Contributors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Urban Sustainability: an Inevitable Goal of Landscape Research
Landscape Ecol (2010) 25:1–4 DOI 10.1007/s10980-009-9444-7 EDITORIAL Urban sustainability: an inevitable goal of landscape research Jianguo Wu Received: 10 December 2009 / Accepted: 12 December 2009 / Published online: 25 December 2009 Ó Springer Science+Business Media B.V. 2009 ‘‘Sustainability’’ has become the word of the day and The dualistic nature of urbanization the theme of our time. The word—which in essence means meeting the needs of the present generation Year 2007 was a historic moment in human civili- without compromising the ability of future genera- zation: we have transformed ourselves from an tions to meet their own (WCED 1987)—tends to agrarian species to a mostly urban species. Only 2% conjure bucolic images of landscapes with green hills of the world population lived in urban areas in 1800, and empty spaces, but that may be a mistake. Our but this number jumped to 14% in 1900 and 30% in world certainly is replete with environmental prob- 1950. In 2007, we crossed the 50% mark—with no lems: biodiversity loss, ecosystem degradation, land- signs of slowing down. Clearly, urban areas have scape fragmentation, climate change, just to name a become the primary habitat for humans—cities, few. Urbanization—the spatial expansion of the built increasingly, are where people live and thus where environment that is densely packed by people and we will have to make sustainability a reality. their socioeconomic activities—has often been held The increasing urban nature of humanity has responsible for all these problems. In the recent serge profound environmental, economic, and social impli- of interest in sustainability, some think that urbani- cations for the world’s future. -
The Importance of Species Interactions in Spatially Explicit Eco-Evolutionary Community Dynamics Under Climate Change
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.23.003335; this version posted March 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The importance of species interactions in spatially explicit eco-evolutionary community dynamics under climate change Anna Åkesson, Alva Curtsdotter, Anna Eklöf, Bo Ebenman, Jon Norberg, György Barabás∗ Abstract Eco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which integrates evolution, dispersal, and species interactions within and between trophic levels. This allows us to analyze how these processes interact to shape species- and community-level dynamics under climate change. Additionally, we incorporate the heretofore unexplored feature that species interactions themselves might change due to increasing temperatures and affect the impact of climate change on ecological communities. The new modeling framework captures previously reported ecological responses to climate change, and also reveals two new key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on global biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, using a trait-based perspective, we found a strong negative relationship between the within- community variation in preferred temperatures and the capacity to respond to climate change. Communities resulting from different ecological interaction structures form distinct clusters along this relationship, but varying species’ abilities to disperse and adapt to new temperatures leave it unaffected. -
How Can Landscape Ecology Contribute to Sustainability Science?
