Submitted : September 26 th , 2020 – Accepted : June 4th , 202 1 – Posted online : June 16 nd , 202 1

To link and cite this article:

doi: 10.5710/AMGH.04.06.2021.3403

1 NEW RECORD OF A PHOCID (MAMMALIA, , PHOCIDAE) IN

2 THE LATE OF PATAGONIA, ARGENTINA

3 NUEVO REGISTRO DE UN FÓCIDO (MAMMALIA, CARNIVORA, PHOCIDAE) EN

4 EL MIOCENO TARDÍO DE PATAGONIA, ARGENTINA

5

6 SEBASTIÁN ECHARRI,*,1 DAMIÁN E. PEREZ,2 MARCELO MIÑANA,1 AND

7 SERGIO O. LUCERO,1

8 1 Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" – CONICET.

9 Av. Ángel Gallardo 470, C1405DJR, Buenos Aires, Argentina.

10 [email protected]; [email protected];

11 [email protected]

12 2 Instituto Patagónico de Geología y Paleontología (IPGP CCT CONICET-CENPAT), Bvd.

13 Brown 2915, U9120CD, Puerto Madryn, Chubut, Argentina. [email protected]

14

15 16 págs. (text+references); 2 figs.

16

17 Running header: ECHARRI ET AL.: NEW PHOCID FROM PATAGONIA

18 Short description: New fossil record of a phocid from Puerto Madryn Formation, the first

19 skull remains for the group in Patagonia.

20

21 Corresponding author: Sebastián Echarri, [email protected]

1

22

23 Keywords. Chubut. Kawas. Neogene. Pinnipedia. Properichtychus. Puerto Madryn

24 Formation. South Atlantic.

25 Palabras clave. Chubut. Kawas. Neógeno. Pinnipedia. Properichtychus. Formación Puerto

26 Madryn. Atlántico Sur.

20

27

28 TRUE SEALS (family Phocidae) include 19 living grouped in two living subfamilies:

29 Gray, 1869 and Gray, 1821 (e.g., King, 1964; Bastida et al., 2007).

30 Monophyly of the Phocidae is supported by morphological and molecular evidence (Davis

31 et al., 2004; Higdon et al., 2007; Amson & Muizon, 2014; Berta et al., 2018). A third

32 subfamily, the Devinophocinae, includes only one genus with two fossil species:

33 Devinophoca claytoni and D. emryi (Koretsky & Holec, 2002; Koretsky & Rahmat, 2015;

34 Rahmat & Koretsky, 2018). The subfamily Monachinae presents three well-differenced

35 clades: the tribes Monachini (monk seals), Miroungini (elephant seals), and

36 (leopard seals and others); while the subfamily Phocinae includes: the tribes Erignathini

37 (bearded seals), Cystophorini (hooded seals), and Phocini (common seals) (Muizon, 1981;

38 Koretsky, 2001; Davis et al., 2004; Higdon et al., 2007; Fulton & Strobeck, 2010; Scheel et

39 al., 2014; Berta et al., 2018). This classification is primarily based on living taxa, but other

40 authors proposed different arrangements. For example, Koretsky & Rahmat (2013)

41 suggested a fourth subfamily, the Cystophorinae, including some former members of the

42 Monachinae.

43 Based on current distributions, species of Phocinae are commonly considered

44 Boreal seals (King, 1964; Dewaele et al., 2018a,b). However, during the Neogene, the

45 Phocinae has at least one record in the Southern Hemisphere (Cozzuol, 2001), and the

46 species of the Monachinae seals were present in the Northern and Southern Hemispheres

47 (Muizon, 1981; Berta et al., 2015; Govender, 2015; Dewaele et al., 2018b).

48 In the Southern Hemisphere, fossil phocids are restricted to a few scattered

49 localities in Chile, Perú, Argentina, South Africa, Australia, and New Zealand (Hendey & 20

50 Repenning, 1972; Muizon & Hendey, 1980; Muizon, 1981; Cozzuol, 2001; Walsh & Naish,

51 2002; Fitzgerald, 2005; Valenzuela-Toro et al., 2013, 2015; Berta et al., 2018; Rule et al.,

52 2019, 2020). On the South Eastern Atlantic coast, fossils of seals are restricted to few

53 localities from the Miocene and Pleistocene of Argentina (Muizon & Bond, 1982; Cozzuol,

54 1996, 2001; Soibelzon & Bond, 2013).

55 Two phocid species are known for the Miocene of Argentina, Properiptychus

56 argentinus (Ameghino, 1893) and Kawas benegasorum Cozzuol, 2001. The holotype of P.

