Effects of Salinity Stress on Chloroplast Structure and Function
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of a Type 3 Metallothionein Isolated from Porteresia Coarctata
BIOLOGIA PLANTARUM 55 (1): 119-124, 2011 Characterization of a type 3 metallothionein isolated from Porteresia coarctata B. USHA, N.S. KEERAN, M. HARIKRISHNAN, K. KAVITHA and A. PARIDA* Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Taramani, Chennai-600113, India Abstract Metallothioneins are involved in detoxification of heavy metals. A cDNA encoding type 3 metallothionein (PcMT3) was isolated from the salt stressed leaf cDNA library of Porteresia coarctata (Roxb.) Tateoka (wild rice) that grows well in the heavy metal laden estuarine soils. The PcMT3 cDNA (581 bp) encodes a protein of 64 amino acids. PcMT3 is highly homologous (82 %) to OsMT-I-3a of rice, but is unique from other type 3 plant MTs due to the presence of an additional glycine residue in the C-terminal domain. Analysis of the 5′ upstream region of PcMT3 showed the presence of cis-acting elements like the CG box and STRE previously reported to be involved in gene expression under heavy metal stress. Southern analysis suggested the presence of more than one copy of PcMT3-like sequences in the P. coarctata genome. Analysis of genomic clone of PcMT3 revealed the presence of two introns. A comparison of the genomic sequence of PcMT3 with closely similar type 3 MTs from rice and mangrove species revealed conservation in the number and position of introns. Transcript profiling for PcMT3 in P. coarctata leaves in the presence of Cd, Cu and Zn showed an increase in transcript accumulation. Additional key words: cis-acting elements, heavy metals, salt stress, wild rice. Introduction Plants acquire heavy metal tolerance through various reported in plants like rice, hybrid poplar, oil palm and mechanisms like compartmentalization, sequestration, lichens (Abdullah et al. -
Biological Membranes and Transport Membranes Define the External
Biological Membranes and Transport Membranes define the external boundaries of cells and regulate the molecular traffic across that boundary; in eukaryotic cells, they divide the internal space into discrete compartments to segregate processes and components. Membranes are flexible, self-sealing, and selectively permeable to polar solutes. Their flexibility permits the shape changes that accompany cell growth and movement (such as amoeboid movement). With their ability to break and reseal, two membranes can fuse, as in exocytosis, or a single membrane-enclosed compartment can undergo fission to yield two sealed compartments, as in endocytosis or cell division, without creating gross leaks through cellular surfaces. Because membranes are selectively permeable, they retain certain compounds and ions within cells and within specific cellular compartments, while excluding others. Membranes are not merely passive barriers. Membranes consist of just two layers of molecules and are therefore very thin; they are essentially two-dimensional. Because intermolecular collisions are far more probable in this two-dimensional space than in three-dimensional space, the efficiency of enzyme-catalyzed processes organized within membranes is vastly increased. The Molecular Constituents of Membranes Molecular components of membranes include proteins and polar lipids, which account for almost all the mass of biological membranes, and carbohydrate present as part of glycoproteins and glycolipids. Each type of membrane has characteristic lipids and proteins. The relative proportions of protein and lipid vary with the type of membrane, reflecting the diversity of biological roles (as shown in table 12-1, see below). For example, plasma membranes of bacteria and the membranes of mitochondria and chloroplasts, in which many enzyme-catalyzed processes take place, contain more protein than lipid. -
The Role of Cell Membrane Information Reception, Processing, and Communication in the Structure and Function of Multicellular Tissue
