Native Fish of the Grand Canyon Allison Dedrick Abstract

Total Page:16

File Type:pdf, Size:1020Kb

Native Fish of the Grand Canyon Allison Dedrick Abstract Native Fish of the Grand Canyon Allison Dedrick Abstract: Native fish in the Grand Canyon evolved in a habitat that was extremely physically variable but biologically isolated from other river systems. The assemblage of fish species native to the Grand Canyon is highly endemic to the Colorado River basin: most of the species are found in no other river systems. With the construction of dams and other water infrastructure projects and the introduction of numerous nonnative fish species, the environment these fish now inhabit has switched to being more physically constant and biologically crowded. These changes have caused three of the eight fish species native to the Grand Canyon to be extirpated from the canyon stretch and left only one of the native species at population levels high enough to be considered common in Grand Canyon National Park. Four of the eight are listed as endangered and are now monitored and managed in attempts to recover their populations. Freshwater habitat in the Grand Canyon: The Colorado River basin (Figure 1) reaches into seven states and drains an area of at least 600,000 km2 (Graf 1985), with headwaters starting up in Colorado and finally ending in the southeast corner of California at its border with Arizona. Prior to human involvement and water management, the stretch of the Colorado River that passes through the Grand Canyon was highly variable, with flows changing over a range of five orders of magnitude. Before the dams were put in place, a 40-year flow record from Yuma, Arizona showed flows ranging from 0.5 to almost 7,000 m3/s (Minckley 1991). Most of the water comes from snowmelt, causing higher flows in the spring and lower flows during the summer through the onset of winter, though summer storms can raise flows in tributaries temporarily. These widely varying but sometimes extremely high flows created a range of habitats, including deep pools, calm backwaters left by receding high waters, turbulent flow, and eddies. The geology of the rock underlying the Grand Canyon and larger Colorado River basin caused the water to be quite muddy and it was also often warm, particularly in the summer (Miller 1961). Introduction to the fish: The larger Colorado River basin, which includes both the mainstem Colorado River and its tributaries, has fourteen species of native fish. Eight of the fourteen species native to the larger basin were native to the section of the river passing through the Grand Canyon: the speckled dace (Rhinichthys osculus), razorback sucker (Xyrauchen texanus), flannelmouth sucker (Catostomus latipinnis), bluehead sucker (Catostomus discobolus), Colorado pikeminnow (Ptychocheilus lucius), roundtail chub (Gila robusta), humpback chub (Gila cyhpa), and bonytail chub (Gila elegans) (Figure 2). These eight fish were once common to both the upper and lower basins of the Colorado River (Carlson and Mace 1989). Five of these species are still present in the canyon today – the humpback chub, razorback sucker, bluehead sucker, flannelmouth sucker, and speckled dace – but the other three have been extirpated from the Grand Canyon. Figure 1: Map of the Colorado River Basin. The Grand Canyon begins just below the Glen Canyon Dam at Lee’s Ferry. The San Juan River and the Green River in the upper basin hold many of the remaining populations of native fish. Map source: Colorado River Commission of Nevada (http://crc.nv.gov/index.asp?m=maps). The fish in the Colorado River basin show high endemism: six of the eight species native to the Grand Canyon are endemic to the Colorado River basin (Minckley 1991). Only two families of fish are represented in the fish species in the Grand Canyon: minnows (Cyprinidae) and suckers (Catostomidae). The pattern of high endemism is not unique to fish but is found for other freshwater organisms in the Colorado River as well. The Colorado River has the lowest diversity of fish and highest endemism of river systems in the North America, likely due to the system’s isolation and the high variability of temperature and flow conditions in the mainstem and tributaries. The fish assemblage in the Grand Canyon is thought to have existed for about 6 million years, with the genera present since the Pliocene and speciation happening during the Pleistocene and early Holocene (Carlson and Muth 1989). The river system has likely been separated from other river systems for at least as long. **" *" **" **" *" **" Figure 2: Native fish of the Grand Canyon. Clockwise from upper right corner: speckled dace (Rhinichthys osculus), razorback sucker (Xyrauchen texanus), flannelmouth sucker (Catostomus latipinnis), bluehead sucker (Catostomus discobolus), Colorado pikeminnow (Ptychocheilus lucius), roundtail chub (Gila robusta), humpback chub (Gila cyhpa), and bonytail chub (Gila elegans). Species with a red box have been extirpated from the Grand Canyon, while species with a blue box are