Was Babbage's Analytical Engine Intended to Be A

Total Page:16

File Type:pdf, Size:1020Kb

Was Babbage's Analytical Engine Intended to Be A History of Psychology Copyright 2005 by the Educational Publishing Foundation 2005, Vol. 8, No. 1, 35–45 1093-4510/05/$12.00 DOI: 10.1037/1093-4510.8.1.35 WAS BABBAGE’S ANALYTICAL ENGINE INTENDED TO BE A MECHANICAL MODEL OF THE MIND? Christopher D. Green York University In the 1830s, Charles Babbage worked on a mechanical computer he dubbed the Analytical Engine. Although some people around Babbage described his invention as though it had authentic mental powers, Babbage refrained from making such claims. He does not, however, seem to have discouraged those he worked with from mooting the idea publicly. This article investigates whether (1) the Analytical Engine was the focus of a covert research program into the mechanism of mentality; (2) Babbage opposed the idea that the Analytical Engine had mental powers but allowed his colleagues to speculate as they saw fit; or (3) Babbage believed such claims to be fanciful, but cleverly used the publicity they engendered to draw public and political attention to his project. Charles Babbage (1791–1871) was the inventor of a number of mechanical devices that were intended to compute mathematical and logical functions.1 The two most famous are the Difference Engine, dating from the 1820s, which was to have calculated and printed basic mathematical tables of various kinds, and the Analytical Engine. The Analytical Engine, for which designs began in the mid- 1830s, was a much more ambitious project because it was to have employed then-recent developments in abstract symbolic algebra, thereby extending its range into the logical realm rather than being limited to the strictly mathematical. Neither machine was ever completed, though Babbage built two small models of the Difference Engine. For many decades now, it has not been uncommon to find Charles Babbage named in both popular and scholarly publications as one of the primary “forefa- thers” of computer science. This trend began with the public pronouncements of Howard Aiken, the designer of the Harvard Mark I “computer” in the 1940s, who repeatedly paid homage to Babbage and claimed to have been the one to finally fulfill “Babbage’s Dream,” as he often put it. More recently, there has been a trend to cite Babbage as a father of compu- Christopher D. Green is a professor in the History & Theory of Psychology program at York University, Toronto, Ontario, Canada. He holds PhDs in psychology (1992) and philosophy (2004) from the University of Toronto. In January 2006 he will become Editor of the Journal of the History of the Behavioral Sciences. Correspondence concerning this article should be addressed to Christopher D. Green, Depart- ment of Psychology, York University, Toronto, Ontario M3J 1P3, Canada. E-mail: [email protected] 1 Much of the material presented here previously appeared in “Charles Babbage, the Analytical Engine, and the Possibility of a 19th-Century Cognitive Science.” In C. D. Green, T. Teo, & M. Shore (Eds.), The Transformation of Psychology: Influences of 19th-Century Philosophy,Technol- ogy,and Natural Science (pp. 133–152). Washington, DC: American Psychological Association. 35 36 GREEN tational cognitive science as well (e.g., Gardner, 1985; Garnham, 1987; Hauge- land, 1985; Hofstadter, 1979; Pylyshyn, 1984). Though it has received little serious consideration, this is a striking attribution, for it implies that Babbage not only intended his machines to compute useful functions, but that he also thought the operation of his machines in some way closely paralleled the operations of the human mind. In this article I examine this claim. What I ultimately discover is that Babbage himself was reluctant to associate the activities of his machines with the operations of the mind, but he seems to have been happy to allow others, even some who worked closely under his guidance, to come very close to attributing to them actual mental powers. The question we are left with, then, is whether he did this because (1) he was indeed engaged in covert psychological research, (2) he was simply so liberal minded that he allowed even his closest associates to publicly speak their minds even when their opinions of his work conflicted with his own, or (3) he allowed his assistants to risk their own reputations by making controversial claims in the hope that it would draw public attention to his project which he could then use to his advantage. The Origins of the Analytical Engine Babbage had first made a name for himself in the late 1810s when he led a mathematical revolution at Cambridge to switch from the clumsy Newtonian notation for calculus to the more easily manipulated Leibnizian notation. For his efforts, Babbage