Landscape Ecol (2018) 33:1–7 https://doi.org/10.1007/s10980-018-0610-7 EDITORIAL How can landscape ecology contribute to sustainability science? Paul Opdam . Sandra Luque . Joan Nassauer . Peter H. Verburg . Jianguo Wu Received: 7 January 2018 / Accepted: 9 January 2018 / Published online: 15 January 2018 Ó Springer Science+Business Media B.V., part of Springer Nature 2018 While landscape ecology is distinct from sustainability science, landscape ecologists have expressed their ambitions to help society advance sustainability of landscapes. In this context Wu (2013) coined the concept of landscape sustainability science. In August of 2017 we joined the 5th forum of landscape sustainability science in P. Opdam (&) P. H. Verburg Land Use Planning Group & Alterra, Wageningen Swiss Federal Institute for Forest, Snow and Landscape University and Research, Wageningen, The Netherlands Research (WSL), Birmensdorf, Switzerland e-mail: [email protected] J. Wu S. Luque School of Life Sciences, School of Sustainability, Julie A. IRSTEA – UMR TETIS Territoires, Environnement, Wrigley Global Institute of Sustainability, Arizona State Te´le´de´tection ET Information Spatiale, Montpellier, University, Tempe, USA France J. Wu J. Nassauer Center for Human–Environment System Sustainability School for Environment and Sustainability, University of (CHESS), Beijing Normal University, Beijing, China Michigan, Ann Arbor, USA P. H. Verburg Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 123 2 Landscape Ecol (2018) 33:1–7 Beijing (see http://leml.asu.edu/chess/FLSS/05/index.html). To inspire landscape ecologists in developing research for a more sustainable future, we highlight some of the key points raised there. We emphasize challenges that have been identified in sustainability science that we consider particularly relevant for landscape sustainability. -
2009 English
SUCCESS PROGRESS REPORT (Dec. 2007‐ Sept. 2009) I. RESEARCH 1. Research Grants Obtained z Research on the strategy of ecological environment construction and sustainable development in Ordos (June 2008 ‐ May 2010) PI: Jie Yang Funds: 3 millions RMB from Ordos People’s Government in Inner Mongolia z Research on the management model innovation of mineral resources in Inner Mongolia (Sept. 2008 ‐ Dec. 2010) PI: Xiaochuan Guo Funds: 200 thousands RMB from Chinese Ministry of Science and Technology z Research on sustainable development mode of energy industries in Ordos (June 2008 ‐ July 2009) PI: Xiaochuan Guo Funds: one million RMB from Ordos People’s Government in Inner Mongolia z Policy release and path choice for Wulanchabu’s economic rise (June 2008 ‐ July 2009) PI: Xiaochuan Guo Funds: 500 thousands RMB from Wulanchabu People’s Government in Inner Mongolia z Research on the tendency of population aging and policy model of providing for the aged in Inner Mongolia (June 2009 – Sept. 2009) PI: Xiaochuan Guo Funds: 40 thousands RMB from Inner Mongolia Population and Family Planning Commission 2. New Grants Recently Obtained z Study on the impact of rapid urbanization on the ecosystem processes – A case study of Hohhot and Baotou city of Inner Mongolia (Jan. 2010 – Dec. 2012) PI: Alexander Buyantuyev Funds: 320 thousands RMB from NSFC z Profit distribution of dairy industry in China based on value chain management (Jan. 2010 – Dec. 2012) PI: Guixia Qian Funds: 210 thousands RMB from National Science Foundation of China (NSFC) 1 z DEA method and pedigree analysis on economic effectiveness of Inner Mongolia. -
Changing Perspectives on Biodiversity Conservation
生物多样性 2008, 16 (3): 205–213 doi: 10.3724/SP.J.1003.2008.08037 Biodiversity Science http: //www.biodiversity-science.net Changing perspectives on biodiversity conservation: from species protec- tion to regional sustainability Jianguo Wu1,2* 1 Sino-US Center for Conservation, Energy, and Sustainability Science, Inner Mongolia University, Hohhot, China 2 School of Life Sciences and Global Institute of Sustainability, Arizona State University, P.O. Box 874501, Tempe, AZ 85287, USA Abstract: Biodiversity is the basis for ecosystem goods and services that provide for human survival and prosperity. With a rapidly increasing human population and its demands for natural resources, landscapes are being fragmented, habitats are being destroyed, and biodiversity is declining. How can biodiversity be effec- tively conserved in the face of increasing human pressures? In this paper, I review changing perspectives on biodiversity conservation, and discuss their relevance to the practice of biodiversity conservation. The major points include: The notion of balance of nature is a myth rather than a scientific concept; the theory of island biogeography is