Discovery and Characterization of an Anti-Inflammatory Lipid Derived from Mycobacterium Vaccae

Total Page:16

File Type:pdf, Size:1020Kb

Discovery and Characterization of an Anti-Inflammatory Lipid Derived from Mycobacterium Vaccae Discovery and characterization of an anti-inflammatory lipid derived from Mycobacterium vaccae By David G. Smith B.S., The Ohio State University, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Chemistry and Biochemistry 2017 i This thesis entitled: Discovery and characterization of an anti-inflammatory lipid derived from Mycobacterium vaccae written by David G. Smith has been approved by the Department of Chemistry and Biochemistry ________________________________________________ Christopher A. Lowry, PhD ________________________________________________ Dylan J. Taatjes, PhD Date______________________ The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above-mentioned discipline. ii Smith, Gregory David (PhD, Chemistry and Biochemistry) Discovery and characterization of an anti-inflammatory lipid derived from Mycobacterium vaccae Thesis directed by Christopher A. Lowry, PhD. In modern urban environments there is an increased prevalence of allergies, asthma, inflammatory bowel diseases (IBD), and anxiety disorders. The underlying cause for these disorders, as postulated by the Hygiene Hypothesis, is chronic inflammation, and the imbalance in the immune system is caused by a lack of interaction with microbes that have been removed from the urban space and lifestyle. One such microbe is the environmental saprophyte, Mycobacterium vaccae. In animal models, immunization with M. vaccae protects against the development of these prevalent inflammatory disorders. This immunoregulatory effect has been shown to occur due to the expansion of regulatory T cells, but it is still unclear how M. vaccae is interacting with the immune cells. To better understand the mechanisms of immune suppression, we screened secreted molecules and whole cell preparations for anti-inflammatory properties. We were able to isolate and determine the structure of a single fatty acid, 10(Z)-hexadecenoic acid. The fatty acid was an effective immunosuppressant both in vivo in a murine model of allergic asthma, and ex vivo, as observed by decreased release of proinflammatory cytokines, like interleukin-5 from splenocytes. We next investigated how the anti-inflammatory effects are achieved using macrophages as a model system. The mRNA transcriptional profile of macrophages treated with 10(Z)- iii hexadecenoic acid suggested that peroxisome proliferator-activated receptor (PPAR)α was mediating the effects. It was subsequently confirmed, using transfection assays, that 10(Z)- hexadecenoic acid increases PPARα signaling. Furthermore, PPARα was demonstrated to be necessary for the anti-inflammatory effects, as a PPARα antagonist blocked the effects of 10(Z)- hexadecenoic acid, and 10(Z)-hexadecenoic acid had no effect in macrophages isolated from -/- PPARα mice. Collectively, these data define 10(Z)-hexadecenoic acid as an immunosuppressant metabolite that may contribute to the immunomodulatory effects of M. vaccae immunization. Furthermore, to our knowledge, 10(Z)-hexadecenoic acid is not synthesized de novo in mammals, and its biosynthesis appears to be unique to mycobacteria.. This is also the first instance where a Mycobacterium or Mycobacterium-derived molecule has been shown to have anti-inflammatory effects mediated through PPARα. iv Acknowledgements I am grateful to many people for the opportunity to train as a scientist. Throughout my life, my family has been extremely supportive of my academic career. My mother has been a huge inspiration and has always been there through the emotional ride of this process. Even during my graduate career, I sought her writing advice. My father is also instrumental in where I am today. Since my childhood, he strived to make science fun and interesting and is the reason I love problem solving. Lastly, my wife, Monica, has been absolutely necessary through my training. She has made me a more passionate, driven, proud person. I know I can always rely on her support. I am thankful to Chris for allowing me to train in his lab—which was especially generous since it is a lab outside the department. I am continually impressed with the breadth of Chris’ knowledge. He is creative and truly inspirational. My research has taken me in a lot of challenging directions, and Chris was there leading and learning with me. The science has been a lot of fun, which has made everything so much more rewarding. When the science wasn’t super fun, or I had my moments of fear and anxiety, he always knew what to say or do to make me feel better. He has cultivated the greatest lab environment I have ever experienced. I am thankful for all the past and current lab members and am very fortunate to have