Final Rogue Fall Chinook Salmon Conservation Plan

Total Page:16

File Type:pdf, Size:1020Kb

Final Rogue Fall Chinook Salmon Conservation Plan CONSERVATION PLAN FOR FALL CHINOOK SALMON IN THE ROGUE SPECIES MANAGEMENT UNIT Adopted by the Oregon Fish and Wildlife Commission January 11, 2013 Oregon Department of Fish and Wildlife 3406 Cherry Avenue NE Salem, OR 97303 Rogue Fall Chinook Salmon Conservation Plan - January 11, 2013 Table of Contents Page FOREWORD .................................................................................................................................. 4 ACKNOWLEDGMENTS ............................................................................................................... 5 INTRODUCTION ........................................................................................................................... 6 RELATIONSHIP TO OTHER NATIVE FISH CONSERVATION PLANS ................................. 7 CONSTRAINTS ............................................................................................................................. 7 SPECIES MANAGEMENT UNIT AND CONSTITUENT POPULATIONS ............................... 7 BACKGROUND ........................................................................................................................... 10 Historical Context ......................................................................................................................... 10 General Aspects of Life History .................................................................................................... 14 General Aspects of the Fisheries ................................................................................................... 15 POPULATION STATUS ASSESSMENTS ................................................................................. 15 Rogue Stratum ............................................................................................................................... 15 Coastal Stratum ............................................................................................................................. 29 Species Management Unit Summary ............................................................................................ 45 PRIMARY LIMITING FACTORS ............................................................................................... 45 Rogue Stratum ............................................................................................................................... 46 Coastal Stratum ............................................................................................................................. 72 DESIRED BIOLOGICAL STATUS ........................................................................................... 106 Criteria for Individual Populations .............................................................................................. 106 Criteria for the Species Management Unit .................................................................................. 109 Population Productivity ............................................................................................................... 110 VIABILITY OF THE SPECIES MANAGEMENT UNIT ......................................................... 111 DISPARITY BETWEEN DESIRED AND CURRENT STATUS ............................................. 115 Rogue Stratum ............................................................................................................................. 115 Coastal Stratum ........................................................................................................................... 116 ALTERNATIVE SUITES OF MANAGEMENT STRATEGIES .............................................. 117 Rogue Stratum ............................................................................................................................. 118 Coastal Stratum ........................................................................................................................... 126 CRITERIA INDICATING DETERIORATION IN STATUS .................................................... 133 MONITORING, EVALUATION, AND RESEARCH NEEDS ................................................. 139 Monitoring Needs ........................................................................................................................ 139 Evaluation Needs ......................................................................................................................... 141 Research Needs ........................................................................................................................... 142 PROCESS TO MODIFY CORRECTIVE STRATEGIES .......................................................... 144 Adaptive Management ................................................................................................................ 144 Reporting ..................................................................................................................................... 145 POTENTIAL IMPACTS TO OTHER NATIVE SPECIES ........................................................ 145 ECONOMIC IMPACTS ............................................................................................................. 146 REFERENCES ............................................................................................................................ 146 2 Rogue Fall Chinook Salmon Conservation Plan - January 11, 2013 APPENDIX A. Definitions ................................................................................................................................. 158 APPENDIX B. Regulatory Responsibilities of Governmental Agencies ...................................................... 