Criterion 1: Inherent Vulnerability to Fishing

Total Page:16

File Type:pdf, Size:1020Kb

Criterion 1: Inherent Vulnerability to Fishing Pacific Salmon Chinook salmon (Oncorhynchus tshawytscha) Chum salmon (Oncorhynchus keta) Coho salmon (Oncorhynchus kisutch) Pink salmon (Oncorhynchus gorbuscha) Sockeye salmon (Oncorhynchus nerka) Image © Scandinavian Fishing Yearbook / www.scandfish.com Alaska February 25, 2005 Updated April 25, 2011 Matthew Elliott Consulting Researcher Disclaimer: Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. About Seafood Watch® Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild-caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. Other sources of information include government technical publications, fishery management plans and supporting documents, and other scientific reviews of ecological sustainability. Seafood Watch® Research Analysts also communicate regularly with ecologists, fisheries and aquaculture scientists, and members of industry and conservation organizations when evaluating fisheries and aquaculture practices. Capture fisheries and aquaculture practices are highly dynamic; as the scientific information on each species changes, Seafood Watch’s sustainability recommendations and the underlying Seafood Reports will be updated to reflect these changes. Parties interested in capture fisheries, aquaculture practices and the sustainability of ocean ecosystems are welcome to use Seafood Reports in any way they find useful. For more information about Seafood Watch® and Seafood Reports, please contact the Seafood Watch® program at Monterey Bay Aquarium by calling 1-877-229-9990. 2 Table of Contents I. Executive Summary……………………………………………………………………….3 II. Introduction………………………………………………………………………………..7 III. Analysis of Seafood Watch® Sustainability Criteria for Wild-caught Species…………12 Criterion 1: Inherent Vulnerability to Fishing Pressure………………………………….12 Criterion 2: Status of Wild Stocks……………………………………………………….38 Criterion 3: Nature and Extent of Wild Stocks…………………………………………..73 Criterion 4: Effect of Fishing Practices on Habitats and Ecosystems…………………...96 Criterion 5: Effectiveness of the Management Regime………………………………...104 IV. Overall Evaluation and Seafood Recommendation…………………………………….114 V. References………………………………………………………………………………116 VI. Appendix 1……………………………………………………………………...125 Seafood Watch® Wild Pacific Salmon Report April 25, 2011 I. Executive Summary This seafood report evaluates the ecological sustainability of wild-caught Alaska salmon. To make an overall recommendation, salmon fisheries have been analyzed using Seafood Watch’s five basic criteria: inherent vulnerability to fishing pressure, status of wild stocks, nature and extent of bycatch, effects of fishing methods on habitats and ecosystems, and effectiveness of the management regime. Inherent Vulnerability Salmon have natural reproductive traits that imply a biological resilience to overfishing. They are relatively short-lived animals (two to five years on average) that release large numbers of eggs when spawning, indicating a high potential reproductive rate. However, the dependence of salmon on specific freshwater areas leaves them susceptible to habitat loss and concomitant population crashes. Notably, in the contiguous U.S. (i.e., the lower 48 states) numerous stocks of salmon have been severely depleted or entirely extirpated due to human activities. Where these downturns have occurred, remaining stocks are left considerably more vulnerable to fishing pressure. The comparatively pristine freshwater systems in Alaska have left salmon runs there comparatively resilient to fishing pressure. Stock Status As a result of habitat loss, climatic shifts, historic overfishing, and other factors, the abundance of many populations of salmon has declined substantially over the past century. Overall, Chinook, coho, sockeye, and pink salmon stocks in California, Oregon, and Washington have been significantly depleted from peak abundances, although fishing is not considered one of the primary causes of the declines in many cases. In Washington, several large runs continue to be viable. In several cases, long-term declines in abundance have been halted or reversed in the recent past. The health of Washington stocks are considered a moderate conservation concern because abundances and trends vary in space and time, with targeted stocks depleted from historical levels of abundance, but generally meeting conservation goals. However, a major run supporting both California and Oregon fisheries (Sacramento River Fall Chinook, or SRFC) was recently at record low abundance and failed to meet minimum escapement goals for three consecutive years, triggering a formal Overfishing Concern. Escapement improved in 2010 to a level just over the minimum annual escapement goal. As the stock met conservation objectives in 2010, the stock status of salmon landed in California and Oregon is considered a moderate conservation concern. In contrast, Alaskan salmon, augmented by large hatchery operations, appear to be in robust health, with