found such great friendships among them. I would also like to thank all my other committee members: Dylan Taatjes, Hubert Yin, Xuedong Liu, and Robin Dowell. I faltered and struggled some my first year, so I am very grateful that they accepted the responsibility of guiding me. They have all taught me so much. v The course of this PhD has had me scrambling all over campus. At various points I have received help, resources, or guidance from the Fleshner lab, Seals lab, Palmer lab, Jinsen Chen, Annette Erbse, and Jamie Kershner. Robin Dowell and Mary Allen have been very generous with their time and literally taught me everything I know about RNA-seq. Mary was with me at the lab bench watching every single pipette transfer. She showed me all the tips and tricks that are not included in the protocols. During the buggy process of analyzing the data, she and Robin were always around to get their hands dirty too. I owe so much to all the talented collaborators I have been able to work with. Xiang Wang’s lab seeded most of this work by synthesizing our lipid. From Jon Clardy’s group, Alexandra was an excellent partner to have while screening mycobacteria. I would also like to thank Del Besra’s lab and Laura Rosa Brunet’s lab for their excellent collaborations. Del and his student, Petr Illarionov, were invaluable for synthesizing the lipids, and László Nagy for running the PPAR reporter gene assays, and thanks to Laura’s student, Roberta Martinelli, who ran the in vivo mouse allergy models. Finally, I would like to thank the funding sources that made this work possible including gifts through the CU Foundation. I’m also grateful for the various awards and competitions offered by the University of Colorado Boulder, which have afforded me to purchase necessary reagents and equipment. vi Table of Contents Chapter 1: Introduction ................................................................................................................... 1 1.1 The Hygiene Hypothesis ........................................................................................... 1 1.1.1 The “Old Friends” Hypothesis .......................................................................... 3 1.1.2 Immunoregulatory mechanisms of “Old Friends” ............................................. 4 1.2 Mycobacterium vaccae ............................................................................................. 7 1.3 LPS signaling in macrophages .................................................................................. 9 Chapter 2. Suppression of airway allergic inflammation by a novel bacterially-derived lipid isolated from Mycobacterium vaccae ........................................................................................... 12 2.1 Introduction ............................................................................................................. 12 2.1.1 The hygiene hypothesis and inflammatory disease ......................................... 12 2.1.2 The mycobacterial cell wall and therapeutic applications ............................... 13 2.2 Materials and methods ............................................................................................ 18 2.2.1 Animals ............................................................................................................ 18 2.2.2 Mycobacterium vaccae .................................................................................... 18 2.2.3 Isolation of the lipids ....................................................................................... 19 2.2.4 Synthesis of triacylglycerol ............................................................................. 20 2.2.5 Synthesis of 10(Z)-hexadecenoic acid; (10Z)-hexadec-10-enoic acid (CAS No. 2511-97-9) ........................................................................................................................ 22 2.2.6 Thp1 cell assay ................................................................................................ 24 2.2.7 Murine model of allergic pulmonary inflammation: prevention studies ......... 24 2.2.8 Murine model of allergic pulmonary inflammation: treatment studies ........... 25 2.2.9 Ex vivo splenocyte culture .............................................................................. 25 2.2.10 Murine peritoneal macrophage isolation and screening .................................. 26 2.2.11 Dynamic light scattering of lipid micelles ....................................................... 27 vii 2.2.12 Lipid extraction................................................................................................ 27 2.2.13 Cytokine measurements
Recommended publications
