PAAT Trypanosomosis African Against Programme Development International Department For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiation Induced Sterility to Control Tsetse Flies
RADIATION INDUCED STERILITY TO CONTROL TSETSE FLIES THE EFFECTO F IONISING RADIATIONAN D HYBRIDISATIONO NTSETS E BIOLOGYAN DTH EUS EO FTH ESTERIL E INSECTTECHNIQU E ININTEGRATE DTSETS ECONTRO L Promotor: Dr. J.C. van Lenteren Hoogleraar in de Entomologie in het bijzonder de Oecologie der Insekten Co-promotor: Dr. ir. W. Takken Universitair Docent Medische en Veterinaire Entomologie >M$?ol2.o2]! RADIATION INDUCED STERILITY TO CONTROL TSETSE FLIES THE EFFECTO F IONISING RADIATIONAN D HYBRIDISATIONO NTSETS E BIOLOGYAN DTH EUS EO FTH ESTERIL EINSEC TTECHNIQU E ININTEGRATE DTSETS ECONTRO L Marc J.B. Vreysen PROEFSCHRIFT ter verkrijging van de graad van doctor in de landbouw - enmilieuwetenschappe n op gezag van rectormagnificus , Dr. C.M. Karssen, in het openbaar te verdedigen op dinsdag 19 december 1995 des namiddags te 13.30 uur ind eAul a van de Landbouwuniversiteit te Wageningen t^^Q(&5X C IP DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG Vreysen, Marc,J.B . Radiation induced sterility to control tsetse flies: the effect of ionising radiation and hybridisation on tsetse biology and the use of the sterile insecttechniqu e inintegrate dtsets e control / Marc J.B. Vreysen ThesisWageninge n -Wit h ref -Wit h summary in Dutch ISBN 90-5485-443-X Copyright 1995 M.J.B.Vreyse n Printed in the Netherlands by Grafisch Bedrijf Ponsen & Looijen BV, Wageningen All rights reserved. No part of this book may be reproduced or used in any form or by any means without prior written permission by the publisher except inth e case of brief quotations, onth e condition that the source is indicated. -
Medicine in the Wild: Strategies Towards Healthy and Breeding Wildlife Populations in Kenya
Medicine in the Wild: Strategies towards Healthy and Breeding Wildlife Populations in Kenya David Ndeereh, Vincent Obanda, Dominic Mijele, and Francis Gakuya Introduction The Kenya Wildlife Service (KWS) has a Veterinary and Capture Services Department at its headquarters in Nairobi, and four satellite clinics strategically located in key conservation areas to ensure quick response and effective monitoring of diseases in wildlife. The depart- ment was established in 1990 and has grown from a rudimentary unit to a fully fledged department that is regularly consulted on matters of wildlife health in the eastern Africa region and beyond. It has a staff of 48, comprising 12 veterinarians, 1 ecologist, 1 molecular biologist, 2 animal health technicians, 3 laboratory technicians, 4 drivers, 23 capture rangers, and 2 subordinate staff. The department has been modernizing its operations to meet the ever-evolving challenges in conservation and management of biodiversity. Strategies applied in managing wildlife diseases Rapid and accurate diagnosis of conditions and diseases affecting wildlife is essential for facilitating timely treatment, reducing mortalities, and preventing the spread of disease. This also makes it possible to have an early warning of disease outbreaks, including those that could spread to livestock and humans. Besides reducing the cost of such epidemics, such an approach ensures healthy wildlife populations. The department’s main concern is the direct threat of disease epidemics to the survival and health of all wildlife populations, with emphasis on endangered wildlife populations. Also important are issues relating to public health, livestock production, and rural liveli- hoods, each of which has important consequences for wildlife management. -
A Short Bifunctional Element Operates to Positively Or Negatively Regulate ESAG9 Expression in Different Developmental Forms Of
2294 Research Article A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei Stephanie L. Monk, Peter Simmonds and Keith R. Matthews* Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King’s Buildings, West Mains Road, Edinburgh, EH9 3JT, UK *Author for correspondence ([email protected]) Accepted 25 February 2013 Journal of Cell Science 126, 2294–2304 ß 2013. Published by The Company of Biologists Ltd doi: 10.1242/jcs.126011 Summary In their mammalian host trypanosomes generate ‘stumpy’ forms from proliferative ‘slender’ forms as an adaptation for transmission to their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome. ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. -
Microarchitecture of the Tsetse Fly Proboscis Wendy Gibson1*, Lori Peacock1,2 and Rachel Hutchinson1