163 APPENDIX C. Development of Spawner and Freshwater Escapement Estimates Rogue River Basin Populations .............................................................................................. 167 APPENDIX D. Development of Spawner Escapement Estimates Coastal Populations and Lower Rogue Population ............................................................... 177 APPENDIX E. Data and Estimates Used During Plan Development ........................................................... 200 APPENDIX F. Population Models ..................................................................................................................... 214 APPENDIX G. Potential Actions Considered for Populations in the Rogue Stratum ................................. 227 APPENDIX H. Potential Actions Considered for Populations in the Coastal Stratum................................ 235 APPENDIX I. Alternative Suites of Management Actions - Rogue Population Stratum .......................... 243 APPENDIX J. Alternative Suites of Management Actions - Coastal Population Stratum ........................ 250 APPENDIX K. Management Application of Conservation Criteria for Spawner Escapements ................ 258 3 Rogue Fall Chinook Salmon Conservation Plan - January 11, 2013 FOREWORD The purpose of this document is to present a draft conservation plan for naturally produced fall Chinook salmon (Oncorhynchus tshawytscha) in the Rogue Species Management Unit of southwest Oregon. Conservation plans are to be developed for each Species Management Unit of native fish in the state of Oregon, as outlined by the Native Fish Conservation Policy. This policy was adopted by the Oregon Fish and Wildlife Commission in 2003 in order to ensure the conservation and recovery of native fish in Oregon. The Oregon Fish and Wildlife Commission will eventually consider adoption of a final draft of this conservation plan. Prior to plan adoption, the commission will consider, and take action on, alternative suites of management strategies that receive support from various entities. After plan adoption by the commission, portions of this conservation plan will be added to Oregon Administrative Rules. The Native Fish Conservation Policy states that the conservation of native fish is the principle obligation for fish management practices by the Oregon Department of Fish and Wildlife. The policy has three areas of emphasis: (1) avoid serious depletion of native fish, (2) actively restore and maintain native fish at population levels that provide ecological and societal benefits, and (3) ensure that opportunities for fisheries and other societal resource uses are not unnecessarily constrained when consistent with native fish conservation. Conservation plans are intended to provide a basis for managing hatcheries, fisheries, habitat, predators, competitors, and pathogens in balance with sustainable production of naturally produced fall Chinook salmon in the Rogue Species Management Unit. The strategies and objectives within each section define the core management program and describe the fundamental direction that will be pursued. These are implemented through specific actions, which may include (but are not limited to) restoring or improving habitat, revisions to fishery regulations, and revisions to hatchery operations. A wide variety of actions are described, but not all may be implemented because of funding uncertainties. A draft of this plan will be distributed for a 45 day comment period to the public and to a wide variety of interested parties. Portions of this plan will become Oregon Administrative Rule upon adoption by the Oregon Fish and Wildlife Commission. Definitions of technical terms and acronyms can be found in APPENDIX A. This conservation plan complements The Oregon Plan for Salmon and Watersheds, which was adopted by the Oregon Legislature in 1997. Primary funds that supported work on this conservation
Recommended publications
  • SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
    SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices.
    [Show full text]
  • Snohomish River Basin Salmon Conservation Plan: Status and Trends
    SNOHOMISH RIVER BASIN SALMON CONSERVATION PLAN STATUS AND TRENDS DECEMBER 2019 CONTENTS Introduction 1 Status Update 3 Snohomish Basin 3 Salmon Plan Overview 7 Implementation Progress 10 Status and Trends 18 Salmon in the Basin 18 Chinook Salmon 19 Coho Salmon 22 Steelhead 24 Bull Trout 26 Chum Salmon 27 Factors Affecting Survival of Salmon Species 29 Basin Trends 32 Salmon Plan Implementation 46 Habitat Restoration Progress 48 Restoration Funding 67 Habitat and Hydrology Protection Observations 70 Monitoring and Adaptive Management 76 Updating the Basin-Wide Vision for Recovery 77 Considerations for a Changing Future 78 Restoration Opportunities and Challenges 82 Integration of Habitat, Harvest, and Hatchery Actions Within the Basin 86 Multi-Objective Planning 88 Updating Our Salmon Plan 90 Credits and Acknowledgments 93 INTRODUCTION Since 1994 — 5 years before the Endangered Species Act (ESA) listing of Chinook salmon — partner organizations in the Snohomish Basin have been coordinating salmon recovery efforts to improve salmon stock numbers. In 2005, the Snohomish Basin Salmon Recovery Forum (Forum) adopted the Snohomish River Basin Salmon Conservation Plan1 (Salmon Plan), defining a multi-salmon strategy for the Snohomish Basin that emphasizes two ESA-listed species, Chinook salmon and bull trout, and the non-listed coho salmon. These species are used as proxies for other Basin salmon to help prevent future listings. The Salmon Plan, developed by the 41-member Forum, incorporates habitat, harvest, and hatchery management actions to bring the listed wild stocks back to healthy, harvestable levels. 1 Snohomish Basin Salmon Recovery Forum, 2005. Snohomish River Basin Salmon Conservation Plan. Snohomish County Department of Public Works, Surface Water Management Division.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • EAFONSI Template