  • Numerical Analysis of Rapidly Growing, Scotochromogenic Mycobacteria, Including Mycobacterium O Buense Sp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1981, p. 263-275 Vol. 31, No. 3 0020-7713/81/030263-13$02.00/0 Numerical Analysis of Rapidly Growing, Scotochromogenic Mycobacteria, Including Mycobacterium o buense sp. nov., norn. rev., Mycobacterium rhodesiae sp. nov., nom. rev., Mycobacterium aichiense sp. nov., norn. rev., Mycobacterium chubuense sp. nov., norn. rev., and Mycobacterium tokaiense sp. nov., nom. rev. MICHIO TSUKAMURA, SHOJI MIZUNO, AND SUM10 TSUKAMURA The National Chubu Hospital, Obu, Aichi, Japan 474 We performed numerical analyses of 155 strains of rapidly growing, scotochrom- ogenic mycobacteria by two different methods; in one method we used 104 characters, and in the other we used 84 characters. The following taxa appeared as distinct clusters: Myco bacterium thermoresistibile, Myco bacterium flavescens, Mycobacterium duvalii, Mycobacterium phlei, “Mycobacterium o buense,” My- co bacterium parafortuitum, Mycobacterium vaccae, Mycobacterium sphagni, “Mycobacterium aichiense,” “Mycobacterium rhodesiae,” Mycobacterium neoaurum, “Mycobacterium chubuense,” “Mycobacterium tokaiense,” and My- cobacterzum komossense (names in quotation marks are not on the Approved Lists of Bacterial Names). M. flavescens strains were divided into two subgroups, one consisting of strains isolated in Japan and the other consisting of strains isolated in Rhodesia and strains received from the American Type Culture Collection, including the type strain of M. flavescens (ATCC 14474). We found that there are many species of rapidly growing, scotochromogenic mycobacteria, and we believe that new species should be recognized and named on the basis of at least three strains. The following species appeared to be distinct from all presently named species: “Mycobacteriumgallinarum,” “Mycobacterium armen- tun,” “Mycobacterium pelpallidurn,” and “Mycobacterium taurus.” However, each of these species was proposed on the basis of only one or two strains.
    [Show full text]
  • Investigation of Antibiotic Targets in the Decaprenyl
    INVESTIGATION OF ANTIBIOTIC TARGETS IN THE DECAPRENYL-PHOSPHORYLARABINOSE BIOSYNTHESIS IN M. TUBERCULOSIS by SZILVIA TÓTH a thesis submitted to University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham July 2018 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Declaration The work presented in this thesis is original except where citing relevant references. Studies were conducted from 2014 to 2017 in the School of Biosciences, University of Birmingham, B15 2TT, UK and also in research and development facility of GlaxoSmithKline, laboratory for Diseases of the Developing World, Tres Cantos, Spain. No part of this work has been submitted for a degree or a diploma to this or any other university. ii Abstract An estimated 1.67 million people died of tuberculosis (TB) in 2016 and it is a threat to human life on a global-scale. To shorten current treatments and battle drug resistant strains it is important to discover and develop new drugs against the causative agent, Mycobacterium tuberculosis. Phenotypic screens have delivered potent hit and lead molecules in the past but the need to target new pathways in M.
    [Show full text]
  • Role of Immunotherapy in the Treatment of Tuberculosis
    ROLE OF IMMUNOTHERAPY IN THE TREATMENT OF TUBERCULOSIS MURTHY, K.J.R. VIJAYA LAKSHMI, V. and Singh, S. Bhagwan Mahavir Medical Research Centre, 10-1-1, Mahavir Marg, Hyderabad - 500 029. India. ABSTRACT Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen residing in macrophages. Cell mediated immune (CMI) and delayed type of hypersensitive (DTH) responses play a pivotal role in providing protection to the host. The most important cell is the CD4 T lymphocyte, which is divided into TH1 and TH2 subsets depending on the type of cytokines produced. TH1 cells produce the cytokines interferon-gamma and interleukin-2, which are important for activa- tion of antimycobacterial activities and essential for the DTH response. Grange opines that the immune response in an individual with tuberculous infection gets locked in' to one or other pattern of response viz. TH1 or TH2 response, the latter response leading to tissue damage and progression of disease. Stanford and co-workers conducted several studies on the effectiveness of Mycobacterium vaccae, as an immunotherapeutic agent for tuberculosis. It is non-pathogenic in humans and is thought to be a powerful TH1 adjuvant. A series of small studies pointed that M. vaccae has a beneficial effect and there is enough evidence now to show that its use as an immunotherapeutic agent, as an adjunct to chemotherapy in the treatment of tuberculosis especially at a time when drug resistance is rampant, appears promising. KEY WORDS : Tuberculosis, Drug-Resistance, Immunotherapy, T Cell Responses. ROLE OF IMMUNOTHERAPY IN THE cytokines secreted by the TH1 cell are interferon- TREATMENT OF TUBERCULOSIS gamma (IFN-~,) and interleukin-2 (IL-2).
