Effect of Cover Crop on Carbon Distribution in Size and Density
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stable Isotope Fingerprinting: a Novel Method for Identifying Plant, Fungal
Ecology, 00(0), 0000, pp. 000–000 Ó 0000 by the Ecological Society of America Stable isotope fingerprinting: a novel method for identifying plant, fungal, or bacterial origins of amino acids 1 THOMAS LARSEN,D.LEE TAYLOR,MARY BETH LEIGH, AND DIANE M. O’BRIEN Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska, Fairbanks, Alaska 99775-7000 USA Abstract. Amino acids play an important role in ecology as essential nutrients for animals and as currencies in symbiotic associations. Here we present a new approach to tracing the origins of amino acids by identifying unique patterns of carbon isotope signatures generated by amino acid synthesis in plants, fungi, and bacteria (‘‘13C fingerprints’’). We measured 13 amino acid d C from 10 C3 plants, 13 fungi, and 10 bacteria collected and isolated from a boreal forest in interior Alaska, USA, using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). Microorganisms were cultured under amino-acid-free conditions and identified based on DNA sequences. Bacteria, fungi, and plants generated consistent, unique 13C fingerprints based on the more complex amino acids (five or more biosynthetic steps) that are classified as essential for animals. Linear discriminant analysis classified all samples correctly with .99% certainty and correctly classified nearly all insect samples from a previous study by diet. Our results suggest that 13C fingerprints of amino acids could provide a powerful in situ assay of the biosynthetic sources of amino acids and a potential new tool for understanding nutritional linkages in food webs. Key words: Alaska, USA; compound-specific stable isotope analysis; d13C; essential amino acids; eukaryotes; gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS); prokaryotes. -
Color Barrier and Glass Ceiling in Academia
feature journey to leadership Breaking the Color Barrier and Glass Ceiling in Academia By Patricia Soochan, AWIS member since 2003 ccording to a 2017 American Council on Education 2006. In contrast, they have held only about 30% of full (ACE) report, progressive bottlenecks remain a professorships since 2015. Among all women who were Astubborn feature of the pathway to academic full professors, 84% were white, compared to just 5% who leadership for women—meaning the higher their rank, were Black.1 the fewer there are. At the predoctoral level, women have earned more than 50% of all bachelor’s degrees since An ACE report the following year revealed that while 30% 1982 and more than 50% of all doctoral degrees since of college presidents were women, fewer than 10% were FIGURE 1. Characteristics of Presidents, by Gender HIGHEST DEGREE EARNED RACE/ETHNICITY PhD/EdD Professional Master's African Asian White Hispanic doctorate American American Bachelor's Other American Middle Multiple races Indian Eastern WOMEN WOMEN MEN MEN 0 20 40 60 80 100 0 20 40 60 80 100 22 association for women in science feature journey to leadership Black women. The report also compared some differences in career characteristics between men and women When considering long-term presidents (Figure 1).2 Large-scale, organization-focused interventions to career aspirations, only promote gender equity in the ranks of academic science— like NSF ADVANCE in the United States and Athena SWAN 13% of women college in the United Kingdom— have had some promising results, but none have addressed both deans saw themselves as future race and gender. -
CV Seth Newsome.Pdf
Seth D. Newsome University of New Mexico Associate Professor, Department of Biology Associate Director, Center for Stable Isotopes 190 Castetter Hall Albuquerque, NM 87131 USA [email protected] http://sethnewsome.org Research Interests Animal Ecology, Animal Eco-Physiology, Historical Ecology, Conservation Biology Education 2000–2005 Ph.D., University of California Santa Cruz (Santa Cruz, CA) Earth & Planetary Sciences Department 1995–1999 B.A., Dartmouth College (Hanover, NH) Earth Sciences Department Positions & Professional Development 2018– Associate Professor, Biology Department, University of New Mexico (Albuquerque, NM) 2014– Associate Director, University