Expansion De Triplets CTG Et Arrêt Prolifératif Précoce Des Myoblastes DM1 Erwan Gasnier

Total Page:16

File Type:pdf, Size:1020Kb

Expansion De Triplets CTG Et Arrêt Prolifératif Précoce Des Myoblastes DM1 Erwan Gasnier Expansion de triplets CTG et arrêt prolifératif précoce des myoblastes DM1 Erwan Gasnier To cite this version: Erwan Gasnier. Expansion de triplets CTG et arrêt prolifératif précoce des myoblastes DM1. Biochimie, Biologie Moléculaire. Université Pierre et Marie Curie - Paris VI, 2012. Français. NNT : 2012PAO66195. tel-00829312 HAL Id: tel-00829312 https://tel.archives-ouvertes.fr/tel-00829312 Submitted on 3 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’UNIVERSITE PIERRE et MARIE CURIE École doctorale Complexité du Vivant (ED515) Présentée par Mr Erwan GASNIER Pour obtenir le grade de Docteur de l’université PARIS VI Spécialité Biologie Moléculaire et Cellulaire Sujet de thèse : EXPANSION DE TRIPLETS CTG ET ARRET PROLIFERATIF PRECOCE DES MYOBLASTES DM1 Thèse dirigée par : Dr FURLING Denis Soutenue le 13 Avril 2012 Devant le jury composé de : Pr FRIGUET Bertrand Président/Examinateur Dr BASSEZ Guillaume Examinateur Dr SERGEANT Nicolas Rapporteur Dr AGBULU Onnik Rapporteur Dr FURLING Denis Directeur de thèse EXPANSION DE TRIPLETS CTG ET ARRET PROLIFERATIF PRECOCE DES MYOBLASTES DM1 Thèse réalisée au sein du laboratoire : Thérapie des maladies du muscle strié - Institut de Myologie UPMC Univ. Paris 6, Um76 / Inserm, U974 / CNRS, Umr7215 G.H. Pitié-Salpêtrière - Bâtiment Babinski 47-83, bld de l'hôpital - 75651 Paris cedex 13, France Expansion de triplets CTG et arrêt prolifératif précoce des myoblastes DM1 La dystrophie myotonique de type I est la pathologie neuromusculaire la plus répandue chez l’adulte. Elle est caractérisée par une atteinte multisystémique plus ou moins prononcée en fonction de l’extension des répétitions CTG, mutation à l’origine de l’atteinte. Le muscle squelettique est particulièrement touché avec un phénomène de myotonie ainsi qu’une atrophie. Les myoblastes, à l’origine de la formation des muscles et de leur régénération potentielle, présentent, chez les patients DM1, une capacité proliférative limitée par rapport à des myoblastes issus d’individus sains. C’est l’activation précoce de la voie p16 qui est à l’origine de cette sénescence prématurée des cellules DM1. Les mécanismes conduisant à ce phénotype sont néanmoins inconnus. Au cours de cette étude, nous avons tenté de décrypter une partie de ces mécanismes et notamment les liens potentiels entre les expansions CTG, la sensibilité au stress oxydatif et l’activation précoce de la voie p16 conduisant à la sénescence des myoblastes DM1. Mots clés : myoblastes, expansions, dystrophie, stress oxydatif, p16, capacité proliférative. CTG expansion and early proliferative arrest of DM1 myoblasts Myotonic Dystrophy type I is the most common neuromuscular pathology at adult age. DM1 is characterized by a multisystemic but variable phenotype, correlated with the size of the CTG expansion. Skeletal muscle tissue is particularly affected showing myotonic symptoms and atrophy. Myoblasts, responsible for skeletal muscle growth and repair, present in DM1 patients a reduced proliferative capacity compared to cells isolated from non-affected individuals. During a previous study, p16INK4A was identified as the trigger of this abnormal proliferative arrest in DM1 myoblasts, but mechanisms activating this pathway are still unknown. In this study, we attempted to decrypt these mechanisms, particularly the potential links between CTG expansions, oxidative stress sensitivity and early activation of the p16 pathway leading to myoblasts senescence. Key words: myoblasts, expansions, dystrophy, oxidative stress, p16, proliferative capacity 1 2 Remerciements : ABACDEFBACB BACACBACACCBBBECBBBEABADABAD AAECBBCBBACBBACB CAC C BB!!!!EE F B"A AA CACA CCC #ECCCBFCACCBACCBAAA BCCBCBCBADBCACEB ABB A B BABAEEEEA AA CBBC A B $$ %ABBBCCC&A%ABBBCCC&AEACEEACEEACEA$CCA$CC A 'B B F CB CCAAB B BBACBCA"BBBACBCA"B AE F CC C$A (B(BB )$)$EE "C CACA"BEBBACCAB$CCCA BBAABBAA*BAC+,EC*BAC+,ECAAAA A"BACCBBBBACC-CBC-CB CC*.AA,*.AA,*.AA,CCABACCCABACCCABACBBBB BADA/CB0$ABCCCCCABCCAB ABAB %ABACCC&C%ABACCC&C1111%C%C%C2222CAAABCAAAB BB$$CC%CB BBCB