International Journal of Molecular Sciences Review The Role of Cell Membrane Information Reception, Processing, and Communication in the Structure and Function of Multicellular Tissue Robert A. Gatenby Departments of Radiology and Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA; robert.gatenby@moffitt.org Received: 9 July 2019; Accepted: 18 July 2019; Published: 24 July 2019 Abstract: Investigations of information dynamics in eukaryotic cells focus almost exclusively on heritable information in the genome. Gene networks are modeled as “central processors” that receive, analyze, and respond to intracellular and extracellular signals with the nucleus described as a cell’s control center. Here, we present a model in which cellular information is a distributed system that includes non-genomic information processing in the cell membrane that may quantitatively exceed that of the genome. Within this model, the nucleus largely acts a source of macromolecules and processes information needed to synchronize their production with temporal variations in demand. However, the nucleus cannot produce microsecond responses to acute, life-threatening perturbations and cannot spatially resolve incoming signals or direct macromolecules to the cellular regions where they are needed. In contrast, the cell membrane, as the interface with its environment, can rapidly detect, process, and respond to external threats and opportunities through the large amounts of potential information encoded within the transmembrane ion gradient. Our model proposes environmental information is detected by specialized protein gates within ion-specific transmembrane channels. When the gate receives a specific environmental signal, the ion channel opens and the received information is communicated into the cell via flow of a specific ion species (i.e., K+, Na+, 2+ 2+ Cl−, Ca , Mg ) along electrochemical gradients. -
AQP3 and AQP5—Potential Regulators of Redox Status in Breast Cancer
molecules Review AQP3 and AQP5—Potential Regulators of Redox Status in Breast Cancer Lidija Milkovi´c and Ana Cipakˇ Gašparovi´c* Division of Molecular Medicine, Ruder¯ Boškovi´cInstitute, HR-10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-1-457-1212 Abstract: Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome–remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies. Keywords: AQP3; AQP5; oxidative stress Citation: Milkovi´c,L.; Cipakˇ 1. Introduction Gašparovi´c,A. AQP3 and Despite the progress in research and treatment procedures, cancer still remains the AQP5—Potential Regulators of Redox leading cause of death. Today, cancer is targeted via different approaches which is deter- Status in Breast Cancer. Molecules mined by diagnosis, tumour marker expression, and specific mutations. -
Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles
cells Article Evidence Supporting an Antimicrobial Origin of Targeting Peptides to Endosymbiotic Organelles Clotilde Garrido y, Oliver D. Caspari y , Yves Choquet , Francis-André Wollman and Ingrid Lafontaine * UMR7141, Institut de Biologie Physico-Chimique (CNRS/Sorbonne Université), 13 Rue Pierre et Marie Curie, 75005 Paris, France; [email protected] (C.G.); [email protected] (O.D.C.); [email protected] (Y.C.); [email protected] (F.-A.W.) * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 June 2020; Accepted: 24 July 2020; Published: 28 July 2020 Abstract: Mitochondria and chloroplasts emerged from primary endosymbiosis. Most proteins of the endosymbiont were subsequently expressed in the nucleo-cytosol of the host and organelle-targeted via the acquisition of N-terminal presequences, whose evolutionary origin remains enigmatic. Using a quantitative assessment of their physico-chemical properties, we show that organelle targeting peptides, which are distinct from signal peptides targeting other subcellular compartments, group with a subset of antimicrobial peptides. We demonstrate that extant antimicrobial peptides target a fluorescent reporter to either the mitochondria or the chloroplast in the green alga Chlamydomonas reinhardtii and, conversely, that extant targeting peptides still display antimicrobial activity. Thus, we provide strong computational and functional evidence for an evolutionary link between organelle-targeting and antimicrobial peptides. Our results support the view that resistance of bacterial progenitors of organelles to the attack of host antimicrobial peptides has been instrumental in eukaryogenesis and in the emergence of photosynthetic eukaryotes. Keywords: Chlamydomonas; targeting peptides; antimicrobial peptides; primary endosymbiosis; import into organelles; chloroplast; mitochondrion 1. -
Asia Regional Synthesis for the State of the World?