record abundance and harvests over the past two decades. The status of Alaska salmon stocks is therefore a low conservation concern. Bycatch The gear employed in commercial salmon fisheries includes drift and set gillnets, purse seines, and trolling gear (also referred to as hook-and-line gear). When combined with management constraints such as area closures and gear restrictions, the methods used to catch salmon are highly selective for salmon, and overall bycatch rates appear low in all salmon fisheries. However, one of the inherent difficulties of managing salmon is that they are captured in mixed- stock fisheries, in which salmon from a variety of different areas may be caught in the same nets or on the same hooks. This poses a particularly difficult problem in California and the Pacific Northwest where nearly thirty salmon and steelhead Evolutionarily Significant Units (ESUs) Seafood Watch® Wild Pacific Salmon Report April 25, 2011 have been listed as Threatened or Endangered under the Endangered Species Act. Regular landings of these fish remains a serious concern despite management efforts to reduce exploitation rates. In Alaska, the relative health of salmon stocks and low bycatch rates of endangered and threatened stocks from the Pacific Northwest has reduced the seriousness of the bycatch issue for most Alaska fisheries, although bycatch of ESA listed stocks remains a concern in southeast Alaska troll fisheries. Habitat Effects The gear types used in salmon fisheries (drift gillnets, purse seines, and trolling gear) rarely touch the sea floor. As such, salmon fisheries have little lasting physical impact on aquatic habitats. However, the salmon fishery system can indirectly affect aquatic habitats. Most notably, the widespread use of salmon hatcheries for conservation and fisheries augmentation purposes has, in many cases, significantly degraded the natural habitat of wild salmonids. Hatcheries have often been poorly integrated with wild runs, and can jeopardize their health especially in areas where wild salmon populations are depleted. The effects of salmon hatcheries on the health of wild salmon stocks has been empirically demonstrated in California and the Pacific Northwest, and important questions about Alaskan hatcheries remain unanswered. Management Managers of U.S. West Coast salmon fisheries assess stocks on a timely basis, typically issuing preseason abundance forecasts and updating regulations as the season progresses. Managers regularly assess fisheries-dependent data, such as landings, and fisheries-independent data, such as run size, ocean conditions, and fish age, to determine stock status and fishing levels. Management does not have a track record of setting catch quotas over what its scientific advisors have recommended. Managers require specific gear types and employ closed areas to reduce wasteful discards, and actively craft fishing seasons and regulations to reduce harmful impacts on endangered or struggling stocks. However, the effectiveness of the bycatch reduction measures is not clear, as bycatch
Recommended publications
  • SUSTAINABLE FISHERIES and RESPONSIBLE AQUACULTURE: a Guide for USAID Staff and Partners
    SUSTAINABLE FISHERIES AND RESPONSIBLE AQUACULTURE: A Guide for USAID Staff and Partners June 2013 ABOUT THIS GUIDE GOAL This guide provides basic information on how to design programs to reform capture fisheries (also referred to as “wild” fisheries) and aquaculture sectors to ensure sound and effective development, environmental sustainability, economic profitability, and social responsibility. To achieve these objectives, this document focuses on ways to reduce the threats to biodiversity and ecosystem productivity through improved governance and more integrated planning and management practices. In the face of food insecurity, global climate change, and increasing population pressures, it is imperative that development programs help to maintain ecosystem resilience and the multiple goods and services that ecosystems provide. Conserving biodiversity and ecosystem functions are central to maintaining ecosystem integrity, health, and productivity. The intent of the guide is not to suggest that fisheries and aquaculture are interchangeable: these sectors are unique although linked. The world cannot afford to neglect global fisheries and expect aquaculture to fill that void. Global food security will not be achievable without reversing the decline of fisheries, restoring fisheries productivity, and moving towards more environmentally friendly and responsible aquaculture. There is a need for reform in both fisheries and aquaculture to reduce their environmental and social impacts. USAID’s experience has shown that well-designed programs can reform capture fisheries management, reducing threats to biodiversity while leading to increased productivity, incomes, and livelihoods. Agency programs have focused on an ecosystem-based approach to management in conjunction with improved governance, secure tenure and access to resources, and the application of modern management practices.
