Preliminary Programme 05.10.2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Water Supply System of Diocletian's Palace in Split - Croatia
Water supply system of Diocletian's palace ın Split - Croatia K. Marasović1, S. Perojević2 and J. Margeta 3 1University of Split, Faculty of Civil Engineering Architecture and Geodesy 21000 Split, Matice Hrvatske 15, Croatia; [email protected]; phone : +385 21 360082; fax: +385 21 360082 2University of Zagreb, Faculty of Architecture, Mediterranean centre for built heritage 21000 Split, Bosanska 4, Croatia; [email protected]; phone : +385 21 360082; fax: +385 21 360082 3University of Split, Faculty of Civil Engineering Architecture and Geodesy 21000 Split, Matice Hrvatske 15, Croatia; [email protected]; phone : +385 21 399073; fax: +385 21 465117 Abstract Roman water supply buildings are a good example for exploring the needs and development of infrastructure necessary for sustainable living in urban areas. Studying and reconstructing historical systems contributes not only to the preservation of historical buildings and development of tourism but also to the culture of living and development of hydrotechnical profession. This paper presents the water supply system of Diocletian's Palace in Split. It describes the 9.5 km long Roman aqueduct, built at the turn of 3rd century AD. It was thoroughly reconstructed in the late 19th century and is still used for water supply of the city of Split. The fact that the structure was built 17 centuries ago and is still technologically acceptable for water supply, speaks of the high level of engineering knowledge of Roman builders. In the presentation of this structure this paper not only departs from its historical features, but also strives to present its technological features and the possible construction technology. -
Map 44 Latium-Campania Compiled by N
Map 44 Latium-Campania Compiled by N. Purcell, 1997 Introduction The landscape of central Italy has not been intrinsically stable. The steep slopes of the mountains have been deforested–several times in many cases–with consequent erosion; frane or avalanches remove large tracts of regolith, and doubly obliterate the archaeological record. In the valley-bottoms active streams have deposited and eroded successive layers of fill, sealing and destroying the evidence of settlement in many relatively favored niches. The more extensive lowlands have also seen substantial depositions of alluvial and colluvial material; the coasts have been exposed to erosion, aggradation and occasional tectonic deformation, or–spectacularly in the Bay of Naples– alternating collapse and re-elevation (“bradyseism”) at a staggeringly rapid pace. Earthquakes everywhere have accelerated the rate of change; vulcanicity in Campania has several times transformed substantial tracts of landscape beyond recognition–and reconstruction (thus no attempt is made here to re-create the contours of any of the sometimes very different forerunners of today’s Mt. Vesuvius). To this instability must be added the effect of intensive and continuous intervention by humanity. Episodes of depopulation in the Italian peninsula have arguably been neither prolonged nor pronounced within the timespan of the map and beyond. Even so, over the centuries the settlement pattern has been more than usually mutable, which has tended to obscure or damage the archaeological record. More archaeological evidence has emerged as modern urbanization spreads; but even more has been destroyed. What is available to the historical cartographer varies in quality from area to area in surprising ways. -
9781107013995 Index.Pdf