    Environmental Assessment Chetco Bar Fire Salvage Project Fisheries and Aquatic Biota The following is a summary of the Aquatic Biota Biological Evaluation. The entire report is incorporated by reference and can be found in the project file, located at the RRSNF, Gold Beach Ranger District, Gold Beach, Oregon. Regulatory Framework In compliance with Section 7 of the Endangered Species Act (ESA) and the Forest Service Biological Evaluation (BE) process for Endangered, Threatened, Proposed or Sensitive fish species (Siskiyou LRMP S&G 4-2; page IV-27), the USDA Forest Service Region 6 Sensitive Species List (updated July 13, 2015) was reviewed and field reconnaissance was conducted in regard to potential effects on any of these species by actions associated with the Chetco Bar Area Salvage Project. Affected Environment The Action Area, as defined by the Endangered Species Act (ESA), is all areas to be affected directly or indirectly by the federal action and not merely the immediate area involved in the action [50 CFR § 402.02]. The Action Area not only includes the immediate footprint of the proposed salvage and road related activities, but any downstream reaches which may be affected indirectly. The ESA Action Area is also analyzed for Forest Service Sensitive Species. The proposed project is located within the Chetco River and Pistol River 5th field watersheds. All proposed project activities would occur within the South Fork Chetco River, Nook Creek, Eagle Creek, East Fork Pistol River-Pistol River, South Fork Pistol River, and North Fork Pistol River 6th field subwatersheds. All potential effects are also expected to occur within the boundaries of these subwatersheds.
    [Show full text]
  • Groundwater As Essential Salmon Habitat in Nushagak and Kvichak River Headwaters: Issues Relative to Mining
    Groundwater as Essential Salmon Habitat In Nushagak and Kvichak River Headwaters: Issues Relative to Mining Dr. Carol Ann Woody and Dr. Brentwood Higman for CSP2 10 July 2011 Groundwater as Essential Salmon Habitat in Nushagak and Kvichak River Headwaters: Issues Relative to Mining Dr. Carol Ann Woody Fisheries Research and Consulting www.fish4thefuture.com Dr. Brentwood Higman Ground Truth Trekking http://www.groundtruthtrekking.org/ Abstract Groundwater-fed streams and rivers are among the most important fish habitats in Alaska because groundwater determines extent and volume of ice-free winter habitat. Sockeye, Chinook, and chum salmon preferentially spawn in upwelling groundwater, whereas coho prefer downwelling groundwater regions. Groundwater protects fish embryos from freezing during winter incubation and, after hatching, ice-free groundwater allows salmon to move both down and laterally into the hyporheic zone to absorb yolk sacs. Groundwater provides overwintering juvenile fish, such as rearing coho and Chinook salmon, refuge from ice and predators. Groundwater represents a valuable resource that influences salmon spawning behavior, incubation success, extent of overwintering habitat, and biodiversity, all of which can influence salmon sustainability. Recently, over 2,000 km2 of mine claims were staked in headwaters of the Nushagak and Kvichak river watersheds, which produce about 40% of all Bristol Bay sockeye salmon (1956-2010). The Pebble prospect, a 10.8 billion ton, low grade, potentially acid generating, copper deposit is located on the watershed divide of these rivers and represents mine claims closest to permitting. To assess groundwater prevalence and its relationship to salmon resources on mine claims, rivers within claims were surveyed for open ice-free water, 11 March 2011; open water was assumed indicative of groundwater upwelling.
    [Show full text]
  • Chetco Bar Fire Timber Salvage Project
    United States Department of Interior Bureau of Land Management Coos Bay District Myrtlewood Field Office 1300 Airport Lane Coos Bay, OR 97459 Categorical Exclusion Review Chetco Bar Fire Timber Salvage Project DOI-BLM-ORWA-C040-2018-0002-CX BLM Office: Myrtlewood Field Office Lease/Serial/Case No. : DOI-BLM-ORWA-C040-2018-0002-CX Proposed Action Title: Chetco Bar Fire Timber Salvage Project Location of Proposed Action: Township 39 South, Range 13 West, Sections 1, 2, 11, 13-15, 22, 23, 25-27, Willamette Meridian, Curry County, Oregon (see attached Map2 and Map3). Background Reported on July 12, 2017, the Chetco Bar Fire started in the Kalmiopsis Wilderness on U.S. Forest Service Land from lightning strikes. The fire burned within the 2002 Biscuit Fire and 1987 Silver Fire scars between Brookings, Oregon to the west and Cave Junction to the east. Winds pushed the fire southward towards Brookings and onto private and Bureau of Land Management (BLM) administered lands in Curry County. The fire burned on approximately 185,920 acres of which 6,501 acres are BLM-administered lands. The fire burned on steep slopes (elevations range from 3,420 ft. on ridge tops to 1,200 ft. in drainages) within two watersheds (North Fork Chetco River and South Fork Pistol River). The BLM assigned a Burn Area Emergency Response (BAER) team to BLM-Administered land effected by the Chetco Bar Fire. The BAER team created a Burned Area Reflectance Classification (BARC) map and field reviewed the area to create a soil burn severity (SBS) map. SBS maps identifies fire-induced changes in soil and ground surface properties that may affect infiltration, run-off, and erosion potential (Parsons et al.
