ph.SR] 31 Jan 2015 Gwangjin-gu, Seoul 143-747, Korea 3Research School of Astronomy and Astrophysics, Australian National University, MSO, Cotter Road, Weston, ACT 2611, Australia 4Steward Observatory, University of Arizona, 933 N. Cherry Ave. Tucson, AZ 85721-0065, USA 5Corresponding author, Korea Research Council of Fundamental Science & Technology Research Fellow –2– ABSTRACT Young open clusters located in the outer Galaxy provide us with an oppor- tunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and Hα photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by hE(B − V )i = 0.92 ± 0.05 and 0.74 ± 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (RV,cl = 5.2 ± 0.3). Using the zero-age main se- quence fitting method we confirm that NGC 1624 is 6.0 ± 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 ± 0.2 kpc.