    [Show full text]
  • Snohomish River Basin Salmon Conservation Plan: Status and Trends
    SNOHOMISH RIVER BASIN SALMON CONSERVATION PLAN STATUS AND TRENDS DECEMBER 2019 CONTENTS Introduction 1 Status Update 3 Snohomish Basin 3 Salmon Plan Overview 7 Implementation Progress 10 Status and Trends 18 Salmon in the Basin 18 Chinook Salmon 19 Coho Salmon 22 Steelhead 24 Bull Trout 26 Chum Salmon 27 Factors Affecting Survival of Salmon Species 29 Basin Trends 32 Salmon Plan Implementation 46 Habitat Restoration Progress 48 Restoration Funding 67 Habitat and Hydrology Protection Observations 70 Monitoring and Adaptive Management 76 Updating the Basin-Wide Vision for Recovery 77 Considerations for a Changing Future 78 Restoration Opportunities and Challenges 82 Integration of Habitat, Harvest, and Hatchery Actions Within the Basin 86 Multi-Objective Planning 88 Updating Our Salmon Plan 90 Credits and Acknowledgments 93 INTRODUCTION Since 1994 — 5 years before the Endangered Species Act (ESA) listing of Chinook salmon — partner organizations in the Snohomish Basin have been coordinating salmon recovery efforts to improve salmon stock numbers. In 2005, the Snohomish Basin Salmon Recovery Forum (Forum) adopted the Snohomish River Basin Salmon Conservation Plan1 (Salmon Plan), defining a multi-salmon strategy for the Snohomish Basin that emphasizes two ESA-listed species, Chinook salmon and bull trout, and the non-listed coho salmon. These species are used as proxies for other Basin salmon to help prevent future listings. The Salmon Plan, developed by the 41-member Forum, incorporates habitat, harvest, and hatchery management actions to bring the listed wild stocks back to healthy, harvestable levels. 1 Snohomish Basin Salmon Recovery Forum, 2005. Snohomish River Basin Salmon Conservation Plan. Snohomish County Department of Public Works, Surface Water Management Division.
    [Show full text]
  • Thailand's Shrimp Culture Growing
    Foreign Fishery Developments BURMA ':.. VIET­ ,' . .' NAM LAOS .............. Thailand's Shrimp ...... Culture Growing THAI LAND ,... ~samut Sangkhram :. ~amut Sakorn Pond cultivation ofblacktigerprawns, khlaarea. Songkhla's National Institute '. \ \ Bangkok........· Penaeus monodon, has brought sweep­ ofCoastal Aquaculture (NICA) has pro­ , ••~ Samut prokan ing economic change over the last2 years vided the technological foundation for the to the coastal areas of Songkhla and establishment of shrimp culture in this Nakhon Si Thammarat on the Malaysian area. Since 1982, NICA has operated a Peninsula (Fig. 1). Large, vertically inte­ large shrimp hatchery where wild brood grated aquaculture companies and small­ stock are reared on high-quality feeds in .... Gulf of () VIET­ scale rice farmers alike have invested optimum water temperature and salinity NAM heavily in the transformation of paddy conditions. The initial buyers ofNICA' s Thailand fields into semi-intensive ponds for shrimp postlarvae (pI) were small-scale Nakhon Si Thammarat shrimp raising. Theyhave alsodeveloped shrimp farmers surrounding Songkhla • Hua Sai Songkhla an impressive infrastructure ofelectrical Lake. .. Hot Yai and water supplies, feeder roads, shrimp Andaman hatcheries, shrimp nurseries, feed mills, Background Sea cold storage, and processing plants. Thailand's shrimp culture industry is Located within an hour's drive ofSong­ the fastest growing in Southeast Asia. In khla's new deep-waterport, the burgeon­ only 5 years, Thailand has outstripped its Figure 1.-Thailand and its major shrimp ing shrimp industry will have direct competitors to become the region's num­ culture area. access to international markets. Despite ber one producer. Thai shrimp harvests a price slump since May 1989, expansion in 1988 reached 55,000 metric tons (t), onall fronts-production, processingand a 320 percent increase over the 13,000 t marketing-continues at a feverish pace.