57 argentinus is a right maxilla from the Paraná Formation, Entre Ríos Province, originally

58 described by Ameghino (1893) as a condylarth, but posteriorly assigned to Monachinae

59 (Muizon and Bond,1982; see also Rule et al., 2020a,b). Additional specimens include teeth

60 and isolated postcranial elements (Muizon & Bond, 1982; Soibelzon & Bond, 2013).

61 Kawas benegasorum is only known by the holotype, a partially articulated skeleton from

62 the Puerto Madryn Formation, but no parts of the skull are known for this species, except

63 for three isolated teeth (Cozzuol, 2001). This taxon was described initially as a Phocinae

64 (Cozzuol, 2001) but this phylogenetic interpretation was later discussed (Koretsky and

65 Domning, 2014). Recent phylogenetic analyses placed Kawas as a stem Phocinae (Berta et

66 al., 2018; Dewaele et al., 2018a) or related to Devinophoca Koretsky & Holec, 2002 (Rule

67 et al., 2020b).

68 In this contribution, we describe a dentary fragment attributed to a phocid from the

69 Puerto Madryn Formation, late Miocene of Valdés Peninsula, Chubut, Argentina (Figs. 1–

70 2). Despite its fragmentary nature, the scarce fossil record of Pinnipedia in the South

71 Eastern Atlantic coast makes the present record noteworthy. This dentary is the second

72 report of a phocid in the Miocene of Patagonia. 20

73 Institutional Abbreviations. MACN, Museo Argentino de Ciencias Naturales “Bernardino

74 Rivadavia”, Ciudad Autónoma de Buenos Aires, Argentina (A, Colección Ameghino, Pv,

75 Colección Paleontología de Vertebrados, MA, Colección Mastozoología); MEF, Museo

76 Paleontológico “Egidio Feruglio”, Trelew, Chubut, Argentina; MASP, Museo de Ciencias

77 Naturales y Antropológicas “Prof. Antonio Serrano” (ex Museo de Entre Ríos), Paraná,

78 Entre Ríos, Argentina.

79 Specimens used for comparisons. MACN-A 11593 (holotype of Properiptychus

80 argentinus); MACN-Pv 3538 (Properiptychus argentinus); MASP 685 (Phocidae indet.);

81 MEF-PV 601 (Kawas benegasorum); MACN-Ma 13.26 (Mirounga leonina); MACN-Ma

82 20435 (Hydrurga leptonyx); MACN-Ma 20628 (Leptonychotes weddellii); MACN-Ma

83 19.20 (Lobodon carcinophaga); MACN-Ma 48.259 (Ommatophoca rossii).

84

85 SYSTEMATIC PALEONTOLOGY

86 Order CARNIVORA Bowdich, 1821

87 Suborder PINNIPEDIA Illiger, 1811

88 Superfamily PHOCOIDEA Gray, 1825

89 Family PHOCIDAE Gray, 1821

90 Phocidae gen. et sp. indet.

91 Fig. 2.1–2.3

92 Referred material. MACN-Pv 20064, a fragment of an edentulous right dentary (Fig. 2.1–

2.3). 93 2.3).

94 Geographic occurrence. MACN-Pv 20064 was collected from the cliffs southeast of

95 Puerto Pirámides, Valdés Peninsula, Patagonia, Argentina. 20

96 Stratigraphic occurrence. MACN-Pv 20064 comes from the upper levels of the Puerto

97 Madryn Formation (Fig. 1). This unit is formed by 150 meters of intercalation of coquinas,

98 tuffs, limestones, sandstones, and heterolithic sandstones. A regressive phase is recognized

99 towards the top of the sequence (del Río et al., 2001). A late Miocene age was proposed

100 based on microfossils (Malumián & Masiuk, 1973; Masiuk et al., 1976; Malumián, 1978)

101 and supported by vertebrates (Dozo et al., 2010) and mollusks (del Río, 1990). Also, early

102 late Miocene radiometric ages were determined close to the top (10 ± 0.3 Ma; Scasso et al.,

103 2001) or at the top (9.41 Ma; Zinsmeister et al., 1981) of the unit. Sedimentation of the

104 Puerto Madryn Formation corresponds to a marine transgression informally known as the

105 “Entrerriense” Transgression (see Cuitiño et al., 2017 for stratigraphic description and

106 palaeoenvironmental reconstruction).