    [Show full text]
  • International Law Enforcement Cooperation in the Fisheries Sector: a Guide for Law Enforcement Practitioners
    International Law Enforcement Cooperation in the Fisheries Sector: A Guide for Law Enforcement Practitioners FOREWORD Fisheries around the world have been suffering increasingly from illegal exploitation, which undermines the sustainability of marine living resources and threatens food security, as well as the economic, social and political stability of coastal states. The illegal exploitation of marine living resources includes not only fisheries crime, but also connected crimes to the fisheries sector, such as corruption, money laundering, fraud, human or drug trafficking. These crimes have been identified by INTERPOL and its partners as transnational in nature and involving organized criminal networks. Given the complexity of these crimes and the fact that they occur across the supply chains of several countries, international police cooperation and coordination between countries and agencies is absolutely essential to effectively tackle such illegal activities. As the world’s largest police organization, INTERPOL’s role is to foster international police cooperation and coordination, as well as to ensure that police around the world have access to the tools and services to effectively tackle these transnational crimes. More specifically, INTERPOL’s Environmental Security Programme (ENS) is dedicated to addressing environmental crime, such as fisheries crimes and associated crimes. Its mission is to assist our member countries in the effective enforcement of national, regional and international environmental law and treaties, creating coherent international law enforcement collaboration and enhancing investigative support of environmental crime cases. It is in this context, that ENS – Global Fisheries Enforcement team identified the need to develop a Guide to assist in the understanding of international law enforcement cooperation in the fisheries sector, especially following several transnational fisheries enforcement cases in which INTERPOL was involved.
    [Show full text]
  • Molecular Systematics of Western North American Cyprinids (Cypriniformes: Cyprinidae)
    Zootaxa 3586: 281–303 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:0EFA9728-D4BB-467E-A0E0-0DA89E7E30AD Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae) SUSANA SCHÖNHUTH 1, DENNIS K. SHIOZAWA 2, THOMAS E. DOWLING 3 & RICHARD L. MAYDEN 1 1 Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, MO 63103, USA. E-mail S.S: [email protected] ; E-mail RLM: [email protected] 2 Department of Biology and Curator of Fishes, Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA. E-mail: [email protected] 3 School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA. E-mail: [email protected] Abstract The phylogenetic or evolutionary relationships of species of Cypriniformes, as well as their classification, is in a era of flux. For the first time ever, the Order, and constituent Families are being examined for relationships within a phylogenetic context. Relevant findings as to sister-group relationships are largely being inferred from analyses of both mitochondrial and nuclear DNA sequences. Like the vast majority of Cypriniformes, due to an overall lack of any phylogenetic investigation of these fishes since Hennig’s transformation of the discipline, changes in hypotheses of relationships and a natural classification of the species should not be of surprise to anyone. Basically, for most taxa no properly supported phylogenetic hypothesis has ever been done; and this includes relationships with reasonable taxon and character sampling of even families and subfamilies.
