Pho T O ILLUS T R a T Io N B Y S T Udio Z
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The History Group's Silver Jubilee
History of Meteorology and Physical Oceanography Special Interest Group Newsletter 1, 2010 ANNUAL REPORT CONTENTS We asked in the last two newsletters if you Annual Report ........................................... 1 thought the History Group should hold an Committee members ................................ 2 Annual General Meeting. There is nothing in Mrs Jean Ludlam ...................................... 2 the By-Law s or Standing Orders of the Royal Meteorological Society that requires the The 2010 Summer Meeting ..................... 3 Group to hold one, nor does Charity Law Report of meeting on 18 November .......... 4 require one. Which papers have been cited? .............. 10 Don’t try this at home! ............................. 10 Only one person responded, and that was in More Richard Gregory reminiscences ..... 11 passing during a telephone conversation about something else. He was in favour of Storm warnings for seafarers: Part 2 ....... 13 holding an AGM but only slightly so. He Swedish storm warnings ......................... 17 expressed the view that an AGM provides an Rikitea meteorological station ................. 19 opportunity to put forward ideas for the More on the D-Day forecast .................... 20 Group’s committee to consider. Recent publications ................................ 21 As there has been so little response, the Did you know? ........................................ 22 Group’s committee has decided that there will Date for your diary .................................. 23 not be an AGM this year. Historic picture ........................................ 23 2009 members of the Group ................... 24 CHAIRMAN’S REVIEW OF 2009 by Malcolm Walker year. Sadly, however, two people who have supported the Group for many years died during I begin as I did last year. Without an enthusiastic 2009. David Limbert passed away on 3 M a y, and conscientious committee, there would be no and Jean Ludlam died in October (see page 2). -
Geology, Petrography, Shock Petrography, and Geochemistry of Impactites and Target Rocks from the Kärdla Crater, Estonia
Meteoritics & Planetary Science 39, Nr 3, 425–451 (2004) Abstract available online at http://meteoritics.org Geology, petrography, shock petrography, and geochemistry of impactites and target rocks from the Kärdla crater, Estonia V. PUURA,1* H. HUBER, 2† J. KIRS,1 A. KÄRKI,3 K. SUUROJA, 4 K. KIRSIMÄE, 1 J. KIVISILLA, 4 A. KLEESMENT, 5 M. KONSA,5 U. PREEDEN, 1 S. SUUROJA, 5 and C. KOEBERL 2 1Institute of Geology, University of Tartu, Vanemuise strasse 46, 51014 Tartu, Estonia 2Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria 3Institute of Geosciences, University of Oulu, Box 3000, FIN-90401 Oulu, Finland 4Geological Survey of Estonia, Kadaka tee 80/82, 12618 Tallinn, Estonia 5Institute of Geology, Tallinn Technical University, Estonia pst. 7, 10143 Tallinn, Estonia †Present address: Institute of Geophysics and Planetary Physics, University of California Los Angeles, 595 Charles Young Drive, Los Angeles, California 90095, USA *Corresponding author. E-mail: [email protected] (Received 20 December 2002; revision accepted 7 January 2004) Abstract–The Kärdla crater is a 4 km-wide impact structure of Late Ordovician age located on Hiiumaa Island, Estonia. The 455 Ma-old buried crater was formed in shallow seawater in Precambrian crystalline target rocks that were covered with sedimentary rocks. Basement and breccia samples from 13 drill cores were studied mineralogically, petrographically, and geochemically. Geochemical analyses of major and trace elements were performed on 90 samples from allochthonous breccias, sub-crater and surrounding basement rocks. The breccia units do not include any melt rocks or suevites. The remarkably poorly mixed sedimentary and crystalline rocks were deposited separately within the allochthonous breccia suites of the crater. -
A 1 Case-PR/ }*Rciofft.;Is Report
.A 1 case-PR/ }*rciofft.;is Report (a) This eruption site on Mauna Loa Volcano was the main source of the voluminous lavas that flowed two- thirds of the distance to the town of Hilo (20 km). In the interior of the lava fountains, the white-orange color indicates maximum temperatures of about 1120°C; deeper orange in both the fountains and flows reflects decreasing temperatures (<1100°C) at edges and the surface. (b) High winds swept the exposed ridges, and the filter cannister was changed in the shelter of a p^hoehoc (lava) ridge to protect the sample from gas contamination. (c) Because of the high temperatures and acid gases, special clothing and equipment was necessary to protect the eyes. nose, lungs, and skin. Safety features included military flight suits of