of New Mexico Center for Stable Isotopes 2013–2018 Assistant Professor, Biology Department, University of New Mexico (Albuquerque, NM) 2009–2012 Post-Doctoral Research Scientist, University of Wyoming (Laramie, WY) Research focused on (1) using compound specific stable isotope analysis to quantify protein routing in mammals, birds and fish; (2) characterizing the ecology of an adaptive radiation in a group of South American songbirds via biochemical, physiological, and genetic tools. Advisors: Drs. Carlos Martinez del Rio and David G. Williams 2006–2009 Post-Doctoral Research Scientist, Carnegie Institution of Washington (Washington, DC) Research focused on (1) development of stable isotope methods to assess ecological niche and eco-physiological variation, foraging specialization, and dispersal characteristics of mammals and birds; (2) human impacts on ecosystem change in Australia and southern California. Advisor: Dr. Marilyn L. Fogel 2000–2005 Ph.D. Candidate, UC-Santa Cruz (Santa Cruz, CA) Research focused on historic and prehistoric ecology of marine mammals, with emphasis on the northern fur seal in the northeast Pacific Ocean. Advisor: Dr. Paul L. Koch 2000 Senior Lab Technician, Lawrence Berkeley National Laboratory (Berkeley, CA) Managed stable isotope facility and conducted research using isotopic tracers to track fluid and contaminant migration through sediments and groundwater. -
Flooding Induced by Rising Atmospheric Carbon Dioxide 10,11 204,206 87 86 B 207,208Pb Sr/ Sr
Fiscal Year 2020 Annual Report VOL. 30, NO. 10 | OCTOBER 2020 Flooding Induced by Rising Atmospheric Carbon Dioxide 10,11 204,206 87 86 B 207,208Pb Sr/ Sr 234U/ 230 Th Sr-Nd-Hf • Geochronology – U/Th age dating • Geochemical Fingerprinting – Sr-Nd-Hf and Pb isotopes • Environmental Source Tracking – B and Sr isotopes High-Quality Data & Timely Results isobarscience.com Subsidiary of OCTOBER 2020 | VOLUME 30, NUMBER 10 SCIENCE 4 Flooding Induced by Rising Atmospheric Carbon Dioxide GSA TODAY (ISSN 1052-5173 USPS 0456-530) prints news Gregory Retallack et al. and information for more than 22,000 GSA member readers and subscribing libraries, with 11 monthly issues (March- Cover: Mississippi River flooding at West Alton, Missouri, April is a combined issue). GSA TODAY is published by The Geological Society of America® Inc. (GSA) with offices at USA, 1 June 2019 (Scott Olsen, Getty Images, user license 3300 Penrose Place, Boulder, Colorado, USA, and a mail- 2064617248). For the related article, see pages 4–8. ing address of P.O. Box 9140, Boulder, CO 80301-9140, USA. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of race, citizenship, gender, sexual orientation, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. © 2020 The Geological Society of America Inc. All rights reserved. Copyright not claimed on content prepared Special Section: FY2020 Annual Report wholly by U.S. government employees within the scope of their employment. Individual scientists are hereby granted 11 Table of Contents permission, without fees or request to GSA, to use a single figure, table, and/or brief paragraph of text in subsequent work and to make/print unlimited copies of items in GSA TODAY for noncommercial use in classrooms to further education and science. -
NASA Astrobiology Institute 2018 Annual Science Report
A National Aeronautics and Space Administration 2018 Annual Science Report Table of Contents 2018 at the NAI 1 NAI 2018 Teams 2 2018 Team Reports The Evolution of Prebiotic Chemical Complexity and the Organic Inventory 6 of Protoplanetary Disk and Primordial Planets Lead Institution: NASA Ames Research Center Reliving the Past: Experimental Evolution of Major Transitions 18 Lead Institution: Georgia Institute of Technology Origin and Evolution of Organics and Water in Planetary Systems 34 Lead Institution: NASA Goddard Space Flight Center Icy Worlds: Astrobiology at the Water-Rock Interface and Beyond 46 Lead Institution: NASA Jet Propulsion Laboratory Habitability of Hydrocarbon Worlds: Titan and Beyond 60 Lead Institution: NASA Jet Propulsion Laboratory The Origins of Molecules in Diverse Space and Planetary Environments 72 and Their Intramolecular Isotope Signatures Lead Institution: Pennsylvania State University ENIGMA: Evolution of Nanomachines in Geospheres and Microbial Ancestors 80 Lead Institution: Rutgers University Changing Planetary Environments and the Fingerprints of Life 88 Lead Institution: SETI Institute Alternative Earths 100 Lead Institution: University of California, Riverside Rock Powered Life 120 Lead Institution: University of Colorado Boulder NASA Astrobiology Institute iii Annual Report 2018 2018 at the NAI In 2018, the NASA Astrobiology Program announced a plan to transition to a new structure of Research Coordination Networks, RCNs, and simultaneously planned the termination of the NASA Astrobiology Institute -