was made a fellow of the Royal Society at the age of only 24. His “revolutionary fervor” was not spent, however. Frustrated with the stodgy and aristocratic Royal Society, Babbage and a number of other “entrepreneur-scien- tists” (see Ashworth, 1994) formed the rival Astronomical Society in 1820. The Astronomical Society began life by attacking the Royal Society-endorsed Board of Longitude, which was then making up a set of new astronomical tables. While busy discovering errors in the Board of Longitude’s tables (and just about everyone else’s), Babbage hit upon the idea of developing a machine that would calculate and print the required numbers automatically, so that there could be no mistakes either in computation or copying. The machine he designed implemented a then-common mathematical technique for calculating polynomials, from which the values of a wide array of other functions could be approximated. The technique was called the “method of differences,” and thus the machine was dubbed the “Difference Engine.”2 He built a small working model in 1822, for 2 The method of differences allows complicated problems to be turned into simple addition problems by relying on the fact that polynomials have certain constant relations to each other. For instance, the square of the numbers 0, 1, 2, 3, 4, 5,...are0,1,4,9,16,25,...Bysubtracting each square from the square above it in the series (e.g.,1–0,4–1,9–4, . .), one gets 1, 3, 5, 7, 9,. These are called the “first differences” of the squares. If one subtracts each of these differences from the one above it in the series (e.g.,3–1,5–3,7–5, . .), the outcome is 2 in every case. These are called “second differences.” Once one knows that the second differences between any square in the series is 2, one can use the process in reverse to obtain a square simply by adding. For instance, what is the square of 7? It is 2 more distant from the square of 6 than the square of 6 is from the square of 5. The square of 6 is 2 more distant from the square of 5 than the square of 5 is from the square of 4, and so on down to 0. Of course, this is a fairly cumbersome procedure for a human (who can multiply), but for a machine that can only add (and that can do so extremely quickly and accurately) it is a virtually ideal algorithm. Of course, figuring out the square of 7 is not going to SPECIAL ISSUE: BABBAGE’S ANALYTICAL ENGINE 37 which he won the Astronomical Society’s “Gold Medal.” He then applied for assistance to build a full-scale version of the Engine to the Royal Society itself. Davies Gilbert, the Royal’s treasurer, lobbied the government on Babbage’s behalf. The Duke of Wellington, then Prime Minister, approved £1,000 for its construction in 1823 (Hyman, 1982, p. 52). Babbage found that the machine was more expensive to build than he had expected, so he asked for and received more money from the government, and then more, and still more. By 1833, a decade later, he had received over £17,000, and still no working machine had been completed (but for a new scale model that he kept in his house as a showpiece). The government finally suspended the project in the mid-1830s, officially with- drawing their support in 1842. Then-Prime Minister Robert Peel is reported to have quipped that, if ever completed, the Difference Engine should first be set to calculating how much money went into its construction. In the late 1820s, Babbage toured Europe, devoting much of his travel to studying Continental means of industry and manufacture. One of the things he discovered was the system set up by Marie de Prony (1755–1839) in Revolution- ary France for the calculation and publication of new logarithmic and trigono- metric tables. Faced with this monumental task, De Prony had innovatively applied Adam Smith’s (1723–1790) analysis of the division of labor (Smith, 1776, chap. 1), developed for traditional manual work, to what was a mental task. He established three sections of mental laborers: The first section was to consist of the best mathematicians in the land, who would seek out or develop the easiest methods of calculating the functions desired; the second section, consisting of six or eight junior mathematicians, would take the formulae developed by the first section and plug in the actual numbers required; the third section, made up of 60 or 80 people who could only add and subtract, would do the actual computations and return the results to the second section for checking. Babbage, in chapter 20 of his 1832 book On the Economy of Machinery and Manufactures, hints that his Difference Engine could replace the whole third section of laborers in De Prony’s system. It is notable, however, that throughout the chapter the emphasis is on efficiency and economy; the nature of mental processes themselves is never at issue.