nonflammable fabric, fuil-face respirators that are equipped with dual acidic gas filters (purple attachments), hard hats, heavy, thick-soled boots, and protective gloves. We used portable radios to keep in touch with the Hawaii Volcano Observatory, where the area's seismic activity was monitored continuously. (d) Spatter activity in the Pu'u O Vent during the January 1984 eruption of Kilauea Volcano. Magma visible in the circular conduit oscillated in a piston-like fashion; spatter was ejected to heights of 1 to 10 m. During this activity, we sampled gases continuously for 5 hours at the west edge. Cover photo: This aerial view of Kilauea Volcano was taken in April 1984 during overflights to collect gas samples from the plume. The bluish portion of the gas plume contained a far higher density of fine-grained scoria (ash). -
POSTER SESSION 5:30 P.M
Monday, July 27, 1998 POSTER SESSION 5:30 p.m. Edmund Burke Theatre Concourse MARTIAN AND SNC METEORITES Head J. W. III Smith D. Zuber M. MOLA Science Team Mars: Assessing Evidence for an Ancient Northern Ocean with MOLA Data Varela M. E. Clocchiatti R. Kurat G. Massare D. Glass-bearing Inclusions in Chassigny Olivine: Heating Experiments Suggest Nonigneous Origin Boctor N. Z. Fei Y. Bertka C. M. Alexander C. M. O’D. Hauri E. Shock Metamorphic Features in Lithologies A, B, and C of Martian Meteorite Elephant Moraine 79001 Flynn G. J. Keller L. P. Jacobsen C. Wirick S. Carbon in Allan Hills 84001 Carbonate and Rims Terho M. Magnetic Properties and Paleointensity Studies of Two SNC Meteorites Britt D. T. Geological Results of the Mars Pathfinder Mission Wright I. P. Grady M. M. Pillinger C. T. Further Carbon-Isotopic Measurements of Carbonates in Allan Hills 84001 Burckle L. H. Delaney J. S. Microfossils in Chondritic Meteorites from Antarctica? Stay Tuned CHONDRULES Srinivasan G. Bischoff A. Magnesium-Aluminum Study of Hibonites Within a Chondrulelike Object from Sharps (H3) Mikouchi T. Fujita K. Miyamoto M. Preferred-oriented Olivines in a Porphyritic Olivine Chondrule from the Semarkona (LL3.0) Chondrite Tachibana S. Tsuchiyama A. Measurements of Evaporation Rates of Sulfur from Iron-Iron Sulfide Melt Maruyama S. Yurimoto H. Sueno S. Spinel-bearing Chondrules in the Allende Meteorite Semenenko V. P. Perron C. Girich A. L. Carbon-rich Fine-grained Clasts in the Krymka (LL3) Chondrite Bukovanská M. Nemec I. Šolc M. Study of Some Achondrites and Chondrites by Fourier Transform Infrared Microspectroscopy and Diffuse Reflectance Spectroscopy Semenenko V. -
Emplacement of Cretaceous-Tertiary Boundary Shocked Quartz from Chicxulub Crater Walter Alvarez,* Philippe Claeys,T Susan W
ARTICLES Emplacement of Cretaceous-Tertiary Boundary Shocked Quartz from Chicxulub Crater Walter Alvarez,* Philippe Claeys,t Susan W. Kieffer Observations on shocked quartz in Cretaceous-Tertiary (K-T) boundary sediments get rock and with the crystallization age of compellingly tied to Chicxulub crater raise three problems. First, in North America zircons from Chicxulub melt rock (17). It shocked quartz occurs above the main K-T ejecta layer. Second, shocked quartz is now seems clear that both layers were pro- more abundant west than east of Chicxulub. Third, shocked quartz reached distances duced by the Chicxulub impact and that requiring initial velocities up to 8 kilometers per second, corresponding to shock the shocked quartz and other minerals orig- pressures that would produce melt, not the moderate-pressure shock lamellae ob- inated from the basement granite. Iridium served. Shock devolatilization and the expansion of carbon dioxide and water from and quartz are believed to come from dif- impacted wet carbonate, producing a warm, accelerating fireball after the initial hot ferent sources: vaporized meteorite and un- fireball of silicate vapor, may explain all three problems. melted basement rock, respectively. Prob- lem 1 is thus, how did the shocked quartz and the iridium end up together in a sepa- rate layer, above the layer ofkaolinitic clay? In wells and outcrops of uninterrupted ma- impact crater (12) dating precisely from the The geographic distribution of K-T rine sedimentary rocks outside of North K-T boundary at 65.0 Ma (13) and sur- shocked quartz is not fully known, but it America, the K-T boundary is marked by a rounded out to -4000-km radius by proxi- appears to be much more abundant and single 1- to 10-mm clay layer often contain- mal ejecta at the biostratigraphic K-T slightly coarser grained at longitudes west of ing anomalous iridium and altered impact boundary (5, 7, 8) has strongly confirmed Chicxulub. -
Development of DLC-Coated Solid Sialon/Tin Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects
coatings Article Development of DLC-Coated Solid SiAlON/TiN Ceramic End Mills for Nickel Alloy Machining: Problems and Prospects Sergey N. Grigoriev , Marina A. Volosova *, Sergey V. Fedorov, Anna A. Okunkova , Petr M. Pivkin , Pavel Y. Peretyagin and Artem Ershov Department of High-Efficiency Processing Technologies, Moscow State University of Technology “STANKIN”, Vadkovskiy per. 3A, 127055 Moscow, Russia; [email protected] (S.N.G.); [email protected] (S.V.F.); [email protected] (A.A.O.); [email protected] (P.M.P.); [email protected] (P.Y.P.); [email protected] (A.E.) * Correspondence: [email protected]; Tel.: +7-916-308-49-00 Abstract: The study is devoted to the development and testing of technological principles for the manufacture of solid end mills from ceramics based on a powder composition of α-SiAlON, β-SiAlON, and TiN additives, including spark plasma sintering powder composition, diamond sharpening of sintered ceramic blanks for shaping the cutting part of mills and deposition of anti- friction Si-containing diamond-like carbon (DLC) coatings in the final stage. A rational relationship between the components of the powder composition at spark plasma sintering was established. The influence of optimum temperature, which is the most critical sintering parameter, on ceramic samples’ basic physical and mechanical properties was investigated. DLC coatings’ role in changing the surface properties of ceramics based on SiAlON, such as microrelief, friction coefficient, et cetera, was studied. A comparative analysis of the efficiency of two tool options, such as developed samples of experimental mills made of SiAlON/TiN and commercial samples ceramic mills based on SiAlON, Citation: Grigoriev, S.N.; Volosova, doped with stabilizing additives containing Yb when processing nickel alloys (NiCr20TiAl alloy was M.A.; Fedorov, S.V.; Okunkova, A.A.; used as an example). -
Keller 1989 GSA Bull
Downloaded from gsabulletin.gsapubs.org on November 18, 2014 Geological Society of America Bulletin Extended period of extinctions across the Cretaceous /Tertiary boundary in planktonic foraminifera of continental-shelf sections: Implications for impact and volcanism theories GERTA KELLER Geological Society of America Bulletin 1989;101, no. 11;1408-1419 doi: 10.1130/0016-7606(1989)101<1408:EPOEAT>2.3.CO;2 Email alerting services click www.gsapubs.org/cgi/alerts to receive free e-mail alerts when new articles cite this article Subscribe click www.gsapubs.org/subscriptions/ to subscribe to Geological Society of America Bulletin Permission request click http://www.geosociety.org/pubs/copyrt.htm#gsa to contact GSA Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA's journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization's Web site providing the posting includes a reference to the article's full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. -
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples. -
The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra
THE COMPOSITION OF THE LUNAR CRUST: RADIATIVE TRANSFER MODELING AND ANALYSIS OF LUNAR VISIBLE AND NEAR-INFRARED SPECTRA A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN GEOLOGY AND GEOPHYSICS DECEMBER 2009 By Joshua T.S. Cahill Dissertation Committee: Paul G. Lucey, Chairperson G. Jeffrey Taylor Patricia Fryer Jeffrey J. Gillis-Davis Trevor Sorensen Student: Joshua T.S. Cahill Student ID#: 1565-1460 Field: Geology and Geophysics Graduation date: December 2009 Title: The Composition of the Lunar Crust: Radiative Transfer Modeling and Analysis of Lunar Visible and Near-Infrared Spectra We certify that we have read this dissertation and that, in our opinion, it is satisfactory in scope and quality as a dissertation for the degree of Doctor of Philosophy in Geology and Geophysics. Dissertation Committee: Names Signatures Paul G. Lucey, Chairperson ____________________________ G. Jeffrey Taylor ____________________________ Jeffrey J. Gillis-Davis ____________________________ Patricia Fryer ____________________________ Trevor Sorensen ____________________________ ACKNOWLEDGEMENTS I must first express my love and appreciation to my family. Thank you to my wife Karen for providing love, support, and perspective. And to our little girl Maggie who only recently became part of our family and has already provided priceless memories in the form of beautiful smiles, belly laughs, and little bear hugs. The two of you provided me with the most meaningful reasons to push towards the "finish line". I would also like to thank my immediate and extended family. Many of them do not fully understand much about what I do, but support the endeavor acknowledging that if it is something I’m willing to put this much effort into, it must be worthwhile. -
Handbook of Iron Meteorites, Volume 1