Drivers of Change in Ecosystem Condition and Services
Chapter 7 Drivers of Change in Ecosystem Condition and Services Coordinating Lead Author: Gerald C. Nelson Lead Authors: Elena Bennett, Asmeret Asefaw Berhe, Kenneth G. Cassman, Ruth DeFries, Thomas Dietz, Andrew Dobson, Achim Dobermann, Anthony Janetos, Marc Levy, Diana Marco, Nebojsa Nakic´enovic´, Brian O’Neill, Richard Norgaard, Gerhard Petschel-Held, Dennis Ojima, Prabhu Pingali, Robert Watson, Monika Zurek Review Editors: Agnes Rola, Ortwin Renn, Wolfgang Weimer-Jehle Main Messages . ............................................ 175 7.1 Introduction ........................................... 175 7.2 Indirect Drivers ........................................ 176 7.2.1 Demographic Drivers 7.2.2 Economic Drivers: Consumption, Production, and Globalization 7.2.3 Sociopolitical Drivers 7.2.4 Cultural and Religious Drivers 7.2.5 Science and Technology Drivers 7.3 Direct Drivers . ........................................ 199 7.3.1 Climate Variability and Change 7.3.2 Plant Nutrient Use 7.3.3 Land Conversion 7.3.4 Biological Invasions and Diseases 7.4 Examples of Interactions among Drivers and Ecosystems ......... 212 7.4.1 Land Use Change 7.4.2 Tourism 7.5 Concluding Remarks .................................... 214 NOTES ................................................... 214 REFERENCES .............................................. 214 173 ................. 11411$ $CH7 10-27-05 08:42:07 PS PAGE 173 174 Ecosystems and Human Well-being: Scenarios BOXES 7.16 Trends in Global Consumption of Nitrogen Fertilizers, 7.1 War as a Driver of Change -
Late Archean Rise of Aerobic Microbial Ecosystems
Late Archean rise of aerobic microbial ecosystems Jennifer L. Eigenbrode*†‡ and Katherine H. Freeman* *Department of Geosciences and Penn State Astrobiology Research Center, Pennsylvania State University, University Park, PA 16802; and †Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 Communicated by John M. Hayes, Woods Hole Oceanographic Institution, Woods Hole, MA, August 30, 2006 (received for review January 18, 2006) We report the 13C content of preserved organic carbon for a 150 zone. Thus, we focus this work on relative water-column depth, million-year section of late Archean shallow and deepwater sedi- and we present kerogen ␦13C data for a well preserved, 150 ments of the Hamersley Province in Western Australia. We find a million-year stratigraphic section from the late Archean, in 13C enrichment of Ϸ10‰ in organic carbon of post-2.7-billion-year- which we distinguish isotopic signatures of shallow versus deep- old shallow-water carbonate rocks relative to deepwater sedi- water sedimentary environments. We specifically evaluate this ments. The shallow-water organic-carbon 13C content has a 29‰ isotopic record after the pronounced depletion in organic 13C range in values (؊57 to ؊28‰), and it contrasts with the less signatures at 2.72 Ga, and we compare it with published isotopic variable but strongly 13C-depleted (؊40 to ؊45‰) organic carbon records from other regions to assess global changes in microbial in deepwater sediments. The 13C enrichment likely represents ecosystems during this important time. microbial habitats not as strongly influenced by assimilation of methane or other 13C-depleted substrates. We propose that con- Results tinued oxidation of shallow settings favored the expansion of Kerogen ␦13C values for 175 samples from a 2.72- to 2.57-Ga aerobic ecosystems and respiring organisms, and, as a result, section in the Hamersley Province, Western Australia, vary isotopic signatures of preserved organic carbon in shallow settings between Ϫ57‰ and Ϫ28‰ (Fig. -
Extending the Frontiers of Science