    [Show full text]
  • Cell Activation Dictates Localization in Vivo the Mechanism of Splenic Invariant
    The Mechanism of Splenic Invariant NKT Cell Activation Dictates Localization In Vivo Irah L. King, Eyal Amiel, Mike Tighe, Katja Mohrs, Natacha Veerapen, Gurdyal Besra, Markus Mohrs and This information is current as Elizabeth A. Leadbetter of September 27, 2021. J Immunol 2013; 191:572-582; Prepublished online 19 June 2013; doi: 10.4049/jimmunol.1300299 http://www.jimmunol.org/content/191/2/572 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/06/17/jimmunol.130029 Material 9.DC1 http://www.jimmunol.org/ References This article cites 46 articles, 16 of which you can access for free at: http://www.jimmunol.org/content/191/2/572.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Mechanism of Splenic Invariant NKT Cell Activation Dictates Localization In Vivo Irah L.
    [Show full text]
  • Wellcome Investigators March 2011
    Wellcome Trust Investigator Awards Feedback from Expert Review Group members 28 March 2011 1 Roughly 7 months between application and final outcome The Expert Review Groups 1. Cell and Developmental Biology 2. Cellular and Molecular Neuroscience (Zaf Bashir) 3. Cognitive Neuroscience and Mental Health 4. Genetics, Genomics and Population Research (George Davey Smith) 5. Immune Systems in Health and Disease (David Wraith) 6. Molecular Basis of Cell Function 7. Pathogen Biology and Disease Transmission 8. Physiology in Health and Disease (Paul Martin) 9. Population and Public Health (Rona Campbell) 2 Summary Feedback from ERG Panels • The bar is very high across all nine panels • Track record led - CV must demonstrate a substantial impact of your research (e.g. high impact journals, record of ground breaking research, clear upward trajectory etc) To paraphrase Walport ‘to support scientists with the best track records, obviously appropriate to the stage in their career’ • Notable esteem factors (but note ‘several FRSs were not shortlisted’) • Your novelty of your research vision is CRUCIAL. Don’t just carry on doing more of the same • The Trust is not averse to risk (but what about ERG panel members?) • Success rate for short-listing for interview is ~15-25% at Senior Investigator level (3-5 proposals shortlisted from each ERG) • Fewer New Investigator than Senior Investigator applications – an opportunity? • There are fewer applications overall for the second round, but ‘the bar will not be lowered’ The Challenge UoB has roughly 45 existing
    [Show full text]
  • The Molecular Bases of / T Cell–Mediated
    Article The molecular bases of / T cell–mediated antigen recognition Daniel G. Pellicci,1,2* Adam P. Uldrich,1,2* Jérôme Le Nours,3,4 Fiona Ross,1,2 Eric Chabrol,3 Sidonia B.G. Eckle,1 Renate de Boer,5 Ricky T. Lim,1 Kirsty McPherson,1 Gurdyal Besra,6 Amy R. Howell,7 Lorenzo Moretta,8 James McCluskey,1 Mirjam H.M. Heemskerk,5 Stephanie Gras,3,4 Jamie Rossjohn,3,4,9** and Dale I. Godfrey1,2** 1Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity and 2Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria 3010, Australia 3Department of Biochemistry and Molecular Biology, School of Biomedical Sciences and 4Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia 5Department of Hematology, Leiden University Medical Center, 2300 RC Leiden, Netherlands 6School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, England, UK 7Department of Chemistry, University of Connecticut, Storrs, CT 06269 8Istituto Giannina Gaslini, 16147 Genova, Italy 9Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, Wales, UK and T cells are disparate T cell lineages that can respond to distinct antigens (Ags) via the use of the and T cell Ag receptors (TCRs), respectively. Here we characterize a population of human T cells, which we term / T cells, expressing TCRs comprised of a TCR- variable gene (V1) fused to joining and constant domains, paired with an array of TCR- chains. We demonstrate that these cells, which represent 50% of all V1+ human T cells, can recognize peptide- and lipid-based Ags presented by human leukocyte antigen (HLA) and CD1d, respectively.