    [Show full text]
  • Groundwater As Essential Salmon Habitat in Nushagak and Kvichak River Headwaters: Issues Relative to Mining
    Groundwater as Essential Salmon Habitat In Nushagak and Kvichak River Headwaters: Issues Relative to Mining Dr. Carol Ann Woody and Dr. Brentwood Higman for CSP2 10 July 2011 Groundwater as Essential Salmon Habitat in Nushagak and Kvichak River Headwaters: Issues Relative to Mining Dr. Carol Ann Woody Fisheries Research and Consulting www.fish4thefuture.com Dr. Brentwood Higman Ground Truth Trekking http://www.groundtruthtrekking.org/ Abstract Groundwater-fed streams and rivers are among the most important fish habitats in Alaska because groundwater determines extent and volume of ice-free winter habitat. Sockeye, Chinook, and chum salmon preferentially spawn in upwelling groundwater, whereas coho prefer downwelling groundwater regions. Groundwater protects fish embryos from freezing during winter incubation and, after hatching, ice-free groundwater allows salmon to move both down and laterally into the hyporheic zone to absorb yolk sacs. Groundwater provides overwintering juvenile fish, such as rearing coho and Chinook salmon, refuge from ice and predators. Groundwater represents a valuable resource that influences salmon spawning behavior, incubation success, extent of overwintering habitat, and biodiversity, all of which can influence salmon sustainability. Recently, over 2,000 km2 of mine claims were staked in headwaters of the Nushagak and Kvichak river watersheds, which produce about 40% of all Bristol Bay sockeye salmon (1956-2010). The Pebble prospect, a 10.8 billion ton, low grade, potentially acid generating, copper deposit is located on the watershed divide of these rivers and represents mine claims closest to permitting. To assess groundwater prevalence and its relationship to salmon resources on mine claims, rivers within claims were surveyed for open ice-free water, 11 March 2011; open water was assumed indicative of groundwater upwelling.
    [Show full text]
  • International Law Enforcement Cooperation in the Fisheries Sector: a Guide for Law Enforcement Practitioners
    International Law Enforcement Cooperation in the Fisheries Sector: A Guide for Law Enforcement Practitioners FOREWORD Fisheries around the world have been suffering increasingly from illegal exploitation, which undermines the sustainability of marine living resources and threatens food security, as well as the economic, social and political stability of coastal states. The illegal exploitation of marine living resources includes not only fisheries crime, but also connected crimes to the fisheries sector, such as corruption, money laundering, fraud, human or drug trafficking. These crimes have been identified by INTERPOL and its partners as transnational in nature and involving organized criminal networks. Given the complexity of these crimes and the fact that they occur across the supply chains of several countries, international police cooperation and coordination between countries and agencies is absolutely essential to effectively tackle such illegal activities. As the world’s largest police organization, INTERPOL’s role is to foster international police cooperation and coordination, as well as to ensure that police around the world have access to the tools and services to effectively tackle these transnational crimes. More specifically, INTERPOL’s Environmental Security Programme (ENS) is dedicated to addressing environmental crime, such as fisheries crimes and associated crimes. Its mission is to assist our member countries in the effective enforcement of national, regional and international environmental law and treaties, creating coherent international law enforcement collaboration and enhancing investigative support of environmental crime cases. It is in this context, that ENS – Global Fisheries Enforcement team identified the need to develop a Guide to assist in the understanding of international law enforcement cooperation in the fisheries sector, especially following several transnational fisheries enforcement cases in which INTERPOL was involved.
    [Show full text]
  • Beyond Quotas Private Property Solutions to Overfishing
    Beyond Quotas Private Property Solutions to Overfishing ELIZABETH BRUBAKER In March 1996, Glen Clark, the premier of British Columbia, pre- dicted that the Fraser River commercial sockeye fishery would be shut down for the year. “It’s pretty clear from the numbers,” he explained, “that it won’t sustain a commercial fishery” (Cernetig 1996a). The warning followed two nearly disastrous years in Brit- ish Columbia’s salmon fishery. In 1994, several million Fraser Riv- er salmon failed to appear at their spawning grounds. The board reviewing their disappearance concluded that fishermen had come within 12 hours of wiping out the province’s most impor- tant sockeye run. “The resource is now, more than ever before, critically endangered,” it warned. “If something like the 1994 sit- uation happens again, the door to disaster will be wide open” (Fraser River Sockeye Public Review Board [FRSPRB] 1995: xii, 12). Academics agreed that a crisis loomed. Biologist Carl Walters cautioned that, in the absence of profound restructuring, the Pa- cific salmon fishery would likely go the way of the Atlantic cod fishery (Walters 1995: 4). The following season again saw salmon shortages. In August 1995, with the returning salmon numbering two-thirds less than pre-season estimates, federal Fisheries Minister Brian Tobin closed the Fraser River sockeye fishery with a grim comment: “As it stands now, we don’t have a fishery. Period. And unless the 151 Fish or Cut Bait! numbers change, we won’t have a fishery in the future” (Damsell 1995). In a news release on November 8, 1995, British Columbia’s fisheries minister, David Zirnhelt, described the year’s salmon returns as “the worst in memory,” noting that harvest volumes had declined 42 percent from recent averages (Valhalla 1996).