REGIONAL SYNTHESIS REPORTS ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE ASIA REGIONAL SYNTHESIS FOR THE STATE OF THE WORLD’S BIODIVERSITY FOR FOOD AND AGRICULTURE FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2019 Required citation: FAO. 2019. Asia Regional Synthesis for The State of the World’s Biodiversity for Food and Agriculture. Rome. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-132041-9 © FAO, 2019 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/ legalcode/legalcode). Under the terms of this licence, this work may be copied, redistributed and adapted for non-commercial purposes, provided that the work is appropriately cited. In any use of this work, there should be no suggestion that FAO endorses any specific organization, products or services. -
Enhancing Climate Resilience of India's Coastal Communities
Annex II – Feasibility Study GREEN CLIMATE FUND FUNDING PROPOSAL I Enhancing climate resilience of India’s coastal communities Feasibility Study February 2017 ENHANCING CLIMATE RESILIENCE OF INDIA’S COASTAL COMMUNITIES Table of contents Acronym and abbreviations list ................................................................................................................................ 1 Foreword ................................................................................................................................................................. 4 Executive summary ................................................................................................................................................. 6 1. Introduction ............................................................................................................................................... 13 2. Climate risk profile of India ....................................................................................................................... 14 2.1. Country background ............................................................................................................................. 14 2.2. Incomes and poverty ............................................................................................................................ 15 2.3. Climate of India .................................................................................................................................... 16 2.4. Water resources, forests, agriculture -
Regulation of Apoptosis-Associated Lysosomal Membrane Permeabilization
Linköping University Post Print Regulation of apoptosis-associated lysosomal membrane permeabilization Ann-Charlotte Johansson, Hanna Appelqvist, Cathrine Nilsson, Katarina Kågedal, Karin Roberg and Karin Öllinger N.B.: When citing this work, cite the original article. The original publication is available at www.springerlink.com: Ann-Charlotte Johansson, Hanna Appelqvist, Cathrine Nilsson, Katarina Kågedal, Karin Roberg and Karin Öllinger, Regulation of apoptosis-associated lysosomal membrane permeabilization, 2010, APOPTOSIS, (15), 5, 527-540. http://dx.doi.org/10.1007/s10495-009-0452-5 Copyright: Springer Science Business Media http://www.springerlink.com/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-55061 REGULATION OF APOPTOSIS-ASSOCIATED LYSOSOMAL MEMBRANE PERMEABILIZATION Ann-CharlotteJohansson1, Hanna Appelqvist2, Cathrine Nilsson1,2, Katarina Kågedal2, Karin Roberg1,3, Karin Öllinger2 1 Division of Otorhinolaryngology, Linköping University Hospital, Linköping, Sweden 2 Division of Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden 3 Division of Otorhinolaryngology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden Correspondence: Ann-Charlotte Johansson, Division of Otorhinolaryngology, Linköping University Hospital, SE-581 85 Linköping, Sweden Phone: +46-13-221525, Fax: +46-13-221529, E-mail: [email protected] ABSTRACT Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. -
Structure, Function, and Localization of Aquaporins: Their Possible Implications on Gamete Cryopreservation
Review Structure, function, and localization of aquaporins: their possible implications on gamete cryopreservation A.D. Sales1, C.H. Lobo2, A.A. Carvalho1, A.A. Moura2 and A.P.R. Rodrigues1 1Laboratório de Manipulação de Oócitos e Folículos Ovarianos Pré-Antrais, Rede Nordeste de Biotecnologia, Universidade Estadual do Ceará, Fortaleza, CE, Brasil 2Grupo de Pesquisa em Biologia da Reprodução, Departamento de Zootecnia, Universidade Federal do Ceará, Fortaleza, CE, Brasil Corresponding author: A.P.R. Rodrigues E-mail: [email protected] Genet. Mol. Res. 12 (4): 6718-6732 (2013) Received April 10, 2013 Accepted October 15, 2013 Published December 13, 2013 DOI http://dx.doi.org/10.4238/2013.December.13.5 ABSTRACT. The discovery of water channels (aquaporins, AQPs) was a landmark event for the clarification of water transport through the plasma membrane. AQPs belong to a family of intrinsic membrane proteins that act as selective channels for water and for solutes such as glycerol and urea. AQPs were found in different tissues and organs, including male and female reproductive systems. In the swine female reproductive system, the AQPs were localized in the uterus, oviduct, and ovary, as well as in the granulosa cells from primordial follicles. Knowing the involvement of AQPs with the male and female germ cells, as well as their acknowledged role in transporting water through the plasma membrane, the research of these proteins in cryopreservation processes becomes essential. Thus, this review aims to describe the structure and function of AQPs in membranes, highlighting their role Genetics and Molecular Research 12 (4): 6718-6732 (2013) ©FUNPEC-RP www.funpecrp.com.br Overview and role of aquaporins on gamete cryopreservation 6719 in the reproductive system (male and female). -