107 The Puerto Pirámides stratigraphic section of the Puerto Madryn Formation exposes

108 northeast of the Golfo Nuevo and 2 km east from the homonym locality. It is formed by 50

109 meters of sandstones, tuffaceous sandstones, and limestones, with cross-bedded

110 stratification and ondulites. These deposits correspond to a closed marine environment

111 dominated by tidal regimes in normal marine conditions (del Río et al., 2001). Fossil

112 vertebrates remains are well-preserved and usually disarticulated, and they are mainly

113 cetacean fragments, such as balaenids, neobalaenines, balaenopterids, and ziphiids (Cuitiño

114 et al. 2017). Fossil invertebrates include significant accumulations of the echinoid

115 Monophoraster darwini (Desor, 1847), abundant oysters, the pectinid ‘Aequipecten’

116 paranensis (d’Orbigny, 1842), and the brachiopod Pachymagas piramidesia (Ihering,

117 1903). The horizon where the Patagonian Phocinae K. benegasorum (MEF-Pv 601, Punta

118 San Román, north of the Valdés Peninsula) was collected (Cozzuol, 2001) correlates with 20

119 the level where MACN-Pv 20064 was found.

120 Description. MACN-Pv 20064 is an incomplete right dentary (Fig. 2.1–2.3), preserving the

121 medial portion of the body, with the alveoli for p3, p4, and m1. The body is low and

122 narrow, and it widens anteriorly. The mandibular canal is visible in anterior and posterior

123 views. The lingual and labial surfaces on the dentary are smooth. The symphysis and

124 masseteric fossa are not preserved (Fig. 2.1–2.3).

125 In occlusal view (Fig. 2.1), the margins of the dentary are sub-parallel. MACN-Pv

126 20064 has six well-defined alveoli corresponding to three birradiculated postcanine teeth

127 (p3, p4, and m1), with a rounded outline for alveoli of p3 and p4, and slightly oval for m1,

128 which is longer than wide. Alveoli are placed in a straight line and are nearly similar in

129 size. In labial view (Fig. 2.2), MACN-Pv 20064 presents a smooth surface and a concave

130 area at the level of p4, where the texture of the bone becomes slightly porous. There are

131 two mental foramina, opening in a common depression, located ventral to the position of

132 the interalveolar septum of p3 (Fig. 2.2). This position is almost identical to that of the

133 posteriormost mental foramina of Piscophoca sp. (Walsh & Naish, 2002) and a Phocidae

134 indet. of the Pliocene of Australia (Fitzgerald, 2005). Measurements are provided in Table

1. 135 1.

136 The concavity observed at the level of the p4 in labial and occlusal views could be

137 consistent with a pathology. The alveoli of p4 are damaged, but they remain open.

138

139

140 DISCUSSION

141 Taxonomical assignment of MACN-Pv 20064 20

142 MACN-Pv 20064 does not include elements preserving synapomorphies of suprageneric

143 taxa (see Berta, 1991; Berta & Wyss, 1994; Fitzgerald, 2005). MACN-Pv 20064 is

144 referred to the family Phocidae based on its morphology (e.g., alveoli corresponding to

145 large and bulbous birradiculate teeth, straight horizontal ramus with subparallel margins)

146 and measurements more similar to the dentaries of phocid seals than other

147 (families and Otariidae) (Fitzgerald, 2005). Also, postcanine teeth in the South

148 American otariids and Otaria are unirradiculated. In MACN-Pv 20064 as in

149 birradiculate Phocidae, the alveolar walls between consecutive postcanine teeth are wider

150 than those observed between the anterior and posterior alveoli of a single birradiculate

151 teeth. In contrast, the alveoli of unirradiculate teeth in phocid species tend to be more

152 rounded and larger than the alveoli of birradiculate teeth. In otariids, the distance between

153 the alveoli is homogeneous, unlike what we observed in phocids. Consequently, we assign

154 MACN-Pv 20064 to the family Phocidae. Among phocids, the absence of an oblique tooth-

155 row differentiates MACN-Pv 20064 from the Monachinae subfamily, but because the

156 specimen lacks characters valuables for taxonomy (e.g., presence of mandibular mental

157 process or symphysis reaching the level of the alveolus of p2) (Koretsky & Domning,

158 2014) our determination is inconclusive. Because of the poor preservation of MACN-Pv

159 20064, we were unable to assign the specimen with certainty to the Monachinae or

160 Phocinae.

161

162 Comparisons with other fossil and living seals

163 MACN-Pv 20064 differs from the stem Phocidae genus Devinophoca Koretsky &

164 Holec, 2002 by having a higher dentary, broader and anteroposteriorly compressed alveoli 20

165 of m1 (which is single-rooted in Devinophoca claytoni Koretsky & Holec, 2002), and

166 mental foramina placed in a more central position of the ramus height (more dorsal in D.