    [Show full text]
  • Regional Nearshore and Marine Aspects of Salmon Recovery in Puget Sound
    Regional Nearshore and Marine Aspects of Salmon Recovery in Puget Sound Compiled and edited by Scott Redman, Doug Myers, and Dan Averill Puget Sound Action Team From contributions by the editors and Kurt Fresh and Bill Graeber, NOAA Fisheries Delivered to Shared Strategy for Puget Sound for inclusion in their regional salmon recovery plan June 28, 2005 Regional Nearshore and Marine Aspects of Salmon Recovery June 28, 2005 ACKNOWLEDGEMENTS The authors and editors acknowledge the considerable contributions and expert advice of Carol MacIlroy of Shared Strategy, Chris Davis and Josh Livni of CommEn Space, members of the Nearshore Policy Group, and others who reviewed earlier drafts. We are indebted to each but accept full responsibility for any errors or mischaracterizations presented in this document. TABLE OF CONTENTS Page Section 1: Introduction................................................................................................................1-1 1.1 Statements of premise: our basis for regional assessment of nearshore and marine aspects of salmon recovery........................................................................................ 1-1 1.2 The scope and scale of our effort ..............................................................................1-2 1.3 The conceptual basis for our assessment and recovery hypotheses and strategies.....................................................................................................................1-4 1.4 Some general goals/strategies for nearshore and marine aspects
    [Show full text]
  • Marine Protected Areas in Canada: a Wild Atlantic Salmon Perspective
    Marine Protected Areas in Canada: A Wild Atlantic Salmon Perspective Prepared for: National Advisory Panel on Marine Protected Area Standards Fisheries and Oceans Canada Prepared by: Atlantic Salmon Federation (ASF) P.O. Box 5200 St. Andrews, NB E5B 3S8 www.asf.ca July 2018 Introduction The Atlantic Salmon Federation (ASF) welcomes this opportunity to submit a brief to the National Advisory Panel on Marine Protected Area Standards. We are pleased that the Government of Canada views MPAs as an important tool to safeguard coastal and ocean ecosystems and wildlife, while protecting community and cultural values. We are also pleased that the government is exploring options for setting guidelines and protection standards to guide the development and management of Canada’s MPA system. ASF believes that a properly designed and managed MPA network would make a significant contribution to the conservation, protection, and restoration of Canada’s wild Atlantic salmon. Consequently, we encourage the federal government to be thorough in this process. ASF’s Mission The Atlantic Salmon Federation is a non-profit organization dedicated to the conservation and restoration of wild Atlantic salmon and their ecosystems. We work to achieve our goals through a combination of science, advocacy, and education. ASF has a long history of working closely with federal and provincial governments on legislation and regulation to ensure wild Atlantic salmon populations and underlying ecosystems are protected and wisely managed. Wild Atlantic Salmon Wild Atlantic salmon is an iconic species that has long been revered for its power, endurance, beauty and mystery. Its storied existence has fed generations of indigenous and non-indigenous peoples physically, culturally, and socially.
    [Show full text]
  • Lower Columbia River White Sturgeon
    Columbia River Recreational Advisor Group Meeting January 14, 2020 4:00p-6:00p WDFW th 5525 S. 11 St. Ridgefield, WA 98642 Prepared by: Columbia River Joint Staff Columbia River Recreational Advisor Group Meeting WDFW - Ridgefield, WA 4:00p – 6:00p January 14, 2020 Agenda • Welcome and Introductions (5 minutes) o Advisor Group members and Agency staff • Update on white sturgeon (40 minutes) o 2019 population status and trends o 2020 fishery discussion • Update on Eulachon smelt (15 minutes) o Population trend o 2020 outlook • Summary of 2019 Salmon Fisheries (10 minutes) • Ocean Conditions & Forecasts (25 minutes) o 2020 forecast sheets o Preliminary 2020 spring/summer discussions • Additional Topics (25 minutes) o Other handouts • 2019 Returns – 2020 Expectations o Other/General discussion • Future Meetings o CRRAG February 11, ODFW-Clackamas, 4-6:00pm • Primary topic: spring fishery planning o North of Falcon #1, March 17, WDFW-Ridgefield, 10 am o North of Falcon #2, April 1, WDFW-Ridgefield, 10 am 1 Columbia River Recreational Advisory Group 2018-2020 Name City and State Phone Email Harry Barber Washougal WA 360-335-8505 [email protected] Lance Beckman Salmon WA 509-493-2006 [email protected] Ken Beer Cascade Locks OR 541-374-8477 [email protected] Pete Boone Forest Grove OR 541-760-1404 [email protected] Andrew Bradley Warren OR 971-235-4554 [email protected] Jim Bridwell Portland OR 503-791-7102 [email protected] Nathan Grimm Pasco WA 206-406-9040 [email protected] Kyle Hawes Vancouver WA 503-747-9604 [email protected]