Summer SS PP EE CC TT RR AA 2000 THE NEWSLETTER OF THE CARNEGIE INSTITUTION Extending the Frontiers of Science Above is the Carnegie Observatories’ official first-day envelope and cancellation for the Edwin P. Hubble commemorative stamps. The envelope features the young Hubble at the 100-inch Mount Wilson telescope. INSIDE: New Board Members ................................................. 2 Fruit Fly Genome Sequenced .................................... 9 Signatures of Life—Carnegie Evening 2000 ........... 3 Algae at the Desert Lab? ............................................. 9 Honoring Hubble .......................................................... 4 Watery Mars ................................................................10 One Little Cell with Lots to Tell................................ 5 New Reading................................................................10 Magellan I Mirror Is In! ................................................ 8 Web Watch...................................................................16 Department of Department of Department of The Geophysical CASE/ Plant Biology Terrestrial Magnetism Embryology Observatories Laboratory First Light LETTER FROM THE CHAIRMAN Carnegie has been in human diseases. This means that as environments. Ultimately all of this work the business of science scientists learn more about gene function in will help to improve the planet’s long-term for almost one hundred the fruit fly, they will learn more about habitability. years. When we reflect curing illnesses in people. -
Opening New Horizons for Scientific Research
SPE TRA THE NEWSLETTER OF THE CARNEGIE INSTITUTION (SUMMER 2002 Opening New Horizons for Scientific Research INSIDE Trustee News 3 Telescopes for Biologists? 3 Carnegie Welcomes Three New Trustees 3 [PAGE 7] [PAGE 10] It’s Official! 4 Shocking Experience in Planetary Formation 5 The All-Carnegie Symposium: A Science Sampler 6 Constructing the Earth 7 Energy and Materials for the Start of Life 8 The Evolving Planet 9 The Continuity of Life 10 Broad Branch Road Gets a New Look 11 Forensics, First Light, and Fresh Fields Foods 11 First New Staff Member at Global Ecology 11 In Brief 12 A Gift of Cosmic Importance 16 Capital Science Lectures 2002-2003 16 [PAGE 9] • • • • • • DEPARTMENT DEPARTMENT DEPARTMENT THE GEOPHYSICAL CASE/ OF PLANT OF TERRESTRIAL OF EMBRYOLOGY OBSERVATORIES LABORATORY FIRST LIGHT BIOLOGY MAGNETISM 2) Women in Science How Carnegie Compares Ninety-eight years ago—16 years before women won the right to vote—the fledgling Carnegie Institution awarded its first grant to a woman scientist. Her name was Nettie Stevens. Interestingly, Stevens, a biologist, studied gender differences. Her work revolu- tionized our notion of what determines sex by showing that the X and Y chromosomes are involved, changing conventional thinking that environment was the cause. Since that time, Carnegie has fostered the genius of a succession of extraordinary women—geneticists Barbara McClintock and Nina Fedoroff, embryologist Elizabeth Ramsey, archaeologist Anna Shepard, and astronomer Vera Rubin, to name a few. In 2001, the National Research Council issued a report about women scientists and engineers in the workforce. It caught my eye, and I wondered how Carnegie compared with the national figures. -
Human Security at Risk As Depletion of Soil Accelerates, Scientists Warn
7/2/2020 Human security at risk as depletion of soil accelerates, scientists warn | Berkeley News Notice - The latest information on how UC Berkeley is responding to coronavirus.[X] Close RESEARCH, SCIENCE & ENVIRONMENT Human security at risk as depletion of soil accelerates, scientists warn By Sarah Yang, Media Relations | MAY 7, 2015 Tweet Share 147 Email Print Steadily and alarmingly, humans have been depleting Earth’s soil resources faster than the nutrients can be replenished. If this trajectory does not change, soil erosion, combined with the effects of climate change, will present a huge risk to global food security over the next century, warns a review paper authored by some of the top soil scientists in the country. The paper singles out farming, which accelerates erosion and nutrient removal, as the primary game changer in soil health. “Ever since humans developed agriculture, we’ve