still present in the Grand Canyon. Species listed as federally endangered are designated with two red asterisks while the two species that are not endemic to the Grand Canyon are indicated with one black asterisk. Illustrations are by Joe Tomelleri (Grand Canyon National Park: http://www.nps.gov/grca/learn/nature/fish-native.htm). Perhaps unsurprising due to their isolation and somewhat extreme environment, fish native to the Grand Canyon share some common characteristics. First, they tend to have a long life span: the Colorado pikeminnow is able to live up to 80 years and the chubs and suckers can live for 20-30 years (Minckley 1991). Since the conditions in the Grand Canyon were once so variable, both within and among years, having a long life span might have been a strategy to ensure that reproduction could be spread out over many years in the hopes that at least some of the years would have conditions favorable for reproduction and recruitment. Additionally, the native fish of the Grand Canyon are also relatively large-bodied. The Colorado pikeminnow can reach lengths of six feet and the chub and sucker species can reach almost two feet in length (Grand Canyon’s Extirpated Fish Species: National Park Service). The speckled dace, however, is neither particularly large nor long-lived, reaching only about four inches in length and living for two or three years. In addition to size and life span, fish of the Grand Canyon also share some physical characteristics. The species tend to have a streamlined shape, with small heads and eyes, large fins, and thick skin. These features might be advantageous for life in fast, turbulent water often laden with sediment (Minckley 1991). Several of the species also have humps behind their heads, most notably the humpback chub and the razorback sucker. The hump was once thought to be another characteristic to aid swimming in fast turbulent water but instead was found to increase drag and the energy required to maintain position in flow (Portz and Tyus 2004). Portz and Tyus argue that the humps are actually an example of convergent evolution in response to the predatory Colorado pikeminnow. By growing a hump, young fish could more quickly grow past the size vulnerable to predation by the Colorado pikeminnow. Current status of Grand Canyon native fish: Four of the eight species native to the Grand Canyon have been listed as federally endangered: the humpback chub, bonytail chub, razorback sucker, and Colorado pikeminnow. Only the humpback chub and the razorback sucker are still present in the Grand Canyon, though both are rare. Of the five native fish species that remain in the Grand Canyon, only the speckled dace is common in the park and it lives primarily in the tributaries. Bonytail chub: In addition to being absent from the Grand Canyon, the bonytail chub no longer has any reproductive populations in the wild. It was listed as endangered in 1980 and was essentially extirpated from the wild before biologists had much of a chance to study it so relatively little is known about its natural behaviors and habitat. By the late 1970s and early 1980s, biologists realized that they were seeing only adults and no young in the Grand Canyon so removed adults to be placed into hatcheries (Upper Colorado River Endangered Fish Recovery Program). Humpback chub: The humpback chub was listed as endangered in 1967. There are six populations that remain in the overall Colorado River basin. Within the Grand Canyon, they are currently found almost exclusively at the confluence with the Little Colorado tributary, which is the largest population. The fish spawn in the warmer waters of the tributary, as the mainstem waters are too cold. They face predation pressure from the trout populations upstream in the tailwater of the Glen Canyon Dam (Historical Native Fishes of Glen and Grand Canyons) and also have trouble with nonnative parasites (Humpback Chub Tributary Tranlocations: National Park Service). Razorback sucker: The razorback sucker was thought to be absent from the Grand Canyon for many decades but recently has been sighted spawning in the Grand Canyon again. Listed as federally endangered in 1991, a population in Lake Mead was thought to be the only remaining wild population. In 2012, however, larval razorback suckers were found at several sites in the Grand Canyon, creating hope that a population might be able to reestablish there (Oskin 2014). Colorado pikeminnow: Listed in 1967 and given full protection with the passage of the Endangered Species Act in 1973, the Colorado pikeminnow has been extirpated from the Grand Canyon for several decades. The last known sighting in the Grand Canyon was in 1972 (Grand Canyon’s Extirpated Fish Species: National Park Service), though populations are still present in the upper part of the Colorado River basin above Lake Powell, particularly in the San Juan and Green Rivers. The Colorado pikeminnow was once the top predator in the Grand Canyon and historically undertook large spawning migrations with high spawning site fidelity.