Recommended publications
  • Simulating Physics with Computers
    International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California Institute of Technology, Pasadena, California 91107 Received May 7, 1981 1. INTRODUCTION On the program it says this is a keynote speech--and I don't know what a keynote speech is. I do not intend in any way to suggest what should be in this meeting as a keynote of the subjects or anything like that. I have my own things to say and to talk about and there's no implication that anybody needs to talk about the same thing or anything like it. So what I want to talk about is what Mike Dertouzos suggested that nobody would talk about. I want to talk about the problem of simulating physics with computers and I mean that in a specific way which I am going to explain. The reason for doing this is something that I learned about from Ed Fredkin, and my entire interest in the subject has been inspired by him. It has to do with learning something about the possibilities of computers, and also something about possibilities in physics. If we suppose that we know all the physical laws perfectly, of course we don't have to pay any attention to computers. It's interesting anyway to entertain oneself with the idea that we've got something to learn about physical laws; and if I take a relaxed view here (after all I'm here and not at home) I'll admit that we don't understand everything.
    [Show full text]
  • Analytical Engine, 1838 ALLAN G
    Charles Babbage’s Analytical Engine, 1838 ALLAN G. BROMLEY Charles Babbage commenced work on the design of the Analytical Engine in 1834 following the collapse of the project to build the Difference Engine. His ideas evolved rapidly, and by 1838 most of the important concepts used in his later designs were established. This paper introduces the design of the Analytical Engine as it stood in early 1838, concentrating on the overall functional organization of the mill (or central processing portion) and the methods generally used for the basic arithmetic operations of multiplication, division, and signed addition. The paper describes the working of the mechanisms that Babbage devised for storing, transferring, and adding numbers and how they were organized together by the “microprogrammed” control system; the paper also introduces the facilities provided for user- level programming. The intention of the paper is to show that an automatic computing machine could be built using mechanical devices, and that Babbage’s designs provide both an effective set of basic mechanisms and a workable organization of a complete machine. Categories and Subject Descriptors: K.2 [History of Computing]- C. Babbage, hardware, software General Terms: Design Additional Key Words and Phrases: Analytical Engine 1. Introduction 1838. During this period Babbage appears to have made no attempt to construct the Analytical Engine, Charles Babbage commenced work on the design of but preferred the unfettered intellectual exploration of the Analytical Engine shortly after the collapse in 1833 the concepts he was evolving. of the lo-year project to build the Difference Engine. After 1849 Babbage ceased designing calculating He was at the time 42 years o1d.l devices.