useful heuristically but flawed practically; the SLOSS debate is intriguing in theory but ir- relevant in reality; the concept of minimum viable population and population viability analysis are useful, but technically inefficient and conceptually inadequate; metapopulation theory is mathematically elegant but ecologically oversimplistic; and integrative perspectives and approaches for biodiversity conservation are needed that incorporate insights from landscape ecology and sustainability science. I further discuss some key principles for regional conservation planning, and argue that the long-term success of biodiversity conservation in any region will ultimately depend on the economic and social sustainability of that region. -
Attachment to Nimbios Annual Report, 2011
2011 Annual Report National Institute for Mathematical and Biological Synthesis Reporting Period, September 2010 – August 2011 Submitted to the National Science Foundation, April 2011 Attachment to NIMBioS Annual Report Section A. Year 3 Reporting Period (Sep 1, 2010 – Aug 31, 2011) A-1. NIMBioS Board of Advisors Meeting Summary A-2. Benchmarks for Diversity of Participants and Organizers A-3. Participant Diversity Report, Year 3 A-4. Evaluation Summary Report, Year 3 A-5. Participant List for NIMBioS Events and Activities Section B. Year 2 Reporting Period (Sep 1, 2009 – Aug 31, 2010) B-1. NIMBioS Board of Advisors Meeting Summary B-2. Participant Diversity Report, Year 2 B-3. Evaluation Summary Report, Year 2 Section C. Year 1 Reporting Period (Sep 1, 2008 – Aug 31, 2009) C-1. NIMBioS Board of Advisors Meeting Summary C-2. Evaluation Reports of NIMBioS Activities (Nov 2008 - Mar 2009) Attachment to NIMBioS Annual Report Section A. Year 3 Reporting Period (Sep 1, 2010 – Aug 31, 2011) A-1. NIMBioS Board of Advisors Meeting Summary A-2. Benchmarks for Diversity of Participants and Organizers A-3. Participant Diversity Report, Year 3 A-4. Evaluation Summary Report, Year 3 A-5. Participant List for NIMBioS Events and Activities Summary Report of NIMBioS Advisory Board Meeting held October 11-12, 2010 Submitted by Louis Gross, November 11, 2010 This is a brief summary of the discussions and recommendations made by the Advisory Board during the meetings held from 0830 October 11 to noon on October 12. The agenda for the meeting is included below. One month prior to the meeting information on all requests for support submitted by the September 1, 2010 deadline was provided to the Board via a password-protected link off the NIMBioS website. -
Biodiversity and Climate Change Workshop Report Ipbes-Ipcc Co-Sponsored Worshop Report on Biodiversity and Climate Change
IPBES-IPCC CO-SPONSORED WORKSHOP BIODIVERSITY AND CLIMATE CHANGE WORKSHOP REPORT IPBES-IPCC CO-SPONSORED WORSHOP REPORT ON BIODIVERSITY AND CLIMATE CHANGE IPBES-IPCC CO-SPONSORED WORKSHOP REPORT ON BIODIVERSITY AND CLIMATE CHANGE Copyright © 2021, Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Reproduction This publication may be reproduced in whole or in part and in any form for educational or non-profit services without special permission from the copyright holder, provided acknowledgement of the source is made. The IPBES and IPCC secretariats would appreciate receiving a copy of any publication that uses this publication as a source. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the IPBES secretariat, in consultation with the IPCC secretariat. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the IPBES secretariat ([email protected]). The use of information from this publication concerning proprietary products for publicity or advertising is not permitted. For further information, please contact: IPBES secretariat, UN Campus IPCC Working Group II IPCC secretariat Platz der Vereinten Nationen 1, Technical Support Unit c/o World Meteorological Organization D-53113 Bonn, Germany c/o Alfred-Wegener-Institute 7 bis Avenue de la Paix, C.P. 2300 Phone: 49 (0) 228 815 0570 Marktstrasse 3 CH- 1211 Geneva 2, Switzerland Email: [email protected] 28195 Bremen, Germany Phone: +41 22 730 8208/54/84 Web site: www.ipbes.net Phone: +49 471 4831 2442 Email: [email protected] Email: [email protected] Web site: https://www.ipcc.ch/ Web site: https://www.ipcc.ch/working- group/wg2/ Photo credits Cover: iStock_Tunart / iStock_Dora Dalton / Conor Ryan / Mattias Tschumi. -