Recommended publications
  • Roundtail Chub
    Roundtail Chub - Gila robusta Abundance: Rare Status: NSS1 (Aa) NatureServe: G3 S3 Population Status: Greatly restricted in numbers and distribution and extirpation is possible. Limiting Factor: The biggest limiting factor for roundtail chub is invasive species. This threat has significant impacts through competition and predation. The threat of invasive species is growing with introductions of new species and the expansion of existing species. This is particularly true of predatory fish. Population of roundtails in Wyoming are imperiled due to limited distribution and declines in numbers. Comment: NSS Ranks are reviewed and revised with each SWAP revision. No changes were made for this species in this revision. Introduction Roundtail chub, along with flannelmouth sucker Catostomus latipinnis, and bluehead sucker C. discobolus are all relatively large-bodied species native to the Colorado River drainage. These three imperiled fish are collectively called “the three species” and their conservation has been a cooperative effort spanning state lines (Utah Department of Natural Resources 2006, updated in 2011). Once common throughout the drainage, roundtail chub currently occupy approximately 45% of their historic range in the Colorado River Basin (Baxter and Stone 1995; Bezzerides and Bestgen 2002). They still occur in relatively low numbers throughout the Green River drainage of Wyoming, with lentic populations in the Finger Lakes of the New Fork Drainage (Baxter and Stone 1995; Gelwicks et al. 2009). Roundtail chubs are omnivorous. Larvae feed on diatoms and filamentous algae (Neve 1967). Juveniles feed on aquatic insects, crustaceans, and algae. (Bestgen 1985). Adults consume these food items as well as terrestrial gastropods, insects, and reptiles (Rinne 1992).
    [Show full text]
  • Roundtail Chub (Gila Robusta Robusta): a Technical Conservation Assessment
    Roundtail Chub (Gila robusta robusta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 3, 2005 David E. Rees, Jonathan A. Ptacek, and William J. Miller Miller Ecological Consultants, Inc. 1113 Stoney Hill Drive, Suite A Fort Collins, Colorado 80525-1275 Peer Review Administered by American Fisheries Society Rees, D.E., J.A. Ptacek, and W.J. Miller. (2005, May 3). Roundtail Chub (Gila robusta robusta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/roundtailchub.pdf [date of access]. ACKNOWLEDGMENTS We would like to thank those people who promoted, assisted, and supported this species assessment for the Region 2 USDA Forest Service. Ryan Carr and Kellie Richardson conducted preliminary literature reviews and were valuable in the determination of important or usable literature. Laura Hillger provided assistance with report preparation and dissemination. Numerous individuals from Region 2 national forests were willing to discuss the status and management of this species. Thanks go to Greg Eaglin (Medicine Bow National Forest), Dave Gerhardt (San Juan National Forest), Kathy Foster (Routt National Forest), Clay Spease and Chris James (Grand Mesa, Uncompahgre, and Gunnison National Forest), Christine Hirsch (White River National Forest), as well as Gary Patton and Joy Bartlett from the Regional Office. Dan Brauh, Lory Martin, Tom Nesler, Kevin Rogers, and Allen Zincush, all of the Colorado Division of Wildlife, provided information on species distribution, management, and current regulations. AUTHORS’ BIOGRAPHIES David E. Rees studied fishery biology, aquatic ecology, and ecotoxicology at Colorado State University where he received his B.S.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Operation of Flaming Gorge Dam Final Environmental Impact Statement
    Record of Decision Operation of Flaming Gorge Dam Final Environmental Impact Statement I. Summary of Action and Background The Bureau of Reclamation (Reclamation) has completed a final environmental impact statement (EIS) on the operation of Flaming Gorge Dam. The EIS describes the potential effects of modifying the operation of Flaming Gorge Dam to assist in the recovery of four endangered fish, and their critical habitat, downstream from the dam. The four endangered fish species are Colorado pikeminnow (Ptychocheilus lucius), humpback chub (Gila cypha), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans). Reclamation would implement the proposed action by modifying the operations of Flaming Gorge Dam, to the extent possible, to achieve the flows and temperatures recommended by participants of the Upper Colorado River Endangered Fish Recovery Program (Recovery Program). Reclamation’s goal is to implement the proposed action and, at the same time, maintain and continue all authorized purposes of the Colorado River Storage Project. The purpose of the proposed action is to operate Flaming Gorge Dam to protect and assist in recovery of the populations and designated critical habitat of the four endangered fishes, while maintaining all authorized purposes of the Flaming Gorge Unit of the Colorado River Storage Project (CRSP), including those related to the development of water resources in accordance with the Colorado River Compact. As the Federal agency responsible for the operation of Flaming Gorge Dam, Reclamation was the lead agency in preparing the EIS. Eight cooperating agencies also participated in preparing this EIS: the Bureau of Indian Affairs (BIA), Bureau of Land Management, National Park Service, State of Utah Department of Natural Resources, U.S.