    [Show full text]
  • A Bibliography of Publications By, and About, Charles Babbage
    A Bibliography of Publications by, and about, Charles Babbage Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 08 March 2021 Version 1.24 Abstract -analogs [And99b, And99a]. This bibliography records publications of 0 [Bar96, CK01b]. 0-201-50814-1 [Ano91c]. Charles Babbage. 0-262-01121-2 [Ano91c]. 0-262-12146-8 [Ano91c, Twe91]. 0-262-13278-8 [Twe93]. 0-262-14046-2 [Twe92]. 0-262-16123-0 [Ano91c]. 0-316-64847-7 [Cro04b, CK01b]. Title word cross-reference 0-571-17242-3 [Bar96]. 1 [Bab97, BRG+87, Mar25, Mar86, Rob87a, #3 [Her99]. Rob87b, Tur91]. 1-85196-005-8 [Twe89b]. 100th [Sen71]. 108-bit [Bar00]. 1784 0 [Tee94]. 1 [Bab27d, Bab31c, Bab15]. [MB89]. 1792/1871 [Ynt77]. 17th [Hun96]. 108 000 [Bab31c, Bab15]. 108000 [Bab27d]. 1800s [Mar08]. 1800s-Style [Mar08]. 1828 1791 + 200 = 1991 [Sti91]. $19.95 [Dis91]. [Bab29a]. 1835 [Van83]. 1851 $ $ $21.50 [Mad86]. 25 [O’H82]. 26.50 [Bab51a, CK89d, CK89i, She54, She60]. $ [Enr80a, Enr80b]. $27.95 [L.90]. 28 1852 [Bab69]. 1853 [She54, She60]. 1871 $ [Hun96]. $35.00 [Ano91c]. 37.50 [Ano91c]. [Ano71b, Ano91a]. 1873 [Dod00]. 18th $45.00 [Ano91c]. q [And99a, And99b]. 1 2 [Bab29a]. 1947 [Ano48]. 1961 Adam [O’B93]. Added [Bab16b, Byr38]. [Pan63, Wil64]. 1990 [CW91]. 1991 Addison [Ano91c]. Addison-Wesley [Ano90, GG92a]. 19th [Ano91c]. Addition [Bab43a]. Additions [Gre06, Gre01, GST01].
    [Show full text]
  • Ada Lovelace the first Computer Programmer 1815 - 1852
    Ada Lovelace The first computer programmer 1815 - 1852 Biography Ada Lovelace Day I Born on December 10th, 1815 in London as Augusta Ada Byron Each second Tuesday in October is Ada Lovelace Day. A day to raise the I Parents separated when she was a baby profile of women in science, technology, engineering, and maths to create new role models for girls and women in these fields. During this day the I Father Lord Byron was a poet and died when she was 8 years old accomplishments of those women are celebrated. I Mother Lady Wentworth was a social reformer I Descended from a wealthy family I Early interest in mathematics and science, encouraged by her mother Portrait I Obtained private classes and got in touch with intellectuals, e.g. Mary Sommerville who tutored her and later introduced Lovelace to Charles Babbage at the age of 17 I Married in 1835 William King at the age of 19, shortly after becoming the Countess of Lovelace I By 1839, she had given birth to 3 children I Continued studying maths, supported among others by Augustus De Morgan, a math professor in London who taught her via correspondence I In 1843, she published a translation of an Italian academic paper about Babbage's Analytical Engine and added her famous note section (see Contributions) I Died on November 27th, 1852 at the age of 36 Contributions I First computer programmer, roughly a century before the electronic computer I A two decade lasting correspondence with Babbage about his idea of an Analytical Engine I Developed an algorithm that would enable the Analytical Engine to calculate a sequence of Bernoulli numbers, unfortunately, the machine was never built I First person to realize the power of computer programs: Not only used for calculations with numbers I Combined arts and logic, calling it poetical science Figure 3:Ada Lovelace I First reflections about artificial intelligence, but she rejected the idea Bernoulli Numbers Quotes I Play an important role in several domains of mathematics, e.g.
    [Show full text]
  • Analytical Engine: the Orig- Inal Computer
    Chapter 2 Analytical Engine: The Orig- inal Computer As we learned in the fourth grade science course, back in 1801, a French man, Joseph Marie Jacquard, invented a power loom that could weave textiles, which had been done for a long time by hand. More interestingly, this machine can weave tex- tiles with patterns such as brocade, damask, and matelasse by controlling the operation with punched wooden cards, held together in a long row by rope. 1 How do these cards work? Each wooden card comes with punched holes, each row of which corresponds to one row of the design. In each position, if the needle needs to go through, there is a hole; other- wise, there is no hole. Multiple rows of holes are punched on each card and all the cards that compose the design of the textile are hooked together in order. 2 What do we get? With the control of such cards, needs go back and forth, moving from left to the right, row by row, and come up with something like the following: Although the punched card concept was based on some even earlier invention by Basile Bou- chon around 1725, “the Jacquard loom was the first machine to use punch cards to con- trol a sequence of operations”. Let’s check out a little demo as how Jacquard’s machine worked. 3 Why do we talk about a loom? With Jacquard loom, if you want to switch to a different pattern, you simply change the punched cards. By the same token, with a modern computer, if you want it to run a different application, you simply load it with a different program, which used to keep on a deck of paper based punched cards.