167 claytoni and more ventral in D. emryi Koretsky & Rahmat, 2015) (Rahmat & Koretsky,

168 2018). MACN-Pv 20064 differs from the basal Phocinae True, 1906 by having

169 a less swollen and more robust body. Among fossil and living crown Phocidae seals,

170 MACN-Pv 20064 differs from the Phocinae seals of the genus Cystophora Nilsson. 1820,

171 by their less strong condition, with alveoli of p4 and m1 similar in size and alveoli of m1

172 with oval outline (Koretsky & Rahmat, 2013; Rahmat & Koretsky, 2018). MACN-Pv

173 20064 differs from largha Pallas, 1811 and P. vitulina Linnaeus, 1758 because they

174 have rounded molar alveoli, and from Halichoerus Nilsson, 1820 by their larger alveoli.

175 MACN-Pv 20064 differs from the genera Praepusa Kretzoi, 1941 and Cryptophoca

176 Koretsky & Ray, 1994 because the alveoli of p4 are not smaller than m1. MACN-Pv 20064

177 does not belong to a species of the extant genera of living Lobodontini or the genus

178 Mirounga Gray, 1827 (tribe Miroungini), because of its smaller size, lower height and less

179 strong condition. MACN-Pv 200064 shares with the fossil Lobodontini Hadrokirus Amson

180 & Muizon, 2014 a dentary body that widens anteriorly, but in the latter, the dentary is

181 higher and more robust, and tooth row is oblique. MACN-Pv 20064 differs from the

182 monachines Monachus Fleming, 1822, Pliophoca Tavani, 1941, Pontophoca Kretzoi, 1941,

183 and Afrophoca Koretsky & Domning, 2014 because it has a more slender dentary, with

184 postcanine alveoli placed in a straight line instead of an oblique line and the alveoli of p4

185 equal in size to p3. MACN-Pv 20064 is closer in morphology to the Pliocene monachinaes

186 Acrophoca longirostris Muizon, 1981 and Piscophoca capensis Muizon, 1981 from Peru,

187 and Homiphoca capensis Hendey & Repenning, 1972 from South Africa. However, 20

188 MACN-Pv 20064 is more robust than Acrophoca and less robust than Piscophoca, while

189 Homiphoca has the alveoli of p4 smaller than m1. A generic determination of MACN-Pv

190 20064 is impossible considering its poor state of preservation.

191

192 Comparisons with other Miocene seals of Argentina

193 We were unable to compare MACN-Pv 20064 with the holotype of Kawas

194 benegasorum, the only phocid known from the Puerto Madryn Formation, because this

195 lacks skull elements other than isolated teeth. In K. benegasorum teeth are double-rooted

196 and similar to Acrophoca, Piscophoca, and Homiphoca, whose roots match with the alveoli

197 of MACN-Pv 20064. The eventual assignment of MACN-Pv 20064 to K. benegasorum can

198 not be ruled out. Properiptychus argentinus (Fig. 2.4–2.6), the second phocid from

199 Argentina, recovered from the Paraná Formation differs from MACN-Pv 20064 by having a

200 dentary more robust, slightly higher, more labio-lingually expanded towards the anterior

201 end, and slightly more convex and with a roughly lateral surface. We were unable to

202 identify intraspecific or ontogenetic variation. We consider MACN-Pv 200064 as Phocidae

203 indet.

204 We also suggest that the postcranial elements (humerus, radius, and acetabular

205 region of pelvic girdle) that were assigned to Properiptychus argentinus by Muizon &

206 Bond (1982) and Soibelzon & Bond (2013) should be considered by caution, since the

207 holotype does not preserve comparable elements. It could not be ruled out that these

208 elements belong to another species of phocids. Also, Muizon & Bond (1982) assign the

209 specimen MASP 685 as a paratype of P. argentinus, but in the original description of the

210 species, Ameghino (1893) mentioned and described only the specimen MACN-A 11593. 20

211 The article 72.4 of the International Code of Zoological Nomenclature does not validate the

212 assignation of MASP 685 as paratype.

213

214 Paleobiogeographic interpretations

215 Many authors (e.g., Cozzuol, 2001; Arnason et al., 2006; Govender, 2015; Rule et al.,

216 2020b) interpreted a North Atlantic origin of the Phocidae, considering the late Oligocene

217 record of North America (Koretsky & Sanders, 1997) as the oldest for the group, followed

218 by several independent dispersal events between northern and southern hemispheres

219 (Cozzuol, 2001; Rule et al., 2020b). The presence of phocid seals in the Southern

220 Hemisphere has established early in the Neogene and later replaced by otariid seals

221 (Valenzuela-Toro et al., 2013). MACN-Pv 20064 is an example of the Miocene–Pliocene

222 radiation of the group in the South Hemisphere.