    [Show full text]
  • Beyond Quotas Private Property Solutions to Overfishing
    Beyond Quotas Private Property Solutions to Overfishing ELIZABETH BRUBAKER In March 1996, Glen Clark, the premier of British Columbia, pre- dicted that the Fraser River commercial sockeye fishery would be shut down for the year. “It’s pretty clear from the numbers,” he explained, “that it won’t sustain a commercial fishery” (Cernetig 1996a). The warning followed two nearly disastrous years in Brit- ish Columbia’s salmon fishery. In 1994, several million Fraser Riv- er salmon failed to appear at their spawning grounds. The board reviewing their disappearance concluded that fishermen had come within 12 hours of wiping out the province’s most impor- tant sockeye run. “The resource is now, more than ever before, critically endangered,” it warned. “If something like the 1994 sit- uation happens again, the door to disaster will be wide open” (Fraser River Sockeye Public Review Board [FRSPRB] 1995: xii, 12). Academics agreed that a crisis loomed. Biologist Carl Walters cautioned that, in the absence of profound restructuring, the Pa- cific salmon fishery would likely go the way of the Atlantic cod fishery (Walters 1995: 4). The following season again saw salmon shortages. In August 1995, with the returning salmon numbering two-thirds less than pre-season estimates, federal Fisheries Minister Brian Tobin closed the Fraser River sockeye fishery with a grim comment: “As it stands now, we don’t have a fishery. Period. And unless the 151 Fish or Cut Bait! numbers change, we won’t have a fishery in the future” (Damsell 1995). In a news release on November 8, 1995, British Columbia’s fisheries minister, David Zirnhelt, described the year’s salmon returns as “the worst in memory,” noting that harvest volumes had declined 42 percent from recent averages (Valhalla 1996).
    [Show full text]
  • Volume III, Chapter 5 Northern Pikeminnow
    Volume III, Chapter 5 Northern Pikeminnow TABLE OF CONTENTS 5.0 Northern Pikeminnow (Ptychocheilus oregonensis)................................................... 5-1 5.1 Distribution ................................................................................................................. 5-1 5.2 Life History Characteristics ........................................................................................ 5-2 5.2.1 Size & Mortality................................................................................................... 5-2 5.2.2 Population Dynamics & Demographic Risk........................................................ 5-3 5.3 Status & Abundance Trends........................................................................................ 5-4 5.3.1 Abundance............................................................................................................ 5-4 5.3.2 Productivity.......................................................................................................... 5-5 5.3.3 Harvest................................................................................................................. 5-6 5.4 Factors Affecting Population Status............................................................................ 5-7 5.4.1 Northern Pikeminnow Management Program History........................................ 5-7 5.4.2 NPMP Review .................................................................................................... 5-11 5.4.3 Harvest..............................................................................................................
    [Show full text]
  • Regional Nearshore and Marine Aspects of Salmon Recovery in Puget Sound
    Regional Nearshore and Marine Aspects of Salmon Recovery in Puget Sound Compiled and edited by Scott Redman, Doug Myers, and Dan Averill Puget Sound Action Team From contributions by the editors and Kurt Fresh and Bill Graeber, NOAA Fisheries Delivered to Shared Strategy for Puget Sound for inclusion in their regional salmon recovery plan June 28, 2005 Regional Nearshore and Marine Aspects of Salmon Recovery June 28, 2005 ACKNOWLEDGEMENTS The authors and editors acknowledge the considerable contributions and expert advice of Carol MacIlroy of Shared Strategy, Chris Davis and Josh Livni of CommEn Space, members of the Nearshore Policy Group, and others who reviewed earlier drafts. We are indebted to each but accept full responsibility for any errors or mischaracterizations presented in this document. TABLE OF CONTENTS Page Section 1: Introduction................................................................................................................1-1 1.1 Statements of premise: our basis for regional assessment of nearshore and marine aspects of salmon recovery........................................................................................ 1-1 1.2 The scope and scale of our effort ..............................................................................1-2 1.3 The conceptual basis for our assessment and recovery hypotheses and strategies.....................................................................................................................1-4 1.4 Some general goals/strategies for nearshore and marine aspects
    [Show full text]
  • Criterion 1: Inherent Vulnerability to Fishing
    Pacific Salmon Chinook salmon (Oncorhynchus tshawytscha) Chum salmon (Oncorhynchus keta) Coho salmon (Oncorhynchus kisutch) Pink salmon (Oncorhynchus gorbuscha) Sockeye salmon (Oncorhynchus nerka) Image © Scandinavian Fishing Yearbook / www.scandfish.com Alaska February 25, 2005 Updated April 25, 2011 Matthew Elliott Consulting Researcher Disclaimer: Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. About Seafood Watch® Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request.
    [Show full text]