Cambridge University Press 978-1-107-01399-5 — Rome Rabun Taylor , Katherine Rinne , Spiro Kostof Index More Information INDEX abitato , 209 , 253 , 255 , 264 , 273 , 281 , 286 , 288 , cura(tor) aquarum (et Miniciae) , water 290 , 319 commission later merged with administration, ancient. See also Agrippa ; grain distribution authority, 40 , archives ; banishment and 47 , 97 , 113 , 115 , 116 – 17 , 124 . sequestration ; libraries ; maps ; See also Frontinus, Sextus Julius ; regions ( regiones ) ; taxes, tarif s, water supply ; aqueducts; etc. customs, and fees ; warehouses ; cura(tor) operum maximorum (commission of wharves monumental works), 162 Augustan reorganization of, 40 – 41 , cura(tor) riparum et alvei Tiberis (commission 47 – 48 of the Tiber), 51 censuses and public surveys, 19 , 24 , 82 , cura(tor) viarum (roads commission), 48 114 – 17 , 122 , 125 magistrates of the vici ( vicomagistri ), 48 , 91 codes, laws, and restrictions, 27 , 29 , 47 , Praetorian Prefect and Guard, 60 , 96 , 99 , 63 – 65 , 114 , 162 101 , 115 , 116 , 135 , 139 , 154 . See also against permanent theaters, 57 – 58 Castra Praetoria of burial, 37 , 117 – 20 , 128 , 154 , 187 urban prefect and prefecture, 76 , 116 , 124 , districts and boundaries, 41 , 45 , 49 , 135 , 139 , 163 , 166 , 171 67 – 69 , 116 , 128 . See also vigiles (i re brigade), 66 , 85 , 96 , 116 , pomerium ; regions ( regiones ) ; vici ; 122 , 124 Aurelian Wall ; Leonine Wall ; police and policing, 5 , 100 , 114 – 16 , 122 , wharves 144 , 171 grain, l our, or bread procurement and Severan reorganization of, 96 – 98 distribution, 27 , 89 , 96 – 100 , staf and minor oi cials, 48 , 91 , 116 , 126 , 175 , 215 102 , 115 , 117 , 124 , 166 , 171 , 177 , zones and zoning, 6 , 38 , 84 , 85 , 126 , 127 182 , 184 – 85 administration, medieval frumentationes , 46 , 97 charitable institutions, 158 , 169 , 179 – 87 , 191 , headquarters of administrative oi ces, 81 , 85 , 201 , 299 114 – 17 , 214 Church. -
C HAPTER THREE Dissertation I on the Waters and Aqueducts Of
Aqueduct Hunting in the Seventeenth Century: Raffaele Fabretti's De aquis et aquaeductibus veteris Romae Harry B. Evans http://www.press.umich.edu/titleDetailDesc.do?id=17141, The University of Michigan Press C HAPTER THREE Dissertation I on the Waters and Aqueducts of Ancient Rome o the distinguished Giovanni Lucio of Trau, Raffaello Fabretti, son of T Gaspare, of Urbino, sends greetings. 1. introduction Thanks to your interest in my behalf, the things I wrote to you earlier about the aqueducts I observed around the Anio River do not at all dis- please me. You have in›uenced my diligence by your expressions of praise, both in your own name and in the names of your most learned friends (whom you also have in very large number). As a result, I feel that I am much more eager to pursue the investigation set forth on this subject; I would already have completed it had the abundance of waters from heaven not shown itself opposed to my own watery task. But you should not think that I have been completely idle: indeed, although I was not able to approach for a second time the sources of the Marcia and Claudia, at some distance from me, and not able therefore to follow up my ideas by surer rea- soning, not uselessly, perhaps, will I show you that I have been engaged in the more immediate neighborhood of that aqueduct introduced by Pope Sixtus and called the Acqua Felice from his own name before his ponti‹- 19 Aqueduct Hunting in the Seventeenth Century: Raffaele Fabretti's De aquis et aquaeductibus veteris Romae Harry B. -
The Aqua Traiana / Aqua Paola and Their Effects on The
THE AQUA TRAIANA / AQUA PAOLA AND THEIR EFFECTS ON THE URBAN FABRIC OF ROME Carolyn A. Mess A Thesis Presented to the Faculty of the Department of Architectural History In Partial Fulfillment of the Requirements for the Degree Master of Architectural History May 2014 Cammy Brothers __________________ Sheila Crane __________________ John Dobbins __________________ ii ABSTRACT Infrastructure has always played an important role in urban planning, though the focus of urban form is often the road system and the water system is only secondary. This is a misconception as often times the hydraulic infrastructure determined where roads were placed. Architectural structures were built where easily accessible potable water was found. People established towns and cities around water, like coasts, riverbanks, and natural springs. This study isolates two aqueducts, the Aqua Traiana and its Renaissance counterpart, the Aqua Paola. Both of these aqueducts were exceptional feats of engineering in their planning, building techniques, and functionality; however, by the end of their construction, they symbolized more than their outward utilitarian architecture. Within their given time periods, these aqueducts impacted an entire region of Rome that had twice been cut off from the rest of the city because of its lack of a water supply and its remote location across the Tiber. The Aqua Traiana and Aqua Paola completely transformed this area by improving residents’ hygiene, building up an industrial district, and beautifying the area of Trastevere. This study -