Gibson et al. Parasites & Vectors (2017) 10:430 DOI 10.1186/s13071-017-2367-2 RESEARCH Open Access Microarchitecture of the tsetse fly proboscis Wendy Gibson1*, Lori Peacock1,2 and Rachel Hutchinson1 Abstract Background: Tsetse flies (genus Glossina) are large blood-sucking dipteran flies that are important as vectors of human and animal trypanosomiasis in sub-Saharan Africa. Tsetse anatomy has been well described, including detailed accounts of the functional anatomy of the proboscis for piercing host skin and sucking up blood. The proboscis also serves as the developmental site for the infective metacyclic stages of several species of pathogenic livestock trypanosomes that are inoculated into the host with fly saliva. To understand the physical environment in which these trypanosomes develop, we have re-examined the microarchitecture of the tsetse proboscis. Results: We examined proboscises from male and female flies of Glossina pallidipes using light microscopy and scanning electron microscopy (SEM). Each proboscis was removed from the fly head and either examined intact or dissected into the three constituent components: Labrum, labium and hypopharynx. Our light and SEM images reaffirm earlier observations that the tsetse proboscis is a formidably armed weapon, well-adapted for piercing skin, and provide comparative data for G. pallidipes. In addition, the images reveal that the hypopharynx, the narrow tube that delivers saliva to the wound site, ends in a remarkably ornate and complex structure with around ten finger-like projections, each adorned with sucker-like protrusions, contradicting previous descriptions that show a simple, bevelled end like a hypodermic needle. The function of the finger-like projections is speculative; they appear to be flexible and may serve to protect the hypopharynx from influx of blood or microorganisms, or control the flow of saliva. -
Wikipedia Beetles Dung Beetles Are Beetles That Feed on Feces
Wikipedia beetles Dung beetles are beetles that feed on feces. Some species of dung beetles can bury dung times their own mass in one night. Many dung beetles, known as rollers , roll dung into round balls, which are used as a food source or breeding chambers. Others, known as tunnelers , bury the dung wherever they find it. A third group, the dwellers , neither roll nor burrow: they simply live in manure. They are often attracted by the dung collected by burrowing owls. There are dung beetle species of different colours and sizes, and some functional traits such as body mass or biomass and leg length can have high levels of variability. All the species belong to the superfamily Scarabaeoidea , most of them to the subfamilies Scarabaeinae and Aphodiinae of the family Scarabaeidae scarab beetles. As most species of Scarabaeinae feed exclusively on feces, that subfamily is often dubbed true dung beetles. There are dung-feeding beetles which belong to other families, such as the Geotrupidae the earth-boring dung beetle. The Scarabaeinae alone comprises more than 5, species. The nocturnal African dung beetle Scarabaeus satyrus is one of the few known non-vertebrate animals that navigate and orient themselves using the Milky Way. Dung beetles are not a single taxonomic group; dung feeding is found in a number of families of beetles, so the behaviour cannot be assumed to have evolved only once. Dung beetles live in many habitats , including desert, grasslands and savannas , [9] farmlands , and native and planted forests. They are found on all continents except Antarctica. They eat the dung of herbivores and omnivores , and prefer that produced by the latter. -
Moth Girls Free Download
MOTH GIRLS FREE DOWNLOAD Anne Cassidy | 304 pages | 01 Oct 2016 | Hot Key Books | 9781471405112 | English | London, United Kingdom Moth Girls She hoped it would be from him. Not what I was expecting but still a quiet, intriguing story. He was upbeat, ready to change the subject. Mandy over the next year became more Tina's friend than Petra's. There are no discussion topics on this book yet. Five years later, Mandy who did not go into the house with her friends lives with guilt because of her actions on the night, gradually the mystery of what happened to Tina and Petra is uncovered. They were drawn to it. Some studies indicate that certain Moth Girls of moths, such as those belonging to the families Erebidae and Sphingidaemay be the key Moth Girls for some flowering plants in the Himalayan ecosystem. Biology Letters. I liked Mandy, hated Petra. Most of the time, they scatter it unconsciously when they flap their wings strongly because they became aroused and happy from finding a man. In one country alone, Congomore than 30 species of moth larvae are Moth Girls. Dave Waters Ian Kelly Fishing bait Fly fishing Artificial fly Fly tying. Moth Girls underwing, tiger, tussock, litter, snout, owlet moths Euteliidae Noctuidae Moth Girls, sallows, owlet moths, quakers, cutworms, darts Nolidae tuft moths Notodontidae prominents, kittens Oenosandridae. New videos are uploaded regularly and even more are available on YouTube. Looking for something to watch? Although Lucy recovers for a couple days, she soon dies after Ernessa completely drains the life out of her. -