    [Show full text]
  • Ada and the First Computer
    Ada and the First Computer The collaboration between Ada, countess of Lovelace, and computer pioneer Charles Babbage resulted in a landmark publication that described how to program the world’s first computer by Eugene Eric Kim and Betty Alexandra Toole eople called Augusta Ada King’s father “mad and bad” for his wild ways, but he was better known as Lord Byron, the poet. Ada inherited her famous father’s P way with words and his zest for life. She was a beautiful, flirtatious woman who hobnobbed with England’s elite and who died at the youthful age of 36, the same age at which her father died. And like Byron, Ada is best known for something she wrote. In 1843 she published an influential set of notes that described Charles Babbage’s An- alytical Engine, the first automatic, general-purpose computing machine ever designed. Although the Analytical Engine was never built—largely because Babbage could not raise the funds for its construction—Ada’s notes included a program for using it to com- pute a series of figures called Bernoulli numbers [see box on page 78]. Ada’s notes established her importance in computer science, but her fascinating life and lineage—and her role as a female pioneer in a field in which women have always been notoriously underrepresented—have lately turned her into an icon. In addition to numerous biographies, she has inspired plays and novels written by the likes of such lu- minaries as Tom Stoppard and Arthur C. Clarke. Conceiving Ada, a movie loosely based on her life, was released by Fox Lorber in February.
    [Show full text]
  • History of Computing Prehistory – the World Before 1946
    Social and Professional Issues in IT Prehistory - the world before 1946 History of Computing Prehistory – the world before 1946 The word “Computing” Originally, the word computing was synonymous with counting and calculating, and a computer was a person who computes. Since the advent of the electronic computer, it has come to also mean the operation and usage of these machines, the electrical processes carried out within the computer hardware itself, and the theoretical concepts governing them. Prehistory: Computing related events 750 BC - 1799 A.D. 750 B.C. The abacus was first used by the Babylonians as an aid to simple arithmetic at sometime around this date. 1492 Leonardo da Vinci produced drawings of a device consisting of interlocking cog wheels which could be interpreted as a mechanical calculator capable of addition and subtraction. A working model inspired by this plan was built in 1968 but it remains controversial whether Leonardo really had a calculator in mind 1588 Logarithms are discovered by Joost Buerghi 1614 Scotsman John Napier invents an ingenious system of moveable rods (referred to as Napier's Rods or Napier's bones). These were based on logarithms and allowed the operator to multiply, divide and calculate square and cube roots by moving the rods around and placing them in specially constructed boards. 1622 William Oughtred developed slide rules based on John Napier's logarithms 1623 Wilhelm Schickard of Tübingen, Württemberg (now in Germany), built the first discrete automatic calculator, and thus essentially started the computer era. His device was called the "Calculating Clock". This mechanical machine was capable of adding and subtracting up to 6 digit numbers, and warned of an overflow by ringing a bell.