CC 3ACBCCC4EBCACA 'BABBBEABAAAAEFCB ACCACACCAC 3 C0E'C5AC%ECBAABC B6BACABEACCAB78)EABACA BBBB 3 C C 44EEEE 9AC B 5BAB C C A "CE AB B BB A B C A C B *B,ABABBBACCAFCBA FBBFBB %%B:EBBCAB:EBBCA ACC ACC $A ' A B C CE A BB A - AFCB ACBCACBC %CCA%CCA000EBCEBC C-BBCABC-BBCABBABABABAACB$$CB*BCACB$$CB*BC BBFACB+,EAAFCBBABCCACBABCCAC 3CCBECBBA ACBE A CC!!!!0A"CE0A"CE B CA B BB BB &B B AAB BBAAACBABBBAAACBAB % B"A A CCC % C B BB BB A B AACAB"CCCABBCB*CB "";;;,;;;,;;;, CAABBAAB-CA"C- A"BA"B<E%BBE7"CBEC<E%BBE7"CBEC<E%BBE7"CBEC!!!!E:AAE0CE-E(BE:AAE0CE-E(B :B"BF-BCBA1:B"BF-BCBA1.CE=">C.CE=">C.CE=">C????2222 C AAB B A - A A BAA<< .E 05CE EE4"FE@BABACB4"FE@BABACB4"FE@BABACB CAABAABCBCACAC"A AA1AA1CACACA2C=C+2C=C+2C=C+ 4 % B"A BCA CCC BBA B B 3CBA CC A C 0C0CEE A B CACCACACACA C %%!!!!00 .AECAAABABACAACA %CCA@BAAA5BC7"B&AE CB5B$BCA % AB A CCC BBCB .CAC )C)CAEAE # .BB>E BB 'CA A CD A C A $CCAFC5A"B$CCAFC5A"B $EFABCCCAACACACBBC CAABBEB&CEBAABBAAB-B-B AAAA 5 6 7 8 LISTE DES ABREVIATIONS --------------------------------------------------------------------------------- 13 INTRODUCTION ------------------------------------------------------------------------------------------------ 19 I. LE MUSCLE SQUELETTIQUE ----------------------------------------------------------------------- 23 I.1. GENERALITES SUR LE MUSCLE SQUELETTIQUE ---------------------------------------------------------- 23 a. Origine embryonnaire des précurseurs du muscle ---------------------------------------------- 23 b. Voies moléculaires et engagement dans la voie myogénique ---------------------------------- 24 c. Structure du muscle squelettique------------------------------------------------------------------- 27 d. Structure des fibres musculaires ------------------------------------------------------------------- 27 e. Structure des myofibrilles --------------------------------------------------------------------------- 28 I.2. REGENERATION MUSCULAIRE ET CELLULES SATELLITES ---------------------------------------------- 30 a. Cellules satellites : définition ---------------------------------------------------------------------- 30 b. Activation des cellules satellites ------------------------------------------------------------------- 31 c. Devenir des cellules satellites activées ------------------------------------------------------------ 33 d. Différenciation des myoblastes --------------------------------------------------------------------- 35 e. La fusion des myoblastes ---------------------------------------------------------------------------- 36 f. Modèle in vitro de cellules satellites -------------------------------------------------------------- 37 II. CAPACITE PROLIFERATIVE ET ACTEURS DU CYCLE CELLULAIRE --------------- 41 II.1. CAPACITE PROLIFERATIVE DES CELLULES SATELLITES -------------------------------------------- 41 a. Capacité proliférative ------------------------------------------------------------------------------- 41 b. Le cycle cellulaire : les cyclines ------------------------------------------------------------------- 43 c. Le cycle cellulaire : les kinases dépendantes des cyclines (CdK) ----------------------------- 46 d. La régulation de l’activité des CdK --------------------------------------------------------------- 47 e. Le rôle de la protéine du Rétinoblastome --------------------------------------------------------- 48 II.2. LES INHIBITEURS DES KINASES DEPENDANTES DES CYCLINES (CKI) ---------------------------- 49 a. Les inhibiteurs CIP/KIP----------------------------------------------------------------------------- 50 b. Les inhibiteurs INK4 -------------------------------------------------------------------------------- 52 III. LA SENESCENCE REPLICATIVE --------------------------------------------------------------- 59 III.1. GENERALITES --------------------------------------------------------------------------------------------- 59 a. L’arrêt prolifératif ----------------------------------------------------------------------------------- 59 b. La résistance au processus d’apoptose ----------------------------------------------------------- 60 c. Les modifications morphologiques ---------------------------------------------------------------- 61 d. Les modifications métaboliques -------------------------------------------------------------------- 62 III.2. LA VOIE « TELOMERES DEPENDANTE » --------------------------------------------------------------- 62 INK4A III.3. LA VOIE P16 ---------------------------------------------------------------------------------------- 64 a. Locus INK4A/ARF (CDKN2A) --------------------------------------------------------------------- 64 b. Mécanismes d’activation de la voie p16 ---------------------------------------------------------- 66 9 III.4. INDUCTION DE LA SENESCENCE PAR UN STRESS ---------------------------------------------------- 69 a. Modification du taux d’oxygène dans les cultures ----------------------------------------------- 69 b. Addition de substances oxydantes
Recommended publications
  • Computational Genome-Wide Identification of Heat Shock Protein Genes in the Bovine Genome [Version 1; Peer Review: 2 Approved, 1 Approved with Reservations]
    F1000Research 2018, 7:1504 Last updated: 08 AUG 2021 RESEARCH ARTICLE Computational genome-wide identification of heat shock protein genes in the bovine genome [version 1; peer review: 2 approved, 1 approved with reservations] Oyeyemi O. Ajayi1,2, Sunday O. Peters3, Marcos De Donato2,4, Sunday O. Sowande5, Fidalis D.N. Mujibi6, Olanrewaju B. Morenikeji2,7, Bolaji N. Thomas 8, Matthew A. Adeleke 9, Ikhide G. Imumorin2,10,11 1Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Nigeria 2International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA 3Department of Animal Science, Berry College, Mount Berry, GA, 30149, USA 4Departamento Regional de Bioingenierias, Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Queretaro, Mexico 5Department of Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria 6Usomi Limited, Nairobi, Kenya 7Department of Animal Production and Health, Federal University of Technology, Akure, Nigeria 8Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA 9School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa 10School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30032, USA 11African Institute of Bioscience Research and Training, Ibadan, Nigeria v1 First published: 20 Sep 2018, 7:1504 Open Peer Review https://doi.org/10.12688/f1000research.16058.1 Latest published: 20 Sep 2018, 7:1504 https://doi.org/10.12688/f1000research.16058.1 Reviewer Status Invited Reviewers Abstract Background: Heat shock proteins (HSPs) are molecular chaperones 1 2 3 known to bind and sequester client proteins under stress. Methods: To identify and better understand some of these proteins, version 1 we carried out a computational genome-wide survey of the bovine 20 Sep 2018 report report report genome.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • 45–54 Physical Location of Genes
    Rocz. Nauk. Zoot., T. 44, z. 1 (2017) 45–54 PHYSICAL LOCATION OF GENES ENCODING SMALL HEAT SHOCK PROTEINS IN THE SUIDAE GENOMES* * Barbara Danielak-Czech1 , Anna Kozubska-Sobocińska1 , Marek Babicz2 1National Research Institute of Animal Production, Department of Animal Genomics and Molecular Biology, 32-083 Balice n. Kraków, Poland 2University of Life Sciences in Lublin, Faculty of Biology, Animal Sciences and Bioeconomy, Akademicka 13, 20-950 Lublin, Poland The subject of the studies carried out was physical mapping of the HSPB1, HSPB2, CRY- AB (alternative name HSPB5), HSPB6 and HSPB8 genes from the family of small heat shock protein genes (HSPB) on chromosomes of the domestic pig (Sus scrofa domestica) and European wild pig (Sus scrofa scrofa). The application of FISH technique with pro- bes derived from porcine BAC clones: CH242-237N5, CH242-333E2, CH242-173G9 and CH242-102C8 made it possible to determine the location of the studied genes, respectively, in 3p15, 9p21, 6q12 and 14q21 genome regions of domestic and wild pigs. The physical localization of HSPB genes allowed assigning these loci to the linkage and syntenic groups of genes in Suidae. Precise, molecular and cytogenetic identification of genes responsible for resistance to stress and disease, and determining meat production is essential for the genetic selection effects, aimed to reduce mortality causing significant economic loss in animal production. The studies performed may help to elucidate the role of the HSPB genes in protection against pathogenic or environmental stress, affecting pigs’ survivability and meat quality. Key words: Suidae, FISH, HSPB genes, muscle development, meat quality Small heat shock proteins (HSPB) are the smallest, most variable in size, class of the multigene heat shock protein (HSP) family, having molecular masses ranging approximately from 15 to 30 kDa and the α-crystallin domains (~85 amino acids residues) in the highly conserved C-terminal protein regions.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Recombinant Human Hspb2 (C-6His) Derived from E.Coli