Tsetse Fly Evolution, Genetics and the Trypanosomiases - a Review E
Entomology Publications Entomology 10-2018 Tsetse fly evolution, genetics and the trypanosomiases - A review E. S. Krafsur Iowa State University, [email protected] Ian Maudlin The University of Edinburgh Follow this and additional works at: https://lib.dr.iastate.edu/ent_pubs Part of the Ecology and Evolutionary Biology Commons, Entomology Commons, Genetics Commons, and the Parasitic Diseases Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ ent_pubs/546. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Entomology at Iowa State University Digital Repository. It has been accepted for inclusion in Entomology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tsetse fly evolution, genetics and the trypanosomiases - A review Abstract This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. -
Arthropods of Public Health Significance in California
ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA California Department of Public Health Vector Control Technician Certification Training Manual Category C ARTHROPODS OF PUBLIC HEALTH SIGNIFICANCE IN CALIFORNIA Category C: Arthropods A Training Manual for Vector Control Technician’s Certification Examination Administered by the California Department of Health Services Edited by Richard P. Meyer, Ph.D. and Minoo B. Madon M V C A s s o c i a t i o n of C a l i f o r n i a MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA 660 J Street, Suite 480, Sacramento, CA 95814 Date of Publication - 2002 This is a publication of the MOSQUITO and VECTOR CONTROL ASSOCIATION of CALIFORNIA For other MVCAC publications or further informaiton, contact: MVCAC 660 J Street, Suite 480 Sacramento, CA 95814 Telephone: (916) 440-0826 Fax: (916) 442-4182 E-Mail: [email protected] Web Site: http://www.mvcac.org Copyright © MVCAC 2002. All rights reserved. ii Arthropods of Public Health Significance CONTENTS PREFACE ........................................................................................................................................ v DIRECTORY OF CONTRIBUTORS.............................................................................................. vii 1 EPIDEMIOLOGY OF VECTOR-BORNE DISEASES ..................................... Bruce F. Eldridge 1 2 FUNDAMENTALS OF ENTOMOLOGY.......................................................... Richard P. Meyer 11 3 COCKROACHES ........................................................................................... -
Insects in the World of Fiction
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Student Research in Entomology Entomology, Department of 6-2013 Insectography: Insects in the World of Fiction Erin Bauer University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/entomologydiss Bauer, Erin, "Insectography: Insects in the World of Fiction" (2013). Dissertations and Student Research in Entomology. 24. https://digitalcommons.unl.edu/entomologydiss/24 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Student Research in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Master’s Project Proposal Insectography: Insects in the World of Fiction By Erin Bauer My proposed Master’s Project is to develop a comprehensive list of fictional works (films/TV episodes, video games, children’s books, and novels) originally published or produced in the United States between 1950 and 2012 about or including insects, spiders, related arthropods (many times anthropomorphized or mutated) and/or entomologists as main characters and playing a major role in the plot. Although the list will encompass both entertaining and educational works, it will not include textbooks or other non-fictional works. It will also not include “fictionalized” accounts of real processes. For example, a book such as Hope for the Flowers, where the story is told from the perspective of the main character, a caterpillar discovering its true nature through metamorphosis, or a book where an insect character learns the importance of friendship, would be included in this list. -
EB Insects in Movies