    [Show full text]
  • A Short History of Computing
    A Short History of Computing 01/15/15 1 Jacques de Vaucanson 1709-1782 • Gifted French artist and inventor • Son of a glove-maker, aspired to be a clock- maker • 1727-1743 – Created a series of mechanical automations that simulated life. • Best remembered is the “Digesting Duck”, which had over 400 parts. • Also worked to automate looms, creating the first automated loom in 1745. 01/15/15 2 1805 - Jacquard Loom • First fully automated and programmable loom • Used punch cards to “program” the pattern to be woven into cloth 01/15/15 3 Charles Babbage 1791-1871 • English mathematician, engineer, philosopher and inventor. • Originated the concept of the programmable computer, and designed one. • Could also be a Jerk. 01/15/15 4 1822 – Difference Engine Numerical tables were constructed by hand using large numbers of human “computers” (one who computes). Annoyed by the many human errors this produced, Charles Babbage designed a “difference engine” that could calculate values of polynomial functions. It was never completed, although much work was done and money spent. Book Recommendation: The Difference Engine: Charles Babbage and the Quest to Build the First Computer by Doron Swade 01/15/15 5 1837 – Analytical Engine Charles Babbage first described a general purpose analytical engine in 1837, but worked on the design until his death in 1871. It was never built due to lack of manufacturing precision. As designed, it would have been programmed using punch-cards and would have included features such as sequential control, loops, conditionals and branching. If constructed, it would have been the first “computer” as we think of them today.
    [Show full text]
  • Intro to Computers Where Did They Come From? Part 1 - Pre-1940S Define Computer
    Intro to Computers Where did they come from? Part 1 - Pre-1940s Define Computer Man vs. Machine Define Computer 1600’s Definition: -Someone who makes calculations. Late 1800’s Definition: -A machine that makes calculations. Modern Definition: -An electronic device used for storing and processing data Lets go back to the beginning! Computers exist because of math. One of the earliest “calculators” is called the Abacus. -Been around for 1000s of years Online Abacus https://www.online-calculator.com/full-screen-abacus/ The Next Big Step! Gottfried Wilhelm Leibniz invented the Stepped Reckoner in 1672. Stepped Reckoner -Made calculations using a gear mechanism called the Leibniz Wheel. -The first machine that could add, subtract, multiply, and divide Leibniz Wheel -or stepped drum is a cylinder with a set of teeth of incremental lengths -Was used for over 200 years in calculating Machines. -Even into the 1970s And then came this guy... Charles Babbage -Babbage saw a better way of crunching numbers -In 1823 he began construction on the Difference Engine -A machine able to do complex calculations and output tables of numbers. Difference Engine -Babbage used a loan from the British government to make the Difference Engine -Due to the inability to make precise metal parts for cheap, Babbage never fully constructed the Difference Engine and the project was abandoned. -In 2000, a Difference Engine was fully built to celebrate Babbage’s 200th birthday. The machine actually worked! This settled the debate on whether his idea would really operate. Difference Engine Analytical Engine -While attempting to construct the Difference Engine, Babbage designed an even more complex machine called the Analytical Engine -This machine was never built, but was the first design of a machine that had memory and could be programmed, thus, making it the first computer as we think of them today.
    [Show full text]
  • Flight Results of the Inflatesail Spacecraft and Future Applications of Dragsails
    SSC18-XI-04 FLIGHT RESULTS OF THE INFLATESAIL SPACECRAFT AND FUTURE APPLICATIONS OF DRAGSAILS B Taylor, C. Underwood, A. Viquerat, S Fellowes, R. Duke, B. Stewart, G. Aglietti, C. Bridges Surrey Space Centre, University of Surrey Guildford, GU2 7XH, United Kingdom, +44(0)1483 686278, [email protected] M. Schenk University of Bristol Bristol, Avon, BS8 1TH, United Kingdom, +44 (0)117 3315364, [email protected] C. Massimiani Surrey Satellite Technology Ltd. 20 Stephenson Rd, Guildford GU2 7YE; United Kingdom, +44 (0)1483 803803, [email protected] D. Masutti, A. Denis Von Karman Institute for Fluid Dynamics, Waterloosesteenweg 72, B-1640 Sint-Genesius-Rode, Belgium, +32 2 359 96 11, [email protected] ABSTRACT The InflateSail CubeSat, designed and built at the Surrey Space Centre (SSC) at the University of Surrey, UK, for the Von Karman Institute (VKI), Belgium, is one of the technology demonstrators for the QB50 programme. The 3.2 kilogram InflateSail is “3U” in size and is equipped with a 1 metre long inflatable boom and a 10 square metre deployable drag sail. InflateSail's primary goal is to demonstrate the effectiveness of using a drag sail in Low Earth Orbit (LEO) to dramatically increase the rate at which satellites lose altitude and re-enter the Earth's atmosphere. InflateSail was launched on Friday 23rd June 2017 into a 505km Sun-synchronous orbit. Shortly after the satellite was inserted into its orbit, the satellite booted up and automatically started its successful deployment sequence and quickly started its decent. The spacecraft exhibited varying dynamic modes, capturing in-situ attitude data throughout the mission lifetime.