223 The morphology of MACN-Pv 20064 is consistent with Cozzuol’s hypothesis who

224 considered the presence of Phocidae (such as Phocinae seals) in the Miocene of South

225 America. New findings and studies of the known specimens has the potential to provide a

226 better understanding of the evolution of phocids in South America and their biogeographic

227 implications.

228 The oldest Phocidae remains in the Southern Hemisphere are from Beaumaris site in

229 Australia (late Miocene–early Miocene, Rule et al., 2020) and those from Argentina

230 (Kawas benegasorum, Properiptychus argentinus, and the material discussed in work). In

231 conclusion, MACN-Pv 20064 is the third Phocidae material for the South Western Atlantic

232 Ocean and one of the oldest for the family in the Southern Hemisphere.

233 ACKNOWLEDGMENTS 20

234 We want to thank the curators of MACN, Dr. Laura Chornogubsky and Dr. Martin Ezcurra

235 (Colección Nacional de Paleovertebrados), and Dr. Pablo Teta and Dr. Guillermo Cassini

236 (Colección Nacional de Mastozoología) for access to the collections under their care;

237 Marcos Becerra (MEF) for sending photographs of Kawas benegasorum, and Graciela

238 Ibargoyen (MASP) for sharing information about the specimens of Properiptychus

239 argentinus. Analía Forasiepi for suggestions with the grammar and observations. We also

240 thank Mario Cozzuol and two other anonymous reviewers for their valuable comments and

241 suggestions. This contribution is the first collaboration of Fufis (a group of researchers,

242 fellows and technicians formed in 2010 to analyze different questions of natural life and the

243 natural sciences during informal meetings in the halls of MACN).

244

245 REFERENCES

246 Ameghino, F. (1893). Les Mammifères fossiles de la Patagonie australe. Revue Scientifique,

247 51, 13–17.

248 Amson, E. & Muizon, C. de. (2014). A new durophagous phocid (Mammalia: Carnivora)

249 from the late Neogene of Peru and considerations of monachine seals phylogeny.

250 Journal of Vertebrate Paleontology, 12(5), 523–548.

251 Arnason, U., Gullberg, A., Janke, A., Kullberg, M., Lehman, N., Petrov, E. & Väinölä, R.

252 (2006), Pinniped phylogeny and a new hypothesis for their origin and dispersal.

253 Molecular Phylogenetics and Evolution, 41, 345–354.

254 Bastida, R., Rodríguez, D., Secchi, E. & da Silva, V. (2007). Mamíferos acuáticos de

255 Sudamérica y Antártida. Buenos Aires. Vázquez Mazzini Editores.

256 Berta, A. (1991): New * (Pinnipedimorpha) from the Oligocene and Miocene of 20

257 Oregon and the role of "Enaliarctids" in pinniped phylogeny. Smithsonian

258 Contributions to Paleobiology, 69, 1–33.

259 Berta, A. & Wyss, A. R. (1994.) Pinniped phylogeny. Proceedings of San Diego Society of

260 Natural History, 29, 33–56.

261 Berta, A., Churchill, M. & Boessenecker, R.W. (2018). The origin and evolutionary biology

262 of Pinnipeds: Seals, Sea Lions, and . Annual Review of Earth and Planetary

263 Sciences, 46, 203–228.

264 Berta, A., Kienle, S., Bianucci, G. & Sorbi., S. (2015). A reevaluation of Pliophoca etrusca

265 (Pinnipedia, Phocidae) from the Pliocene of Italy: Phylogenetic and biogeographic

266 implications. Journal of Vertebrate Paleontolology, 35(1), e889144.

267 Bowdich, T. E. (1821). An Analysis of the Natural Classifications of Mammalia: For the

268 Use of Students and Travellers. J. Smith. Paris.

269 Cozzuol, M.A. (1996). The record of aquatic in Southern South America.

270 Münchner Geowisssenschaftliche Abhandlungen, Reihe A, Geologie und

271 Palaöntologie, 30, 321–342.

272 Cozzuol, M. A. (2001). A “Northern” seal from the Miocene of Argentina: Implications for

273 phocid phylogeny and biogeography. Journal of Vertebrate Paleontology, 21, 415–

274 421.

275 Cuitiño, J., Dozo, M., del Río, C. J., Buono, M., Palazzesi, L., Fuentes, S. & R. A. Scasso.

276 (2017). Miocene Marine Transgressions: Paleoenvironments and Paleodiversity. In

277 P. Bouza & A. Bilmes (Eds.) Late Cenozoic of Península Valdés, Patagonia,

278 Argentina (pp. 47–84). Springer Earth System Sciences.

279 del Río, C. J. (1990). Composición, origen y significado paleoclimático de la malacofauna 20

280 "Entrerriense" (Mioceno Medio) de la Argentina. Anales de la Academia Nacional

281 de Ciencias Físicas y Naturales, 42, 205–224.