In Race Against Time, NSF Grants Fund Research on Earth's Threatened Biodiversity
Press Release 13-170 In race against time, NSF grants fund research on Earth's threatened biodiversity NSF Dimensions of Biodiversity program announces 13 new awards Yellowstone's hot springs will be sampled in an NSF Dimensions of Biodiversity project. Credit and Larger Version September 27, 2013 The diversity of life on Earth is seemingly endless, yet much still remains to be discovered. With climate change and habitat loss threatening that biodiversity, the challenge of discovery is a race against time. To fill the gaps in understanding our planet's biodiversity, the National Science Foundation (NSF) has awarded 13 grants totaling $25 million in the fourth year of its Dimensions of Biodiversity program. Dimensions of Biodiversity is part of NSF's Science, Engineering and Education for Sustainability investment. Centuries of biological research have established a strong foundation for our understanding of biodiversity. In the past, however, researchers have sought to understand a single dimension of biodiversity-- the diversity of species at the genetic level, species diversity in a taxonomic group, or the diversity of roles certain species play in an ecosystem. Scientists funded by the Dimensions of Biodiversity program, however, integrate genetic, taxonomic, and functional approaches in their study and exploration. The Dimensions of Biodiversity awards are supported by NSF's Directorates for Biological Sciences and Geosciences along with NASA, which co-funds projects that use state-of-the-art remote sensing technologies. Collaborative projects between U.S. and Chinese, and U.S. and Brazilian researchers are co- funded by the National Natural Science Foundation of China (NSFC) and the Sao Paulo Research Foundation (FAPESP), respectively. -
Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges [Landscape Ecol, DOI: 10.1007/S10980-015-0312-3]
UC Davis UC Davis Previously Published Works Title Erratum to: Habitat fragmentation and biodiversity conservation: key findings and future challenges [Landscape Ecol, DOI: 10.1007/s10980-015-0312-3] Permalink https://escholarship.org/uc/item/4fz8r8md Journal Landscape Ecology, 31(2) ISSN 0921-2973 Authors Wilson, MC Chen, XY Corlett, RT et al. Publication Date 2016-02-01 DOI 10.1007/s10980-015-0322-1 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Landscape Ecol DOI 10.1007/s10980-015-0312-3 EDITORIAL Habitat fragmentation and biodiversity conservation: key findings and future challenges Maxwell C. Wilson . Xiao-Yong Chen . Richard T. Corlett . Raphael K. Didham . Ping Ding . Robert D. Holt . Marcel Holyoak . Guang Hu . Alice C. Hughes . Lin Jiang . William F. Laurance . Jiajia Liu . Stuart L. Pimm . Scott K. Robinson . Sabrina E. Russo . Xingfeng Si . David S. Wilcove . Jianguo Wu . Mingjian Yu Received: 5 November 2015 / Accepted: 7 November 2015 Ó Springer Science+Business Media Dordrecht 2015 Habitat loss and fragmentation has long been consid- fragmented landscapes across the word (Haddad et al. ered the primary cause for biodiversity loss and 2015), altering the quality and connectivity of habitats. ecosystem degradation worldwide, and is a key Therefore, understanding the causes and conse- research topic in landscape ecology (Wu 2013). quences of habitat fragmentation is critical to preserv- Habitat fragmentation often refers to the reduction of ing biodiversity and ecosystem functioning. continuous tracts of habitat to smaller, spatially From May 4th to 10th, 2015, an International distinct remnant patches, and habitat loss typically Workshop on Habitat Fragmentation and Biodiversity occurs concurrently with habitat fragmentation (Col- Conservation, held at the Thousand Island Lake, linge 2009). -
Decision Theory in Conservation Biology: Are There Rules of Thumb?