    [Show full text]
  • Population Status of Humpback Chub, Gila Cypha, and Catch
    Population Status of Humpback Chub, Gila cypha, and Catch Indices and Population Structure of Sympatric Roundtail Chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998- 2012 Picture 1. Humpback chub on grid board (2012). Photo credit: T. Francis, USFWS. Upper Colorado River Endangered Fish Recovery Program Project Number 131 (22a3) Final Report April, 2016 Travis A. Francis U.S. Fish and Wildlife Service Colorado River Fishery Project 445 West Gunnison Avenue, Suite 140 Grand Junction, Colorado 81501 -and- Dr. Kevin R. Bestgen Dr. Gary C. White Colorado State University Larval Fish Laboratory Fort Collins, Colorado 80523 i Suggested Citation: Francis, T.A., K.R. Bestgen, and G.C. White. 2016. Population status of humpback chub, Gila cypha, and catch indices and population structure of sympatric roundtail chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998-2012. Larval Fish Laboratory Contribution 199. Final Report from the U.S. Fish and Wildlife Service to the Upper Colorado River Endangered Fish Recovery Program, Project Number 131. Grand Junction, Colorado. ii Table of Contents ACKNOWLEDGEMENTS ......................................................................................................................... vi EXECUTIVE SUMMARY .......................................................................................................................... vii INTRODUCTION .....................................................................................................................................
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Movements of Sonic Tagged Razorback Suckers Between Davis and Parker Dams (Lake Havasu) 2007–2010
    Movements of Sonic Tagged Razorback Suckers between Davis and Parker Dams (Lake Havasu) 2007–2010 May 2012 Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Game U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation District Mohave County Water Authority Mohave Valley Irrigation and Drainage District Native American Participant Group Mohave Water Conservation District North Gila Valley Irrigation and Drainage District Hualapai Tribe Town of Fredonia Colorado River Indian Tribes Town of Thatcher Chemehuevi Indian Tribe Town of Wickenburg Salt River Project Agricultural Improvement and Power District Unit “B” Irrigation and Drainage District Conservation Participant Group Wellton-Mohawk Irrigation and Drainage District Yuma County Water Users’ Association Ducks Unlimited Yuma Irrigation District Lower Colorado River RC&D Area, Inc.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • DRAFT Bonytail Chub (Pimephales Promelas ) Thermal Tolerance Analyses – Juvenile and Adult, Summer March 2016
    DRAFT Bonytail Chub (Pimephales promelas ) Thermal Tolerance Analyses – Juvenile and Adult, Summer March 2016 Introduction Recommended summer chronic and acute thermal tolerance values for juvenile and adult bonytail chub and their justification are discussed below. The recommended tolerance values were developed in accordance with the “ DRAFT Methodology for Developing Thermal Tolerance Thresholds for Various Fish in Nevada – Juvenile and Adult, Summer ” (September 2015). Chronic Thermal Tolerance Thresholds Table 1 provides a summary of the range of chronic temperature tolerance values for bonytail chub for various lines of evidence. These values are based upon a review of 2 papers and publications, the details of which are summarized in Attachment A. There is obviously a wide range of temperatures from which to select an appropriate value and best professional judgment is called for. NDEP’s approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize other values. However, in the case of the bonytail chub, EPA has not recommended a chronic thermal tolerance value. As discussed in the methodology, chronic temperature criteria are generally not set to ensure the most optimum conditions. In fact, Brungs and Jones (1977) recommends chronic criterion for a given fish species that is between the optimum temperature and the UUILT. Based upon the available data, the recommended chronic threshold for bonytail chub is 29°C. This value is consistent with the upper
    [Show full text]
  • Razorback Suckers Are Making a Comeback in the Upper Colorado River Basin
    Winter 13 Razorback suckers are making a comeback in the upper Colorado River basin iologists are thrilled that the recovery programs’ stocking Hatchery programs have been very successful. In the upper efforts are bearing fruit and razorback suckers are becom- basin, razorback suckers are being raised by the Ouray National Bing more numerous throughout the upper Colorado River Fish Hatchery, Randlett and Grand Valley units near Vernal, Utah basin. “We catch so many razorbacks these days; it takes us lon- and Grand Junction, Colorado. Following analysis of razorback ger to complete our Colorado pikeminnow sampling trips,” says sucker stocking and survival by Colorado State University’s Larval U. S. Fish and Wildlife Service (USFWS) researcher Travis Francis. Fish Lab, the Recovery Program increased the size of razorback Historically, the razorback sucker occurred throughout warm- sucker for stocking from an average of about 11 inches to about 14 water reaches of the Colorado River Basin from Mexico to Wyoming. PHOTOGRAPH COURTESY UDWR-MOAB inches and is stocking the fish in the fall when fish survive better. When this species was listed in 1991, its numbers were much reduced To increase growth, the Program raises the fish in a combination and biologists were worried it might become extinct. Thanks to of outdoor ponds during warmer months and indoor tanks in the the efforts of the San Juan River Basin Recovery Implementation winter. Program and the Upper Colorado River Endangered Fish Recovery This past summer, many wild-spawned razorback larvae drift- Program, these fish are making a real comeback today. Hatchery- ed from a middle Green River spawning bar into the Stewart Lake produced fish are being stocked to re-establish the species in the JUVENILE RAZORBACK SUCKER, MAY, 2013 wetland about 11 miles downstream.