Rome, November 10 - 18, 2018
International Conference of the Frontinus-Society on the History of Water Management and Hydraulic Engineering in the Mediterranean Region Rome, November 10 - 18, 2018 INVITATION AND CALL FOR PAPERS The conference will be held as a series of lectures and excursions on the history of water management and hydraulic engineering in the Mediterranean region. Its aim is to stimulate interdisciplinary discussion about water in antiquity. The participation of archaeologists, historians, hydraulic engineers, civil engineers, town planners and geologists ensures an information exchange about the latest findings and theories. The emphasis will be on ancient water supply and use. The organizer of this conference is the Frontinus-Society, with support of the American University of Rome, the Centro Ricerche Speleo Archeologiche Sotterranei di Roma, Deutsches Archäologisches Institut Rom, Istituto Austriaco di Studii Storici at Rome and the John Cabot University at Rome. One full and two half days of lectures will be followed or interrupted by excursions to ancient water installations outside and inside of Rome. The following list intends to suggest some of the topics which could be discussed at the symposium. NEWEST RESEARCH RESULTS ON AQUEDUCTS AT THE BEGINNING OF THE THIRD MILLENIUM: Water supply systems of ancient cities are increasingly documented as a whole. This is the reason why todays research results are clearer and offer more detailed analyses than in the past when only monumental sections of aqueducts were studied closely. For instance the recently resumed explorations of the aqueducts at Ephesus made clear, that ordinary sections often reveal more important insights than spectacular aqueduct bridges or siphons. -
Map 43 Latium Vetus Compiled by L
Map 43 Latium Vetus Compiled by L. Quilici and S. Quilici Gigli, 1995 Introduction The environs of Rome have undergone enormous changes from antiquity onwards, caused more by human intervention than by natural phenomena. Changes were already occurring in the archaic period as the region's population increased; these earliest phases of urbanization have been considerably illuminated by recent research. The changes intensified in Late Republican and imperial times, when urbanization reached a level unique for antiquity. Building activity connected with the city extended far enough into the countryside to link with construction centered upon surroundings towns. Thus the towns on the Tiburtine, Praenestine and Alban hills, as well as Ostia and Antium on the coast, were considered suburbs of the metropolis. After antiquity, by contrast, the region was almost deserted except in the hills. In the Late Middle Ages and subsequently, the spread of malaria and the extension of a pastoral economy reduced it to little more than a wilderness littered with the ruins remaining from an earlier era. By definition, there is some difficulty about showing settlements of different periods on a single map. We have marked those that can be located with either certainty or a fair degree of probability. At this scale no attempt is made to include every small settlement, let alone the whole complex infrastructure of the area. But we do mark cultural features notable for their size, state of preservation, or historical significance. These include large Late Republican and imperial villas, and the greatest monumental tombs. Inevitably, many estates, villas and tombs (some of them far from negligible) have had to be omitted. -
Aqueduct Architecture: Moving Water to the Masses in Ancient Rome