    [Show full text]
  • Final Rogue Fall Chinook Salmon Conservation Plan
    CONSERVATION PLAN FOR FALL CHINOOK SALMON IN THE ROGUE SPECIES MANAGEMENT UNIT Adopted by the Oregon Fish and Wildlife Commission January 11, 2013 Oregon Department of Fish and Wildlife 3406 Cherry Avenue NE Salem, OR 97303 Rogue Fall Chinook Salmon Conservation Plan - January 11, 2013 Table of Contents Page FOREWORD .................................................................................................................................. 4 ACKNOWLEDGMENTS ............................................................................................................... 5 INTRODUCTION ........................................................................................................................... 6 RELATIONSHIP TO OTHER NATIVE FISH CONSERVATION PLANS ................................. 7 CONSTRAINTS ............................................................................................................................. 7 SPECIES MANAGEMENT UNIT AND CONSTITUENT POPULATIONS ............................... 7 BACKGROUND ........................................................................................................................... 10 Historical Context ......................................................................................................................... 10 General Aspects of Life History .................................................................................................... 14 General Aspects of the Fisheries ..................................................................................................
    [Show full text]
  • Regulatory and Governance Gaps in the International Regime for The
    Regulatory and Governance Gaps in the International Regime for the Conservation and Sustainable Use of Marine Biodiversity in Areas beyond National Jurisdiction Marine Series No. 1 IUCN Environmental Policy and Law Papers online Regulatory and Governance Gaps in the International Regime for the Conservation and Sustainable Use of Marine Biodiversity in Areas beyond National Jurisdiction Regulatory and Governance Gaps in the International Regime for the Conservation and Sustainable Use of Marine Biodiversity in Areas beyond National Jurisdiction Kristina M. Gjerde, IUCN Global Marine Program, Warsaw, Poland With the assistance of: Harm Dotinga, Netherlands Institute for the Law of the Sea, Utrecht University, School of Law, The Netherlands Sharelle Hart, IUCN Environmental Law Centre, Bonn, Germany Erik Jaap Molenaar, Netherlands Institute for the Law of the Sea, Utrecht University, School of Law, The Netherlands Rosemary Rayfuse, Faculty of Law, University of New South Wales, Sydney, Australia Robin Warner, Australian National Centre for Ocean Resources and Security, University of Wollongong, Australia IUCN Environmental Policy and Law Papers online – Marine Series No. 1 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) or the Dutch Ministry of Agriculture, Nature and Food Quality concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN, the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, the Dutch Ministry of Agriculture, Nature and Food Quality, nor of the authors´ affiliated institutions.
    [Show full text]
  • Stillaguamish Watershed Chinook Salmon Recovery Plan
    Stillaguamish Watershed Chinook Salmon Recovery Plan Prepared by: Stillaguamish Implementation Review Committee (SIRC) June 2005 Recommended Citation: Stillaguamish Implementation Review Committee (SIRC). 2005. Stillaguamish Watershed Chinook Salmon Recovery Plan. Published by Snohomish County Department of Public Works, Surface Water Management Division. Everett, WA. Front Cover Photos (foreground to background): 1. Fish passage project site visit by SIRC (Sean Edwards, Snohomish County SWM) 2. Riparian planting volunteers (Ann Boyce, Stilly-Snohomish Fisheries Enhancement Task Force) 3. Boulder Creek (Ted Parker, Snohomish County SWM) 4. Stillaguamish River Estuary (Washington State Department of Ecology) 5. Background – Higgins Ridge from Hazel Hole on North Fork Stillaguamish River (Snohomish County SWM) Stillaguamish Watershed Chinook Salmon Recovery Plan ii June 2005 Stillaguamish Watershed Chinook Salmon Recovery Plan Table of Contents 1. INTRODUCTION ................................................................................................... 1 Purpose .................................................................................................................................1 SIRC Mission and Objectives ..............................................................................................1 Relationship to Shared Strategy and Central Puget Sound ESU Efforts .............................2 Stillaguamish River Watershed Overview ...........................................................................3 Salmonid
    [Show full text]