    Catalog # CH63 Recombinant Human HspB2 (C-6His) Derived from E.coli Recombinant Human Heat Shock Protein Beta-2 is produced by our E.coli expression system and the target gene encoding Met1-Pro182 is expressed with a 6His tag at the C-terminus. DESCRIPTION Accession Q16082 Known as Heat shock protein beta-2;HspB2;DMPK-binding protein;MKBP; Mol Mass 21.3kDa AP Mol Mass 22-25kDa, reducing conditions. QUALITY CONTROL Purity Greater than 95% as determined by reducing SDS-PAGE. Endotoxin Less than 0.1 ng/µg (1 EU/µg) as determined by LAL test. FORMULATION Lyophilized from a 0.2 μm filtered solution of 10mM Tris-HCl, 150mM NaCl, 1mM EDTA, pH 8.0. Always centrifuge tubes before opening. Do not mix by vortex or pipetting. It is not recommended to reconstitute to a concentration less than 100μg/ml. RECONSTITUTION Dissolve the lyophilized protein in distilled water. Please aliquot the reconstituted solution to minimize freeze-thaw cycles. The product is shipped at ambient temperature. SHIPPING Upon receipt, store it immediately at the temperature listed below. Lyophilized protein should be stored at < -20°C, though stable at room temperature for 3 weeks. STORAGE Reconstituted protein solution can be stored at 4-7°C for 2-7 days. Aliquots of reconstituted samples are stable at < -20°C for 3 months. Heat shock protein beta-2(HSPB2) is a protein that in humans is encoded by the HSPB2 gene. HSPB2 belongs to the superfamily of small heat-shock proteins containing a conservative alpha-crystallin domain at the C-terminal part of the molecule.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Regulation of the Mouse Αb-Crystallin and MKBP/Hspb2 Promoter Activities by Shared and Gene Specific Intergenic Elements: the Importance of Context Dependency
    Int. J. Dev. Biol. 51: 689-700 (2007) doi: 10.1387/ijdb.072302ss Original Article Regulation of the mouse αB-crystallin and MKBP/HspB2 promoter activities by shared and gene specific intergenic elements: the importance of context dependency SHIVALINGAPPA K. SWAMYNATHAN# and JORAM PIATIGORSKY* Laboratory of Molecular and Developmental Biology, National Eye Institute, NIH, Bethesda, Maryland, USA ABSTRACT The closely linked (863 bp), divergently arranged mouse myotonic dystrophy kinase binding protein (Mkbp)/HspB2 and small heat shock protein (shsp)/αB-crystallin genes have different patterns of tissue-specific expression. We showed previously that an intergenic enhancing region (-436/-257 relative to αB-crystallin transcription start site) selectively activates the αB- crystallin promoter in an orientation-dependent manner (Swamynathan, S.K. and J. Piatigorsky 2002. J. Biol. Chem. 277:49700-6). Here we show that cis-elements αBE1 (-420/-396) and αBE3 (-320/ -300) functionally interact with glucocorticoid receptor (GR) and Sp1, respectively, both in vitro and in vivo. αBE1:GR regulates both the HspB2 and αB-crystallin promoters, while αBE3:Sp1 selectively regulates the αB-crystallin promoter, as judged by mutagenesis and co-transfection tests. Enhancer blocking assays indicate that the -836/-622 fragment can act as a negative regulator in transfection tests, raising the possibility that it contributes to the differential expression of the proximal HspB2 promoter and distal αB-crystallin promoter. Finally, experi- ments utilizing transiently transfected cells and transgenic mice show that two conserved E-box elements (-726/-721 and -702/-697) bind nuclear proteins and differentially regulate the HspB2 and αB-crystallin promoters in a tissue-specific manner.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]
  • Multiple Human Adipocyte Subtypes and Mechanisms of Their Development.”