Curriculum Units by Fellows of the Yale-New Haven Teachers Institute 2006 Volume IV: Math in the Beauty and Realization of Architecture Aqueduct Architecture: Moving Water to the Masses in Ancient Rome Curriculum Unit 06.04.04 by Ralph Russo Introduction This unit seeks to raise awareness of basic, yet, historic principles of architecture as they apply to the provision of water to an urban center. Exploration of Roman aqueducts should serve this goal. It fits the study of classical civilizations in the ninth grade world civilizations curriculum. Moreover, it lends itself to interdisciplinary teaching, a great way for students to see things in context. Studying aqueduct architecture encourages proficiency in quantitative skills, language arts, and organizational skills. Quantitative activities such as measuring, using scale, and calculating volume facilitate developing math skills. Critical reading of primary and secondary sources, document based questions, discussion, reflective writing, descriptive writing, and persuasive writing teach and/or reinforce language arts skills. Readings and activities can also touch on the levels of organization or government necessary to design, build, and maintain an aqueduct. The unit is not a prescribed set of steps but is meant to be a framework through which objectives, strategies, activities, and resources can be added or adjusted to meet student needs, address curriculum goals, and help students to make connections between the past and contemporary issues. The inhabitants of Rome satisfied their need for water first from the Tiber River. Rome grew from a small farming community along the Tiber into the capitol city of an empire with almost one million inhabitants. -
G9.A Relazione Geologica Generale
COMUNE DI ROMA Dipartimento alle politiche della Programmazione e Pianificazione del Territorio – Roma Capitale U.O. n. 2 - Pianificazione e Progettazione Generale Relazione geologica generale CLAUDIO SUCCHIARELLI (1), DANIELE D’OTTAVIO (2) (1) Geologo, Comune di Roma, Dipartimento VI – U.O. n. 2 – Pianificazione e Progettazione Generale via del Turismo, 30 – 00144 - Roma – E-mail: [email protected] (2) Geologo, Risorse per Roma S.p.A. , piazza Guglielmo Marconi, 2 - 00144 - Roma - E-mail: [email protected] Relazione geologica generale INDICE: 1. INTRODUZIONE ………………………………………………………………………... 4 1.1 GLI ELABORATI GEOLOGICI DI ADOZIONE COMUNALE DEL NUOVO PIANO REGOLATORE GENERALE ...............................................................................................................................4 1.2 GLI ELABORATI GEOLOGICI AGGIORNATI E INTEGRATI AI SENSI DELLA NORMATIVA VIGENTE PER IL NUOVO PIANO REGOLATORE GENERALE ....................................................................................5 1.3 FINALITÀ, METODO DI REALIZZAZIONE E CONTENUTO DEGLI ELABORATI GEOLOGICI.....................7 1.4 COMPLETAMENTO E AGGIORNAMENTO DEI DATI DEGLI ELABORATI GEOLOGICI..........................13 2. CARATTERI GEOLITOLOGICI...................................................................................................14 2.1 EVOLUZIONE GEOLOGICA E PALEOGEOGRAFICA......................................................................14 2.2 LE UNITÀ GEOLITOLOGICHE SEDIMENTARIE E VULCANICHE ......................................................20 -
The Aqueducts of Ancient Rome
THE AQUEDUCTS OF ANCIENT ROME by EVAN JAMES DEMBSKEY Submitted in fulfilment of the requirements for the degree of MASTER OF ARTS in the subject ANCIENT HISTORY at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: DR. M.E.A. DE MARRE CO-SUPERVISOR: DR. R. EVANS February 2009 2 Student Number 3116 522 2 I declare that The Aqueducts of Ancient Rome is my own work and that all the sources I have used or quoted have been indicated and acknowledged by means of complete references. .......................... SIGNATURE (MR E J DEMBSKEY) ACKNOWLEDGEMENTS I would like to express my sincere gratitude and appreciation to: My supervisors, Dr. M. De Marre and Dr. R. Evans for their positive attitudes and guidance. My parents and Angeline, for their support. I'd like to dedicate this study to my mother, Alicia Dembskey. Contents LIST OF FIGURES . v LIST OF TABLES . vii 1 INTRODUCTION 1 1.1 Introduction . 1 1.2 Objectives . 6 1.3 Conclusion . 7 2 METHODOLOGY 11 2.1 Introduction . 11 2.2 Conclusion . 16 3 SOURCES 19 3.1 Introduction . 19 3.2 Literary evidence . 20 3.3 Archaeological evidence . 29 3.4 Numismatic evidence . 30 3.5 Epigraphic evidence . 32 3.6 Conclusion . 37 4 TOOLS, SKILLS AND CONSTRUCTION 39 4.1 Introduction . 39 4.2 Levels . 39 4.3 Lifting apparatus . 43 4.4 Construction . 46 4.5 Cost . 51 i 4.6 Labour . 54 4.7 Locating the source . 55 4.8 Surveying the course . 56 4.9 Construction materials . 58 4.10 Tunnels . 66 4.11 Measuring capacity . -