    [Show full text]
  • Immunotherapy of TB…
    Results from Phase III, placebo-controlled, 2:1 randomized, double-blind trial of tableted TB vaccine (V7) containing 10 μg of heat-killed Mycobacterium vaccae administered daily for one month Correspondence: Aldar Bourinbaiar * Tel: +976 95130306; +1 301 476-0930 * e-mail: [email protected] Tuberculosis • 33% of people carry TB bacteria = 2.5 billion • Every second, a person becomes ill with TB • Every year 10 mln people develop TB and 2 mln die • Drug-resistant TB poised to become global pandemic • Less than 3% of drug-resistant TB is treated today Th-1 cells = IFN-ɣ, IL-2, GM-CSF, IFN-ɑ, TNF-ɑ, IL-12, IL-18 Th-2 cells = IL-4, IL-5, IL-13 Th-17 cells = IL-6, IL-17, IL-22, TNF-ɑ Treg cells = IL-10, TGF-ɓ B cells = IFN-ɑ, IL-1ɓ, IL-12 Monocytes = IL-8, IL-18, TNF-ɑ State-of-the-art: immunology of TB – a great deal of information gathered but… can't see the forest through the trees When this vast knowledge was applied to immunotherapy of TB…. it failed… It also resulted in negative attitude toward immunotherapy • IL-2 (increased bacterial load) • IL-12 (no effect) • GM-CSF (clearance not confirmed) • IFN-ɣ (irreproducible, no effect) • IFN-ɑ (negative outcome) • anti-TNF-ɑ (negative outcome) • Thalidomide (negative outcome) • Corticosteroids (irreproducible, negative effect) Paradoxes of Tuberculosis • 1/3 of world population (~2.5bln) have latent M. tuberculosis • Yet only about 10 Million people (0.004%) develop TB • M. tuberculosis is in symbiotic relationship with the host • In some cases it’s even beneficial (asthma, cancer) • M.
    [Show full text]
  • 1A.Jan2011-1
    “...scholarships for researchand education...” Newsletter January 2011 Arctic climate change 1750 to 1850 Changing Of whales Planetary codes and men atmospheres No malice…. and Ancient numeracy According to recent findings, one adult in five in England today is the consequences innumerate (“Wecan’t allow people to say ‘I’m no good at maths’”, Arough but possible division of research styles is Guardian 27/4/2010). The figure is particularly stunning when compared to adult illiteracy rates, which are closer to 1%. As the that between the impact-driven and the opportunity- article remarks, for aperson to admit to illiteracy carries social driven. In the first, we tackle recognised objectives stigma, whereas many people will not have aproblem in proclaiming such as the elimination of aparticular disease or the that they cannot count, do not have ahead for figures –that they are establishment of areliable renewable energy source; ‘no good at maths’. Numeracy and literacy,both parts of basic the target is known, it is widely recognised and education, are notably asymmetrical in terms of prestige, and of the progress towards it can be sensibly measured. In the status attached to possessing, or not possessing, them. second, we assess the existing knowledge base and How did things get to be like this? Why is there such agap between we explore the avenues available for its extension; perceptions of numeracy and of literacy –when was it decided that the target is new understanding, it is frequently an being apoet is more glamorous than being an actuary? Ipropose to individual’s quest, and progress lies in the promise take these questions back to the ancient world, because, for all the for new and meaningful investigation that is revealed.