    bioRxiv preprint doi: https://doi.org/10.1101/537464; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. “Multiple human adipocyte subtypes and mechanisms of their development.” So Yun Min1,2, Anand Desai1, Zinger Yang2, Agastya Sharma1, Ryan M.J. Genga1,2,4, Alper Kucukural3, Lawrence Lifshitz1, René Maehr1,4, Manuel Garber1,3, Silvia Corvera1,*. 1Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA 2Graduate School oF Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655, USA 3Program in BioinFormatics, University of Massachusetts Medical School, Worcester, MA 01655, USA 4Department of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655, USA *Corresponding author: [email protected] KEY WORDS: ADSC, mesenchymal stem cells, pre-adipocyte, adipocyte diFFerentiation, adipocyte development, leptin, adiponectin, iron, brown adipocyte, beige adipocyte, thermogenic Fat, obesity, diabetes SUMMARY Human adipose tissue depots perform numerous diverse physiological functions, and are diFFerentially linked to metabolic disease risk, yet only two major human adipocyte subtypes have been described, white and “brown/brite/beige.” The diversity and lineages oF adipocyte classes have been studied in mice using genetic methods that cannot be applied in humans. Here we circumvent this problem by studying the Fate oF single mesenchymal progenitor cells obtained From human adipose tissue. We report that a minimum oF Four human adipocyte subtypes can be distinguished by transcriptomic analysis, specialized for functionally distinct processes such as adipokine secretion and thermogenesis.
    [Show full text]
  • Regulation of Normal B-Cell Differentiation and Malignant B-Cell Survival by OCT2
    Regulation of normal B-cell differentiation and PNAS PLUS malignant B-cell survival by OCT2 Daniel J. Hodsona,b, Arthur L. Shaffera, Wenming Xiaoa,1, George W. Wrighta, Roland Schmitza, James D. Phelana, Yandan Yanga, Daniel E. Webstera, Lixin Ruia, Holger Kohlhammera, Masao Nakagawaa, Thomas A. Waldmanna, and Louis M. Staudta,2 aLymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and bDepartment of Haematology, University of Cambridge, Cambridge, CB2 0AH, United Kingdom Contributed by Louis M. Staudt, February 21, 2016 (sent for review January 12, 2016; reviewed by Kees Murre and Robert G. Roeder) The requirement for the B-cell transcription factor OCT2 (octamer- NP-OVA immunization (14) and another reporting normal ger- binding protein 2, encoded by Pou2f2) in germinal center B cells minal center formation after influenza challenge (15). OCA-B– has proved controversial. Here, we report that germinal center B deficient mice have normal B-cell development but are unable to cells are formed normally after depletion of OCT2 in a conditional mount a germinal center response (16–18). Thus, current evidence knockout mouse, but their proliferation is reduced and in vivo suggests that OCT2 and OCA-B have important functions in the differentiation to antibody-secreting plasma cells is blocked. This later stages of B-cell differentiation, but the precise role, if any, finding led us to examine the role of OCT2 in germinal center- for OCT2 in the germinal center reaction is unclear. derived lymphomas. shRNA knockdown showed that almost all Germinal centers form when a mature B cell encounters an- diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to tigen in the context of CD4 T-cell help and are characterized by the expression of OCT2 and its coactivator OCA-B.
    [Show full text]
  • The Small Heat Shock Protein B8 (HSPB8) Modulates Proliferation and Migration of Breast Cancer Cells
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 6), pp: 10400-10415 Research Paper The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells Margherita Piccolella1, Valeria Crippa1,2, Riccardo Cristofani1, Paola Rusmini1, Mariarita Galbiati1, Maria Elena Cicardi1, Marco Meroni1, Nicola Ferri3, Federica F. Morelli4, Serena Carra4, Elio Messi1,*, Angelo Poletti1,* 1Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Milano, Italy 2C. Mondino National Neurological Institute, Pavia, Italy 3Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy 4Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy *These authors have contributed equally to this work Correspondence to: Angelo Poletti, email: [email protected] Keywords: breast cancer, HSPB8, proliferation, migration, MCF-7 cells Received: June 30, 2016 Accepted: December 12, 2016 Published: January 02, 2017 ABSTRACT Breast cancer (BC) is one of the major causes of cancer death in women and is closely related to hormonal dysregulation. Estrogen receptor (ER)-positive BCs are generally treated with anti hormone therapy using antiestrogens or aromatase inhibitors. However, BC cells may become resistant to endocrine therapy, a process facilitated by autophagy, which may either promote or suppress tumor expansion. The autophagy facilitator HSPB8 has been found overexpressed in some BC. Here we found that HSPB8 is highly expressed and differentially modulated by natural or synthetic selective ER modulators (SERMs), in the triple-positive hormone-sensitive BC (MCF-7) cells, but not in triple-negative MDA-MB-231 BC cells.
    [Show full text]