insects Article Complete Mitogenomic Structure and Phylogenetic Implications of the Genus Ostrinia (Lepidoptera: Crambidae) 1,2, 1,2, 1,2 1,2, Nan Zhou y, Yanling Dong y, Pingping Qiao and Zhaofu Yang * 1 Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling 712100, China 2 Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China * Correspondence:
[email protected]; Tel.: +86-029-87092509 These authors have equally contributed in this study. y Received: 7 March 2020; Accepted: 3 April 2020; Published: 7 April 2020 Abstract: To understand mitogenome characteristics and reveal phylogenetic relationships of the genus Ostrinia, including several notorious pests of great importance for crops, we sequenced the complete mitogenomes of four species: Ostrinia furnacalis (Guenée, 1854), Ostrinia nubilalis (Hübner, 1796), Ostrinia scapulalis (Walker, 1859) and Ostrinia zealis (Guenée, 1854). Results indicate that the four mitogenomes—O. furnacalis, O. nubilalis, O. scapulalis, and O. zealis—are 15,245, 15,248, 15,311, and 15,208 bp in size, respectively. All four mitogenomes are comprised of 37 encoded genes and a control region. All 13 protein-coding genes (PCGs) initiate with ATN and terminate with TAN, with the exception of cox1 that starts with CGA, and cox1, cox2, and nad5 that terminate with an incomplete codon T. All transfer RNA genes (tRNAs) present the typical clover-leaf secondary structure except for the trnS1 (AGN) gene. There are some conserved structural elements in the control region. Our analyses indicate that nad6 and atp6 exhibit higher evolution rates compared to other PCGs.