Movies Allen, I. (Director). (1978). The Swarm [Motion picture]. United States: Warner Brothers. Synopsis: Invading killer bees wreak havoc on the citizens of North America. Armstrong, R.K. (Director). (1997). Bugged [Motion picture]. United States: Troma Team Video. Synopsis: Exterminators Dave and Steve fight gigantic insects that have a taste for humans! Arnold, J. (Director). (1955). Tarantula [Motion picture]. United States: Universal Pictures. Synopsis: Disaster strikes when scientist Leo Carroll accidently creates a monster spider that wreaks havoc on the human population. Baker, R.W. (Director). (1950). Highly Dangerous [Motion picture]. United States: Lippert Pictures. Synopsis: British Secret Service agent Frances and American Bill must investigate an East European country were allegedly insects are being used to develop germ-warfare. Bass, S. (Director). (1974). Phase IV [Motion picture]. United States: Paramount Pictures. Synopsis: After a cosmic event in the desert town of Paradise city, super intelligent, well organized ants begin building vast structures and communicating in a way never seen before. Scientists Ernest Hubbs and James Lesko are called to investigate this strange new behavior. Brandon, C. (Director). (1994). Skeeter [Motion Picture]. United States: Image Entertainment. Synopsis: A young couple, in the small town of Mesquite, discovers that toxic waste has created a new species of mosquito intent on destroying mankind. Cardos, J. (Director). (1977). Kingdom of the Spiders [Motion picture]. United States: Dimension Pictures. Synopsis: A veterinarian and entomologist try to save a town infested by spiders. Corman, R. & Hill, J. (Director). (1960). Wasp Woman [Motion picture]. United States: The Filmgroup. Synopsis: Janice Starlin, an aging cosmetics company owner, transforms into a giant wasp after taking a youth rejuvenating potion. -
African Trypanosomiasis
African Trypanosomiasis C. J. Mare, B. V.Sc., Ph.D., Disease Ecology in Arid Lands Program Department of Veterinary Science University of Arizona Tucson, Arizona African trypanosomiasis, also known as .. N agana", is an sickness" in man. These species both infect domestic acute or chronic infectious disease of domestic animals animals. Trypanosoma rhodesiense has a host range characterized by intermittent fever, anemia, edema, and similar to T. brucei; T. gambiense infects man and rapid loss of condition, often terminating in death. It is a pigs. collective term comprising infection with Trypanosoma 3. Trypanosoma vivax is monomorphic and large, congolense, T. vivax. The trypanosomes can complete their measuring 18-26 um by 3 um with a distinct flagellum. developmental cycle only in flies of the genus Glossina, the It is very active in fresh blood smears. Cattle, sheep, tsetse flies, but may be mechanically transmitted by other and goats are primarily affected; and it is less virulent hemophagous arthropods. for cattle than T. congolense. Dogs may undergo chronic infections. Trypanosoma uniforme is similar History and Distribution to T. vivax but smaller and causes a similar disease. Trypanosoma vivax readily persists in the absence of The Boer settlers in South Africa left accounts of the tsetse flies, for example in South America. It is the ravages of "Tsetse Disease" in 1836, and 1857, David main cause of Nagana in West Africa. Livingstone described the disease and incriminated the tsetse fly. Sir David Bruce ( 1894) showed that trypanosomes were Transmission the causative agents of the disease in ZuZuland. It was he who first publicized the name "Nagana", a Zulu term Probably all flies of the genus Glossina (tsetse flies) are meaning "to be in low or depressed spirits". -
Tsetse Flies
178 CHAPTER 2 • TSETSE FLIES CHAPTER 2 Tsetse flies Vectors of sleeping sickness Tsetse flies are bloodsucking flies of the genus Glossina. They occur only in tropical Africa and are important as vectors of African trypanosomiasis in both humans and animals. Sleeping sickness, as it is commonly called, is generally fatal in humans if left untreated. Sleeping sickness occurs in scattered foci throughout Africa south of the Sahara. In 1996, it was estimated that between 20000 and 25000 people die from the disease annually; however, the risk of severe epidemics continues to exist. Biology Tsetse flies are robust, 6–15mm in length, and can be distinguished from other biting flies by their forward-pointing mouthparts (proboscis) and characteristic wing venation (Fig. 2.1). There are about 30 known species and subspecies of tsetse flies belonging to the genus Glossina. They can be divided into three distinct groups or subgenera: Austenia (G. fusca group), Nemorhina (G. palpalis group) and Glossina (G. morsitans group). Only nine species and subspecies, belonging to either the G. palpalis or the G. morsitans group, are known to transmit sleeping sickness (Table 2.1). Life cycle The female tsetse fly does not lay eggs but produces larvae, one at a time. The larva develops in the uterus over a period of 10 days and is then deposited fully grown on moist soil or sand in shaded places, usually under bushes, fallen logs, large stones and buttress roots. It buries itself immediately and turns into a pupa. The fly emerges 22–60 days later, depending on the temperature.