    [Show full text]
  • History in the Computing Curriculum 6000 BC to 1899 AD
    History in the Computing Curriculum Appendix A1 6000 BC to 1899 AD 6000 B.C. [ca]: Ishango bone type of tally stick in use. (w) 4000-1200 B.C.: Inhabitants of the first known civilization in Sumer keep records of commercial transactions on clay tablets. (e) 3000 B.C.: The abacus is invented in Babylonia. (e) 1800 B.C.: Well-developed additive number system in use in Egypt. (w) 1300 B.C.: Direct evidence exists as to the Chinese using a positional number system. (w) 600 B.C. [ca.]: Major developments start to take place in Chinese arithmetic. (w) 250-230 B.C.: The Sieve of Eratosthenes is used to determine prime numbers. (e) 213 B.C.: Chi-Hwang-ti orders all books in China to be burned and scholars to be put to death. (w) 79 A.D. [ca.]: "Antikythera Device," when set correctly according to latitude and day of the week, gives alternating 29- and 30-day lunar months. (e) 800 [ca.]: Chinese start to use a zero, probably introduced from India. (w) 850 [ca.]: Al-Khowarizmi publishes his "Arithmetic." (w) 1000 [ca.]: Gerbert describes an abacus using apices. (w) 1120: Adelard of Bath publishes "Dixit Algorismi," his translation of Al-Khowarizmi's "Arithmetic." (w) 1200: First minted jetons appear in Italy. (w) 1202: Fibonacci publishes his "Liber Abaci." (w) 1220: Alexander De Villa Dei publishes "Carmen de Algorismo." (w) 1250: Sacrobosco publishes his "Algorismus Vulgaris." (w) 1300 [ca.]: Modern wire-and-bead abacus replaces the older Chinese calculating rods. (e,w) 1392: Geoffrey Chaucer publishes the first English-language description on the uses of an astrolabe.
    [Show full text]
  • NVS 3-1-2 P-Jagoda
    Clacking Control Societies: Steampunk, History, and the Difference Engine of Escape Patrick Jagoda (University of Chicago, Illinois, USA) Abstract: Steampunk fiction uses strategic anachronism, counterfactual scenarios, and historical contingency in order to explore the interconnections between nineteenth-century and contemporary techno-scientific culture. William Gibson and Bruce Sterling’s novel The Difference Engine (1990), a prominent exemplar of this contemporary genre, depicts a neo- Victorian setting in which the inventor Charles Babbage builds a proto-computer based on the “Analytical Engine” design that he proposed but never actually constructed in our own nineteenth century. The alternative chronology of the novel re-imagines Victorian texts and historical events, including Benjamin Disraeli’s Sybil (1845) and the industrial revolution, in order to examine literary history and investigate historiography. This essay analyses The Difference Engine ’s commentary on the history of power relations. It contends that the novel’s alternative genealogy helps us examine the evolution of control systems and think about the shape of history. Keywords : biopolitics, control, The Difference Engine , William Gibson, historiography, power, self-reflexivity, steampunk, Bruce Sterling, technology. ***** Verily it was another world then…. Another world, truly: and this present poor distressed world might get some profit by looking wisely into it, instead of foolishly. (Thomas Carlyle, Past and Present [1843], 2009: 53-54) “But then Stephen does
    [Show full text]