Micropropagation Through Somatic Embryogenesis and Cotyledonary Nodal Culture in Sea Oats
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2008 Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.) Diptimayee Sahoo Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Sahoo, Diptimayee, "Micropropagation through somatic embryogenesis and cotyledonary nodal culture in sea oats (Uniola paniculata L.)" (2008). LSU Master's Theses. 1026. https://digitalcommons.lsu.edu/gradschool_theses/1026 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. MICROPROPAGATION THROUGH SOMATIC EMBRYOGENESIS AND COTYLEDONARY NODAL CULTURE IN SEA OATS ( UNIOLA PANICULATA L.) A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Plant, Environmental and Soil Sciences by Diptimayee Sahoo B.S., Orissa University of Agriculture and Technology, India, 2004 May 2008 ACKNOWLEDGMENTS I wish to express my profound gratitude to my major advisor Dr. Prasanta K. Subudhi and co-major advisor Dr. Stephen A. Harrison for their guidance for successful completion of my research project. I sincerely thank for their confidence and faith on me throughout my research. I would like to express my deep appreciation to my committee member Dr. Charlie Johnson for serving on my thesis committee, allowing me to use the tissue cultured equipment and for his valuable suggestions during the course of investigation. -
Modeling Structures and Transport Phenomena of Transmembrane Channels and Transporters
Modeling Structures and Transport Phenomena of Transmembrane Channels and Transporters Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computational Natural Sciences (Biophysics) by Siladitya Padhi 201166647 [email protected] Center for Computational Natural Sciences and Bioinformatics International Institute of Information Technology, Hyderabad (Deemed to be University) Hyderabad 500032, India October 2016 © Siladitya Padhi 2016 All rights reserved ii iii iv v vi Acknowledgments I must start by thanking my supervisor, Dr. U. Deva Priyakumar, for giving me an opportunity to work with him, and for making all this possible. Having had a similar approach towards work, I was pretty comfortable working with him. He has always been active and cooperative, and I always had the freedom to walk into his office any time and start discussing business. He has given me a lot of opportunity, the most noteworthy one being my visit to Germany for a 10-day workshop at Ruprecht-Karls-Universität Heidelberg, followed by a two-month stay at Westfälische Wilhelms-Universität Münster. I also had a lot to learn working as a teaching assistant with him. There has been a lot to gain from faculty members at the Center for Computational Natural Sciences and Bioinformatics (CCNSB) at IIIT. Dr. Prabhakar Bhimalapuram has constantly given suggestions, right from my initial days, when he explained the basics of enhanced sampling methods to me, to my pre-PhD defense, during which he gave valuable and critical inputs. I have benefited immensely from the well-structured Statistical Mechanics course offered by Dr. -
Plant Genetic Resources Newsletter No. 124, December 2000
ISSN 1020-3362 Plant Genetic Resources Newsletter Bulletin de Ressources Phytogénétiques Noticiario de Recursos Fitogenéticos No. 124, 2000 Food and Agriculture Organization of the United Nations and the International Plant Genetic Resources Institute Organisation des Nations Unies pour l'alimentation et l'agriculture et l'institut international des ressources phytogénétiques Organización de las Naciones Unidas para la Agricultura y la Alimentación y el Instituto Internacional de Recursos Fitogenéticos Editorial Bureau de Oficina de Office rédaction Redacción Managing Editor Plant Genetic Resources Newsletter IPGRI Via delle Sette Chiese 142 00145 Rome, Italy Tel.: +39-0651892233 Email: [email protected] Fax: +39-065750309 Web: http://www.ipgri.cgiar.org The designations employed, and the Les appellations employées dans Las denominaciones empleadas, y presentation of material in the period- cette publication et la présentation la forma en que aparecen presenta- ical, and in maps which appear here- des données et cartes qui y figurent dos los datos en esta publicación, in, do not imply the expression of any n’impliquent de la part de l’IPGRI et no implican, de parte del IPGRI o la opinion whatsoever on the part of de la FAO aucune prise de position FAO, juicio alguno sobre la condi- IPGRI or FAO concerning the legal quant au statut juridique des pays, ción jurídica de países, territorios, status of any country, territory, city territoires, villes ou zones, ou de ciudades o zonas, o de sus autori- or area or its authorities, or concern- leurs autorités, ni quant au tracé de dades, ni respecto de la delimitación ing the delimitation of its frontiers or leurs frontières ou limites.