282 del Río, C.J., Martínez, S. & Scasso, R.A. (2001). Nature and origin of spectacular marine

283 Miocene shell beds of northeastern Patagonia (Argentina): paleoecological and

284 bathymetric significance. Palaios, 16, 3–25.

285 Davis, C., Delisle, I., Stirling, I., Siniff, D. & Strobeck, C. (2004). A phylogeny of the

286 extant Phocidae inferred from complete mitochondrial DNA coding regions.

287 Molecular Phylogenetics and Evolution, 33(2), 363–377.

288 Desor, E. (1847). Sur quelques oursins fossiles de la Patagonia. Bulletin de la Société

289 Géologique de France, series 2(4), 1–287.

290 Dewaele, L., Lambert, O. & Stewart, L. (2018a). A critical revision of the fossil record,

291 stratigraphy and diversity of the Neogene seal genus Monotherium (Carnivora,

292 Phocida). Royal Society Open Science, 5, 171669.

293 Dewaele, L., Peredo, C.M., Meyvisch, P. & Louwye, S. (2018b). Diversity of late Neogene

294 Monachinae (Carnivora, Phocidae) from the North Atlantic, with the description of

295 two new species. Royal Society Open Science, 5,172437.

296 d’Orbigny, A. (1842). Voyage dans l' Amerique meridionale (Le Brasil, l'Uruguay, executé

297 pendant les années 1826-1833), Mollusques. Tome 5(3). Bertrand, Paris.

298 Dozo, M. T., Bouza, P., Monti, A., Palazzesi, L., Barreda, V., Massaferro, G., Scasso, R.A.,

299 & Tambussi, C.P.. (2010). Late Miocene continental biota in Northeastern Patagonia

300 (Península Valdés, Chubut, Argentina). Palaeogeography, Palaeoclimatology,

301 Palaeoecology, 297, 100–109.

302 Fitzgerald, E. M. G. (2005). Pliocene marine mammals from the Whalers Bluff Formation 20

303 of Portland, Victoria, Australia. Memoirs of Museum Victoria, 62, 67–89.

304 Fleming, J. (1822). The Philosophy of Zoology: or a general view of the structure, functions

305 and classification of . Vol. 2. Edinburgh.

306 Fulton, T. & Strobeck, C. (2010). Multiple markers and multiple individuals refine true seal

307 phylogeny and bring molecules and morphology back in line. Proceedings of the

308 Royal Society B, 277, 1065–1070.

309 Govender, R. (2015). Preliminary phylogenetics and biogeographic history of the Pliocene

310 seal, Homiphoca capensis from Langebaanweg, South Africa. Transactions of the

311 Royal Society of South Africa, 70, 25–39.

312 Gray, J. E. (1821). On the natural arrangement of vertebrose animals. London Medical

313 Repository, 15, 296–310.

314 Gray, J. E. (1825). An outline of an attempt at the disposition of Mammalia into tribes and

315 families, with list of the genera apparently appertaining to each tribe. Annals of

316 Philosophy, New Series, 10, 337–344.

317 Gray, J. E. (1827). Synopsis of the species of the Class Mammalia, as arranged with

318 reference to their organization, by Cuvier, and other naturalists, with specific

319 characters, synonyma, In E. Griffith, C. H. Smith, & E. Pidgeon (Eds.) The

320 kingdom arranged in conformity with its organization, by the Baron Cuvier, with

321 additional descriptions of all the species hitherto named, and of many not before

322 noticed (vol. 5). G. B. Whittaker, London.

323 Gray, J. E. (1869). Notes on seals (Phocidae) and the changes in the form of their lower jaw

324 during growth. The Annals and Magazine of Natural History, 4,342–346.

325 Hendey, Q. B. & Repenning, C. A. (1972). A Pliocene phocid from South Africa. Annals of 20

326 the South African Museum, 59, 71–98.

327 Higdon, J., Bininda-Edmonds, O., Beck, R. & Ferguson, S. (2007). Phylogeny and

328 divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene

329 dataset. BMC Ecology and Evolution, 7, 216.