    [Show full text]
  • Mrp1 Is Involved in Lipid Presentation and Inkt Cell Activation by Streptococcus Pneumoniae
    ARTICLE DOI: 10.1038/s41467-018-06646-8 OPEN Mrp1 is involved in lipid presentation and iNKT cell activation by Streptococcus pneumoniae Shilpi Chandra1, James Gray2, William B. Kiosses1, Archana Khurana1, Kaori Hitomi1, Catherine M. Crosby1, Ashu Chawla3, Zheng Fu 3, Meng Zhao1, Natacha Veerapen4, Stewart K. Richardson5, Steven A. Porcelli6, Gurdyal Besra 4, Amy R. Howell5, Sonia Sharma2,7, Bjoern Peters8,9 & Mitchell Kronenberg 1,10 Invariant natural killer T cells (iNKT cells) are activated by lipid antigens presented by CD1d, 1234567890():,; but the pathway leading to lipid antigen presentation remains incompletely characterized. Here we show a whole-genome siRNA screen to elucidate the CD1d presentation pathway. A majority of gene knockdowns that diminish antigen presentation reduced formation of glycolipid-CD1d complexes on the cell surface, including members of the HOPS and ESCRT complexes, genes affecting cytoskeletal rearrangement, and ABC family transporters. We validated the role in vivo for the multidrug resistance protein 1 (Mrp1) in CD1d antigen presentation. Mrp1 deficiency reduces surface clustering of CD1d, which decreased iNKT cell activation. Infected Mrp1 knockout mice show decreased iNKT cell responses to antigens from Streptococcus pneumoniae and were associated with increased mortality. Our results highlight the unique cellular events involved in lipid antigen presentation and show how modification of this pathway can lead to lethal infection. 1 Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. 2 The Functional Genomics Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. 3 Bioinformatics Core, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
    [Show full text]
  • Pnas11052ackreviewers 5098..5136
    Acknowledgment of Reviewers, 2013 The PNAS editors would like to thank all the individuals who dedicated their considerable time and expertise to the journal by serving as reviewers in 2013. Their generous contribution is deeply appreciated. A Harald Ade Takaaki Akaike Heather Allen Ariel Amir Scott Aaronson Karen Adelman Katerina Akassoglou Icarus Allen Ido Amit Stuart Aaronson Zach Adelman Arne Akbar John Allen Angelika Amon Adam Abate Pia Adelroth Erol Akcay Karen Allen Hubert Amrein Abul Abbas David Adelson Mark Akeson Lisa Allen Serge Amselem Tarek Abbas Alan Aderem Anna Akhmanova Nicola Allen Derk Amsen Jonathan Abbatt Neil Adger Shizuo Akira Paul Allen Esther Amstad Shahal Abbo Noam Adir Ramesh Akkina Philip Allen I. Jonathan Amster Patrick Abbot Jess Adkins Klaus Aktories Toby Allen Ronald Amundson Albert Abbott Elizabeth Adkins-Regan Muhammad Alam James Allison Katrin Amunts Geoff Abbott Roee Admon Eric Alani Mead Allison Myron Amusia Larry Abbott Walter Adriani Pietro Alano Isabel Allona Gynheung An Nicholas Abbott Ruedi Aebersold Cedric Alaux Robin Allshire Zhiqiang An Rasha Abdel Rahman Ueli Aebi Maher Alayyoubi Abigail Allwood Ranjit Anand Zalfa Abdel-Malek Martin Aeschlimann Richard Alba Julian Allwood Beau Ances Minori Abe Ruslan Afasizhev Salim Al-Babili Eric Alm David Andelman Kathryn Abel Markus Affolter Salvatore Albani Benjamin Alman John Anderies Asa Abeliovich Dritan Agalliu Silas Alben Steven Almo Gregor Anderluh John Aber David Agard Mark Alber Douglas Almond Bogi Andersen Geoff Abers Aneel Aggarwal Reka Albert Genevieve Almouzni George Andersen Rohan Abeyaratne Anurag Agrawal R. Craig Albertson Noga Alon Gregers Andersen Susan Abmayr Arun Agrawal Roy Alcalay Uri Alon Ken Andersen Ehab Abouheif Paul Agris Antonio Alcami Claudio Alonso Olaf Andersen Soman Abraham H.