Water Resources Technology Transfer and Capacity Building - Kodwo Andah
WATER-RELATED EDUCATION, TRAINING AND TECHNOLOGY TRANSFER - Water Resources Technology Transfer and Capacity Building - Kodwo Andah WATER RESOURCES TECHNOLOGY TRANSFER AND CAPACITY BUILDING Kodwo Andah Water Resources Research and Documentation Centre, Villa la Colombella, Perugia, Italy Keywords: Water resources, technology, water supply, irrigation, hydrology, hydraulics, hardware, software, technology transfer, vertical transfer, horizontal transfer, property rights, capacity building, enabling environment, water management institutions, human capacity, institutional capacity, resources assessment, demand assessment, environmental impact assessment, social impact assessment Contents 1. Introduction 2. Historical Development of Irrigation Canals and Water supply 2.1. Egypt 2.2. Mesopotamia 2.3 India and China 2.4. Ancient Rome 2.4. Ancient Rome 2.5. Water Raising Technologies and Groundwater Exploitation 2.6. Other Water Related Structures 3. Historical Phases of Water Resources Technology Transfer 4. Modern Concepts of Technologies with regard to Water Resources 4.1. Types of Technologies with Regard to Water Resources 4.2. Data Collection and Management 4.2.1 Remote Sensing 4.2.2 Geographical Information Systems in water and land use planning 4.3. Water Resources Systems Design and Management 4.3.1 Professional oriented water software technologies 4.3.2 Research variety water software 5. Problems and Perspectives of Water Technology Transfer 5.1. Socio-Economic Basis of Technology Transfer 5.2. ConceptsUNESCO of technology transfer – EOLSS 6. Capacity Building in Water Resources 6.1. Capacity Building within an Enabling Environment 6.1.1 The EnablingSAMPLE Environment CHAPTERS 6.1.2 Towards an Effective Institutional Framework for Water Management 6.2. Institutional Capabilities for Integrated Water Resources Management 6.2.1 Data Collection and Management 6.2.2 Water Resources Assessment 6.2.3 Monitoring of Hydroclimatic and Socio-economic Processes 6.2.4 Data Information Management Systems 7. -
Volcanic Eruptions Damned the River with Deposits of Ash, Called Tuffs6
volcanic eruptions damned the river with deposits of ash, called tuffs6, and changed its course. Both of the volcanic fields, the Sabatini to the northwest and the Alban hills to the southeast, played important roles in creating the terrain; plateaus pinching the Tiber floodplain and creating high ground for Rome (Heiken, Funiciello & De Rita, 2005:11). Despite the advantageous location, Rome is still susceptible to flooding due to the large drainage area of the Tiber. The climate from the end of the republic, throughout the years of the Empire, up to perhaps between 800 and 1200 A.D., was warmer and drier than later years. During the wet period between 1310 and 1320 A.D., and the so-called "little ice age" of 1500 to 1800 A.D., Rome was more susceptible to flooding (Lamb, 1995). This is perhaps a good thing, as repeated natural destruction of the city may have had a large influence on the superstitious Roman mind, providing "evidence" for the displeasure of the gods, and perhaps the resulting abandonment of the site. The Alban hills are approximately 50 kilometres in diameter with an elevation of nearly 1000 metres above sea level, and span the coastal plain between the Apennines and the sea. The summit is broad and dominated by a caldera, which has mostly been covered with material from later volcanoes. The slopes were once covered with oak, hazel and maple trees. Archaeolog- ical evidence from around the edges of the Nemi and Albano lakes indicate that the area has been occupied since the Bronze Age.