330 Ihering, H. von. (1903). Les Brachiopodes tertiaires de Patagonie. Anales del Museo

331 Nacional de Buenos Aires (serie 3), 2, 32–349.

332 Illiger, J. K. W. (1811). Prodromus Systematis Mammalium et Avium Additis Terminis

333 Zoographicis Utriusque Classis, Eorumque Versione Germanica. C. Salfield,

334 Berolini, Germany, XVIII.

335 King, J. E (1964). Seals of the World. Trustees of the British Museum (Natural History).

336 London, United Kingdom.

337 Koretsky, I.A. (2001). Morphology and systematics of Pliocene Phocinae (Mammalia:

338 Carnivora) from Parathetys and the North Atlantic Region. Geologica Hungarica,

339 54, 1–109.

340 Koretsky, I.A. & Ray, C.E. (1994). Cryptophoca new genus for Phoca maeotica

341 (Mammalia: Pinnipedia/Phocinae), from upper Miocene depositsin the Northern

342 Black Sea Region. Proceedings of the Royal Society of Washington, 107(1), 17–26.

343 Koretsky, I.A. & Sanders, A. E. (1997), Pinniped bones from the late Oligocene of South

344 Carolina: the oldest known true seal. Journal of Vertebrate Paleontology, 17(3,

345 suppl.), 58A.

346 Koretsky, I, A. & Holec, P. (2002). A primitive seal (Mammalia: Phocidae) from the Early

347 Middle Miocene of Central Parathetys. Smithsonian Contributions on Paleobiology,

348 93, 163–178. 20

349 Koretsky, I. A. & Domning, D. P. (2014). One of the oldest seals (Carnivora, Phocidae)

350 from the Old World. Journal of Vertebrate Paleontology, 34(1), 224–229.

351 Koretsky, I. A. & Rahmat, S. J. (2015). A new species of the subfamily Devinophocinae

352 (Carnivora, Phocidae) from the Central Parathetys. Rivista Italiana di Paleontologia

353 e Stratigrafia, 121(1), 31–47.

354 Kretzoi, M. (1941). Seehund-Reste aus dem Sarmat von Érd bei Budapest. Földtani

355 Közlöny, 71, 350–356.

356 Linnaeus, C. (1758). Systema naturae per regnatria naturae. Edition decima, reformata.

357 Holmiae, Impensis Direct. Laurentii Salvii, Stockholm,.

358 Malumián, N. (1978). Esbozo paleoecológico de las asociaciones foraminiferológicas

359 terciaras de la Argentina. Ameghiniana, 15(1-2), 161–171.

360 Malumián, N. & Masiuk, V. (1973). Asociaciones foraminiferológicas terciarias de la

361 Argentina. Actas del 5º Congreso Geológico Argentino, 3 (pp. 433–453), Villa

362 Carlos Paz.

363 Masiuk, V., D. Becker & García Espiasse, A. (1976). Micropaleontología y sedimentología

364 del Pozo YPF Ch PV es-1 (Península Valdés, Provincia del Chubut, República

365 Argentina). Importancia y correlaciones. ARPEL 24, Reunión de Nivel de

366 Expertos,1–20.

367 Muizon, C. de. (1981). Les vertébrés fossiles de la formation Pisco (Pérou). Deuxième

368 partie: les Odontocètes (Cetacea, Mammalia) du Pliocène inférieur de Sud-Sacaco.

369 Mémoires du Institut Français d’Études Andines, 6, 1–150.

370 Muizon, Ch. de & Bond, M. (1982). Le Phocidae (Mammalia) miocène de la formation

371 Paraná (Entre Ríos, Argentine). Bulletin du Muséum national d’Histoire naturelle, 20

372 3–4, 165–207.

373 Muizon, C. de & Hendey, Q. B. (1980). Late Tertiary seals of the South Atlantic Ocean.

374 Annals of the South African Museum, 82, 91–128.

375 Nilsson, S. (1820). Skandinavisk Fauna 1. Lund. Berlingska boktryckeriet.

376 Pallas, P.S. (1811). Zoographia Rosso-Asiatica, sistens omnium animalium in extenso

377 Imperio Rossico et adjacentibus maribus observatorum recensionem, domicilia,

378 mores et descriptionens, anatomen atque icones plurimorum. Vol. 1, Academiae

379 Scientiarium Impress, Petropoli.

380 Rahmat, S. J. & Koretsky, I. A. (2018). Mandibular morphology of the mid-Miocene seal

381 Devinophoca claytoni (Carnivora, Phocidae, Devinophocinae). Vestnik Zoologii,

382 52(6), 509–520.

383 Rule, J. P., Hocking, D. P. & Fitzgerald, E. M. G. (2019). (In Press) Pliocene monachine

384 seal (Pinnipedia: Phocidae) from Australia constrains timing of pinniped turnover in

385 the Southern Hemisphere. Journal of Vertebrate Paleontology, 39(6),e1734015.