    [Show full text]
  • Mycobacterium Vaccae Has Been Given to Patients with Prostate Cancer and Melanoma Indicating a Possible Beneficial Effect on Disease Activity in Such Patients
    British Journal of Cancer (2000) 83(7), 853–857 © 2000 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1401, available online at http://www.idealibrary.com on A randomized phase II study of SRL172 (Mycobacterium vaccae) combined with chemotherapy in patients with advanced inoperable non-small-cell lung cancer and mesothelioma MER O’Brien1,2, A Saini1, IE Smith1, A Webb1, K Gregory1, R Mendes1,3, C Ryan2, K Priest1, KV Bromelow3, RD Palmer4, N Tuckwell6, DA Kennard5 and BE Souberbielle1,3 1Royal Marsden Hospital NHS Trust, Sutton, Surrey, SM2 5PT; 2Kent Cancer Centre, Maidstone, ME16 9QQ; 3Dept of Molecular Medicine, King’s College, SE5 9NU, London, 4Department of Bacteriology, University College London Medical School, W1P 6DB; 5SR Pharma, 26th Floor, Centre Point, 103 New Oxford Street, London WC1A 1DD, UK Summary Mycobacterial preparations have been used with limited success against cancer apart from superficial bladder cancer. Recently, a therapeutic vaccine derived from Mycobacterium vaccae has been given to patients with prostate cancer and melanoma indicating a possible beneficial effect on disease activity in such patients. We have recently initiated a series of randomized studies to test the feasibility and toxicity of combining a preparation of heat-killed Mycobacterium vaccae (designated SRL172) with a multidrug chemotherapy regimen to treat patients with inoperable non-small cell lung cancer (NSCLC) and mesothelioma. 28 evaluable patients with previously untreated symptomatic NSCLC and mesothelioma were randomized to receive either 3 weekly intravenous combination chemotherapy alone, or chemotherapy given with monthly intra-dermal injections of SRL172. Safety and tolerability were scored by common toxicity criteria and efficacy was evaluated by survival of patients and by tumour response assessed by CT scanning.
    [Show full text]
  • Monoclonal Invariant
    Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets This information is current as of October 29, 2020. Eleanor Clancy-Thompson, Gui Zhen Chen, Paul M. Tyler, Mariah M. Servos, Marta Barisa, Patrick J. Brennan, Hidde L. Ploegh and Stephanie K. Dougan J Immunol 2017; 199:159-171; Prepublished online 2 June 2017; Downloaded from doi: 10.4049/jimmunol.1700214 http://www.jimmunol.org/content/199/1/159 Supplementary http://www.jimmunol.org/content/suppl/2017/05/31/jimmunol.170021 http://www.jimmunol.org/ Material 4.DCSupplemental References This article cites 58 articles, 28 of which you can access for free at: http://www.jimmunol.org/content/199/1/159.full#ref-list-1 Why The JI? Submit online. by guest on October 29, 2020 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Monoclonal Invariant NKT (iNKT) Cell Mice Reveal a Role for Both Tissue of Origin and the TCR in Development of iNKT Functional Subsets Eleanor Clancy-Thompson,* Gui Zhen Chen,* Paul M.
    [Show full text]