N-Methylation of a Bactericidal Compound As a Resistance Mechanism in Mycobacterium Tuberculosis
N-methylation of a bactericidal compound as a PNAS PLUS resistance mechanism in Mycobacterium tuberculosis Thulasi Warriera, Kanishk Kapilashramib, Argyrides Argyrouc, Thomas R. Ioergerd, David Littlea, Kenan C. Murphye, Madhumitha Nandakumara, Suna Parka, Ben Golda, Jianjie Mia, Tuo Zhanga, Eugenia Meilerf, Mike Reesc, Selin Somersan-Karakayag, Esther Porras-De Franciscof, Maria Martinez-Hoyosf, Kristin Burns-Huanga, Julia Robertsa, Yan Linga, Kyu Y. Rheea,g, Alfonso Mendoza-Losanaf, Minkui Luob,h, and Carl F. Nathana,1 aDepartment of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021; bChemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065; cPlatform Technology and Science, GlaxoSmithKline, Stevenage SG1 2NY, United Kingdom; dDepartment of Computer Science and Engineering, Texas A&M University, College Station, TX 77843-3474; eDepartment of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655; fDiseases of the Developing World, GlaxoSmithKline (GSK), 28760 Madrid, Spain; gDepartment of Medicine, Weill Cornell Medicine, New York, NY 10021; and hDepartment of Pharmacology, Weill Cornell Medicine, New York, NY 10021 Contributed by Carl F. Nathan, June 8, 2016 (sent for review April 26, 2016; reviewed by Thomas Dick, Babak Javid, and Richard E. Lee) The rising incidence of antimicrobial resistance (AMR) makes it im- accumulation of spontaneous mutations allows selection for drug perative to understand the underlying mechanisms. Mycobacterium resistance. Clinically, resistance to most frontline TB drugs is caused tuberculosis (Mtb) is the single leading cause of death from a bacterial by mutations in the activation pathways of prodrugs (e.g., katG pathogen and estimated to be the leading cause of death from AMR.
[Show full text]