Decision theory in conservation biology: are there rules of thumb? Application for 1999 NCEAS Centre Fellowship Prof. Hugh Possingham Department of Environmental Science and Management The University of Adelaide Roseworthy SA 5371 AUSTRALIA Summary Ecological theory and complex, often spatially explicit, computer simulations are two ways in which ecologists have attempted to help managers solve conservation problems. Both methods have provided little guidance. Ecological theory is simple enough to be general, but lacks the constraints and trade-offs to be usefully applied in the real world. Complex computer simulations target specific ecosystems and problems (are not general), require many parameters that may be hard to estimate, and the robustness of the ensuing decisions may take years of simulating to evaluate. The primary purpose of this sabbatical will be to use existing work on the application of formal optimisation tools, like stochastic dynamic programming, to develop simple and robust “rules of thumb” for two major conservation problems, disturbance management and metapopulation management. In its grandest sense, I wish to outline a theory of applied conservation biology - something which I believe does not exist. This research proposal arises from an NCEAS working group on population management held in August 1997 (Shea, Mangel and Possingham). Some ancillary projects initiated in the workshop need to be completed. In the July 1998 NCEAS proposal round I will apply for funds to reconvene parts of the population management workshop. My research will be split between the problem described above and tidying up ancillary projects from the working group. Problem Statement In August 1997 the Centre hosted a working group on population management (Shea, Mangel and Possingham). -
Sorbonne Université École Doctorale 227 "Science De La Nature Et De L'homme : Écologie Et Évolution" Institut D’Écologie Et Des Sciences De L’Environnement – Paris
Sorbonne Université École Doctorale 227 "Science de la Nature et de l'Homme : écologie et évolution" Institut d’Écologie et des Sciences de l’Environnement – Paris Implications des dynamiques éco-évolutives de la construction de niche pour la structure des (méta)communautés. Par Aurore Picot Thèse de doctorat d’écologie Dirigée par Nicolas Loeuille et Thibaud Monnin Présentée et soutenue publiquement le 13 septembre 2018 Devant un jury composé de : Claire de Mazancourt, chargée de recherche (CNRS) Rapportrice Sylvain Gandon, directeur de recherche (CNRS) Rapporteur Silvia de Monte, chargée de recherche (CNRS) Examinatrice Tom Wenseleers, professeur (KU Leuven) Examinateur Luc Abbadie, professeur (Sorbonne Université) Examinateur Nicolas Loeuille, professeur (Sorbonne Université) Directeur de thèse Invité : Thibaud Monnin, directeur de recherche (CNRS) Co-directeur de thèse Remerciements Ces trois années de thèse ont été le théâtre d’interactions variées, dans le contexte du laboratoire et en dehors, et je voudrais me concentrer ici sur les plus positives d’entre elles, en espérant n’oublier personne. Une des interactions les plus centrales a été celle qui m’a liée à mes deux encadrants pour former en quelque sorte, un module de trois individus (mutualiste ou de facilitation, bien entendu !). Je les remercie profondément pour leur implication, leur confiance, leurs conseils, leurs retours, leur souplesse, leur disponibilité, leur « complémentarité fonctionnelle ». Je leur suis reconnaissante de m’avoir laissé une certaine autonomie dans la construction de ce projet de thèse ainsi qu’au quotidien, d’avoir été présents systématiquement, à la moindre occasion où j’en exprimais le besoin : je n’ai jamais eu le moindre doute sur la confiance que je pouvais avoir dans votre implication, et je pense que c’est un point très important, à toutes les étapes de la thèse, lorsqu’on est doctorant-e. -
Alexander Buyantuyev and Jianguo Wu School of Life Sciences, Global Institute of Sustainability, Arizona State University, Tempe
Spatiotemporal patterns of primary production across different land covers in Central-Arizona Phoenix LTER Alexander Buyantuyev and Jianguo Wu School of Life Sciences, Global Institute of Sustainability, Arizona State University, Tempe ABSTRACT RESEARCH METHODOLOGY FLOWCHART DIAGRAM RESULTS The prevalence of impervious surfaces and the destruction of • Unlike urban areas and croplands natural land covers follow predictable seasonal cycles of vegetation growth which is mostly driven by amount and timing of native vegetation in urban environments can have profound Climate data precipitation (Fig. 3). Most significant growth peaks at the community level seem to respond to substantial winter months’ rainfall and relatively low springtime air acquisition (ALERT, effects on native biodiversity and ecosystem functioning. MODIS 250m NDVI temperatures. AZMET, PRISM, Urbanization generally has been thought of as a process that bi-weekly max • Urban and agricultural lands exhibit the least inter- and intra-annual fluctuations in NDVI confirming that urban vegetation is highly maintained by humans (Fig. decreases primary production, but for desert cities this may NOAA ) composite images 3) not be the case because of highly productive patches of • Most land covers are positively correlated with rainfall both spatially (Fig. 3 and 4) and temporally (Table 1) with best relationships observed during spring irrigated green spaces and croplands. While the growth of Kriging growing season in Sonoral Upland vegetation communities native desert communities depends strongly on the amount NED Digital • The strongest and most consistent spatial correlations are observed between NDVI and the 5-month rainfall accumulated prior to one bi-weekly period that and timing of precipitation, the growth of urban vegetation is Temperature Precipitation Data preparation elevation model precedes NDVI imagery (Fig.