    [Show full text]
  • Molecular Systematics of Western North American Cyprinids (Cypriniformes: Cyprinidae)
    Zootaxa 3586: 281–303 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:0EFA9728-D4BB-467E-A0E0-0DA89E7E30AD Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae) SUSANA SCHÖNHUTH 1, DENNIS K. SHIOZAWA 2, THOMAS E. DOWLING 3 & RICHARD L. MAYDEN 1 1 Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA. E-mail S.S: [email protected] ; E-mail RLM: [email protected] 2 Department of Biology and Curator of Fishes, Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA. E-mail: [email protected] 3 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA. E-mail: [email protected] Abstract The phylogenetic or evolutionary relationships of species of Cypriniformes, as well as their classification, is in a era of flux. For the first time ever, the Order, and constituent Families are being examined for relationships within a phylogenetic context. Relevant findings as to sister-group relationships are largely being inferred from analyses of both mitochondrial and nuclear DNA sequences. Like the vast majority of Cypriniformes, due to an overall lack of any phylogenetic investigation of these fishes since Hennig’s transformation of the discipline, changes in hypotheses of relationships and a natural classification of the species should not be of surprise to anyone. Basically, for most taxa no properly supported phylogenetic hypothesis has ever been done; and this includes relationships with reasonable taxon and character sampling of even families and subfamilies.
    [Show full text]
  • Colorado Pikeminnow: Forgotten Predator of the Lower Colorado River
    Colorado Pikeminnow: Forgotten Predator of the Lower Colorado River David Ward US Geological Survey Grand Canyon Monitoring and Research Center Outline • Historical context • A common misperception about Colorado Pikeminnow • Political Context • A Call to Action Historical Context Celebration at completion of Laguna Dam 1909 Concrete Cap on Laguna Dam stretching from CA to AZ Catching Colorado pikeminnow above Hoover Dam c.1938 Last Colorado pikeminnow captured in Lake Mohave, November 13, 1962 1976 last pikeminnow caught in Grand Canyon at Havasu Creek A Common Misperception • Colorado Pikeminnow will cause detrimental impacts to other endangered fish Conservation efforts through predation Flathead Catfish Smallmouth Bass Bullhead Catfish Colorado Pikeminnow Body depth of Humpback Chub Body depth of Razorback Sucker Why Have they Been forgotten? •2002 Recovery Goals stated that no Conservation actions downstream of Glen Canyon Dam count toward species recovery • This decision was to be re- evaluated during 5-year status reviews - but has not occurred Adult Pikeminnow persist in the Verde River, but no research is conducted because no money is available The River is too disjunct! Segregated native fish management Marsh and Pacey 2005 Clarkson et al. 2005 Mueller 2005 If we are not going to pursue segregated fish management Which of our native fish are likely to persist with Non-native fishes? Colorado Pikeminow – one of best candidates Conclusions • Gape comparisons indicate Pikeminnow pose little threat relative to other introduced predatory fishes (and they have no teeth) • Arguments against repatriation based on fears of potential negative impacts to other endangered native fishes may be overstated • Without revision of the recovery goals the fate of Colorado Pikeminnow in the Lower Colorado River basin may be sealed.
    [Show full text]