386 Rule, J. P., Adams, J. W. & Fitzgerald, E. M. G. (2020a). (In Press) Colonization of the

387 ancient southern oceans by small sized Phocidae: New evidence from Australia.

388 Zoological Journal of the Linnean Society. doi:

389 https://doi.org/10.1093/zoolinnean/zlaa075

390 Rule, J. P., Adams, J. W., Marx, F. G., Evans, A. R., Tennyson, A. J. D., Scofield, R. P. &

391 Fitzgerald, E. M. G. (2020b). First from the Southern Hemisphere

392 rewrites the evolutionary history of true seals. Proceedings of the Royal Society B,

393 287, 20202318.

394 Scasso, R. A., McArthur, J. M., del Río, C. J., Martínez, S. & Thirlwall, M. F. (2001). 20

395 87Sr/86Sr Late Miocene age of fossil molluscs in the ‘Entrerriense’ of the Valdés

396 Peninsula (Chubut, Argentina). Journal of South American Earth Sciences, 14, 319–

397 329.

398 Scheel, D., Slater, G., Kolokotronis, S., Potter, C., Rotstein, D., Tsangaras, K., Greenwood,

399 A. & Helgen, K. (2014). Biogeography and taxonomy of extinct and endangered

400 monk seals illuminated by ancient DNA and skull morphology. ZooKeys, 409, 1–13.

401 Soibelzon, L.H. & Bond, M. (2013). Revisión de los carnívoros (Mammalia, Carnivora)

402 acuáticos y continentales del Mioceno de la Mesopotamia argentina. In D. Brandoni

403 & J.L. Noriega (Eds.). El Neógeno de la Mesopotamia argentina. Asociación

404 Paleontológica Argentina, Publicación Especial, 14, 170–178.

405 Tavani, G. (1941). Revisione dei resti del pinnipede conservato nel museo di geologia di

406 Pisa. Palaeontographica Italica, 40, 97–112.

407 True, F. W. (1906). Description of a new genus and species of fossil seal from the Miocene

408 of Maryland. Proceedings of the United States National Museum, 30(1475), 835–

409 840.

410 Valenzuela-Toro, A. M., Gutstein, C. S., Varas-Malca, R. M., Suarez, M. E. & Pyenson, N.

411 D. (2013). Pinniped turnover in the South Pacific Ocean: New evidence from the

412 Plio-Pleistocene of Atacama Desert, Chile. Journal of Vertebrate Paleontology,

413 33(1), 216–223.

414 Valenzuela-Toro, A. M., Gutstein, C. S., Suarez, M. E. & Pyenson, N. D. (2015) Elephant

415 seal (Mirounga sp.) from the Pleistocene of the Antofagasta Region, Northen Chile.

416 Journal of Vertebrate Paleontology, 35, e918883.

417 Walsh, S., & Naish, D. (2002) Fossil Seals from Late Neogene deposits in South America: a 20

418 new pinniped (Carnivora, Mammalia) assemblage from Chile. Palaeontology, 45,

419 821–842.

420 Zinsmeister, W. J., Marshall, L. G., Drake, R. E. & Curtis, G. H. (1981). First radioisotope

421 (Potassium-Argon) age of marine Neogene Rio Negro beds in Northeastern

422 Patagonia. Science, 212, 440.

423 Figure captions.

424 Figure 1. Geographic and stratigraphic provenance of MACN-Pv 20064. Star indicates the

425 fossil locality and arrow indicates the level of origin.

426 Figure 2. 1–3. Dentary of MACN-Pv 20064. 4–6. Dentary of Properiptychus argentinus

427 MACN-Pv 3538. 1, occlusal view; 2, labial view; 3, lingual view; 4, oclusal view; 5, labial

428 view; 6, lingual view. Abbreviations, ac, mandibular canal; mf, mental foramina; p3 and

429 p4, inferior premolar 3 and 4 respectively; m1, inferior molar 1 Scale bar equals 10 mm.

20

TABLE 1. Measurements of MACN-Pv 200064 (in mm) Height between p3 and p4 22.5 (est.) Height under m1 23.20 (est.) Thickness of dentary at the level 12 of p3 Thickness of dentary at the level 10.29 of m1 Length of p3 11.22 Length of p4 12.17 Length of m1 13.48 p3 alveoli anterior / posterior Length 4.96 (inc.) / 4.19 Width 5.65 (inc.) / 5.13 p4 alveoli anterior / posterior Length 5.74 / 4.99 Width 4.6 / 4.92 m1 alveoli anterior / posterior Length 4.95 / 5.78 Width 4.23 / 3.77 “Inc.” refers to incomplete structures, and “est.” refers to an estimated measure.