CHAPTER FOUR Meteorite Craters Nobody has ever witnessed the formation of a meteor meteorites, and (iii) rapidly solidified metallic droplets, ite crater. Interpretations must therefore be based upon analogous to the spheroids encountered in the vicinity of measurement and comparison with artificial craters, caused Meteor Crater, Arizona (Goldstein et al. 1972; Anders et al. by known magnitudes and depths of explosives. Excellent 1973); see page 397. studies have been performed by Baldwin (1949; 1963; The bulk of the typical large lunar craters were formed 1970) who was particularly interested in the puzzling when the kinetic energy ~mv 2 of the impacting body was problems associated with the lunar craters but, as a basis for converted into thermal energy within a fraction of a his speculations, thoroughly examined several terrestrial second, resulting in an explosion. There is a very high craters and presented extensive bibliographies. Results from probability that the impacting body was thereby itself nuclear test sites have been presented by Hansen (1968) totally destroyed, melted or vaporized (Hartman & and Short (1968a, b). Krinov (1960b; 1966a, b) has dis Wood 1971; Ahrens & O'Keefe 1972). Fortunately, for the cussed several craters and impact holes associated with science of meteoritics and for the inhabitants of Earth, our meteorites and also devoted a liuge chapter to the Tunguska atmosphere will alleviate the impact of celestial bodies and comet, which did not produce craters at all. See page 9. through a gradual deceleration cause an important propor Stanyukovich &' Fedynski (1947), Nininger (1952a; 1956), tion to survive as meteorites. However, large and dense Shoemaker (1963) and Gault et al. -
Lunar Craters Named in Honor of Apollo 8 5 October 2018
Lunar craters named in honor of Apollo 8 5 October 2018 The Apollo 8 mission took place from 21 to 27 December 1968. After completing 10 orbits around the Moon on Christmas Eve, broadcasting images back to Earth and giving live television transmissions, the crew returned to Earth and landed in the Pacific Ocean. The Working Group for Planetary System Nomenclature (WGPSN) of the International Astronomical Union, who named the craters, is the authority responsible for the naming of planetary features in our Solar System. The two named craters were previously designated by letters. The Earthrise color photograph taken by astronaut William Anders. It depicts the moment that our shiny blue Earth came back into view as the spacecraft emerged out of the dark from behind the grey and barren Moon. This is arguably the most famous picture taken by Apollo 8. It became iconic and has been credited with starting the environmental movement.Two of the crates seen in this photo have just been named by the Working Group for Planetary System Nomenclature (WGPSN) of the International Astronomical Union. Credit: NASA/IAU The newly named craters are visible in the The Working Group for Planetary System Nomenclature foreground of the iconic Earthrise colour of the International Astronomical Union has officially photograph taken by astronaut William Anders. It approved the naming of two craters on the Moon to commemorate the 50th anniversary of the Apollo 8 depicts the moment that our shiny blue Earth came mission. The names are Anders’ Earthrise and 8 back into view as the spacecraft emerged out of Homeward. -
OSAA Boys Track & Field Championships
OSAA Boys Track & Field Championships 4A Individual State Champions Through 2006 100-METER DASH 1992 Seth Wetzel, Jesuit ............................................ 1:53.20 1978 Byron Howell, Central Catholic................................. 10.5 1993 Jon Ryan, Crook County ..................................... 1:52.44 300-METER INTERMEDIATE HURDLES 1979 Byron Howell, Central Catholic............................... 10.67 1994 Jon Ryan, Crook County ..................................... 1:54.93 1978 Rourke Lowe, Aloha .............................................. 38.01 1980 Byron Howell, Central Catholic............................... 10.64 1995 Bryan Berryhill, Crater ....................................... 1:53.95 1979 Ken Scott, Aloha .................................................. 36.10 1981 Kevin Vixie, South Eugene .................................... 10.89 1996 Bryan Berryhill, Crater ....................................... 1:56.03 1980 Jerry Abdie, Sunset ................................................ 37.7 1982 Kevin Vixie, South Eugene .................................... 10.64 1997 Rob Vermillion, Glencoe ..................................... 1:55.49 1981 Romund Howard, Madison ....................................... 37.3 1983 John Frazier, Jefferson ........................................ 10.80w 1998 Tim Meador, South Medford ............................... 1:55.21 1982 John Elston, Lebanon ............................................ 39.02 1984 Gus Envela, McKay............................................. 10.55w 1999