been transforming the planet and throwing the soil’s nutrient cycle out of balance,” said the paper’s lead author, Ronald Amundson, a UC Berkeley professor of environmental science, policy and management. “Because the changes happen slowly, often taking two to three generations to be noticed, people are not cognizant of the geological transformation taking place.” Scientists warn that humans have been depleting soil at rates that are orders of magnitude greater than our current ability to In the paper, published today (Thursday, May 7) in the journal replenish it. They say that fixing this imbalance is critical to Science, the authors say that soil erosion has accelerated since global food security over the next century. -
Stabilization Mechanisms and Decomposition Potential of Eroded Soil Organic Matter Pools in Temperate Forests of the Sierra Nevada, California
UC Merced UC Merced Previously Published Works Title Stabilization Mechanisms and Decomposition Potential of Eroded Soil Organic Matter Pools in Temperate Forests of the Sierra Nevada, California Permalink https://escholarship.org/uc/item/5p38z1qf Journal JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 124(1) ISSN 2169-8953 Authors Stacy, Erin M Berhe, Asmeret Asefaw Hunsaker, Carolyn T et al. Publication Date 2019 DOI 10.1029/2018JG004566 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Stabilization Mechanisms and Decomposition Potential 10.1029/2018JG004566 of Eroded Soil Organic Matter Pools in Temperate Special Section: Forests of the Sierra Nevada, California Biogeochemistry of Natural Organic Matter Erin M. Stacy1,2 , Asmeret Asefaw Berhe2,3 , Carolyn T. Hunsaker4 , Dale W. Johnson5, S. Mercer Meding6, and Stephen C. Hart2,3 Key Points: 1Environmental Systems Graduate Program, University of California, Merced, CA, USA, 2Sierra Nevada Research Institute, • Most carbon and nitrogen eroded 3 from the upland catchments was University of California, Merced, CA, USA, Department of Life and Environmental Sciences, University of California, either unprotected or physically Merced, CA, USA, 4Pacific Southwest Research Station, USDA Forest Service, Fresno, CA, USA, 5Department of Natural protected inside weak Resources and Environmental Science, University of Nevada, Reno, Reno, NV, USA, 6Soil, Water, and Environmental macroaggregates -
Marilyn Fogel CV
CURRICULUM VITAE Marilyn Louise Fogel Wilbur W. Mayhew Chair of Geoecology Director of the EDGE Institute Depts. of Earth Science and Environmental Science University of California Riverside 900 University Ave., Riverside, CA 92521 Phone: 209-205-6743 (cell and office); Email: [email protected]; [email protected] PROFESSIONAL PREPARATION B.S. Biology with honors, The Pennsylvania State University, 1970-1973. Ph. D. Botany and Marine Sciences, The University of Texas at Austin, Marine Science Institute, Port Aransas Marine Laboratory, 1974-1977, Drs. Chase Van Baalen, Patrick Parker, and F. Robert Tabita, Advisors. Dissertation title: "Carbon isotope fractionation by ribulose 1,5-bisphosphate carboxylase from various organisms." Carnegie Corporation Postdoctoral Fellowship, Geophysical Laboratory, Carnegie Institution of Washington, 1977- 1979, Dr. Thomas C. Hoering, Advisor. PROFESSIONAL APPOINTMENTS Professor, Earth and Environmental Sciences Department, UC Riverside- Sept. 1 to present. Director, EDGE Institute (Environmental Dynamics and Geo-Ecology Institute), Sept. 1 to present. Chair, Life and Environmental Sciences Unit, School of Natural Sciences, UC Merced- July 2013-August 2016. Professor, School of Natural Sciences, University of California, Merced-January 2013- August 31, 2016. Staff Member, Geophysical Laboratory-July 1979 to December 2012. Adjunct Staff Member- January 2013 to December 2013. Adjunct Professor, University of Delaware College of Marine Studies-1989 to 2014. Visiting Staff Member, Department of Plant Biology, Carnegie Institution of Washington, 1985-1986. Visiting Researcher, Conservation Analytical Laboratory, Smithsonian Institution-1994 to 1999. Visiting Professor, Dept. of Earth Sciences, Dartmouth College-1995. Research Professor, George Washington University, Dept. of Anthropology-April 1999 to July 2004. Research Fellow, Smithsonian Institution, Environmental Research Center, 2003-2009.