Protozoa : Locomotion and Nutrition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba Stagnalis N. Sp
diversity Article The Morphology, Ultrastructure and Molecular Phylogeny of a New Freshwater Heterolobose Amoeba Parafumarolamoeba stagnalis n. sp. (Vahlkampfiidae; Heterolobosea) Anastasia S. Borodina 1,2, Alexander P. Mylnikov 1,†, Jan Janouškovec 3 , Patrick J. Keeling 4 and Denis V. Tikhonenkov 1,5,* 1 Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; [email protected] 2 Department of Zoology and Parasitology, Voronezh State University, Universitetskaya Ploshad 1, 394036 Voronezh, Russia 3 Centre Algatech, Laboratory of Photosynthesis, Institute of Microbiology, Czech Academy of Sciences, Opatovický Mlýn, 37981 Tˇreboˇn,Czech Republic; [email protected] 4 Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T1Z4, Canada; [email protected] 5 AquaBioSafe Laboratory, University of Tyumen, 625003 Tyumen, Russia * Correspondence: [email protected]; Tel.: +7-485-472-4533 † Alexander P. Mylnikov is deceased. http://zoobank.org/References/e543a49a-16c1-4b7c-afdb-0bc56b632ef0 Abstract: Heterolobose amoebae are important members of marine, freshwater, and soil microbial Citation: Borodina, A.S.; Mylnikov, communities, but their diversity remains under-explored. We studied the diversity of Vahlkampfiidae A.P.; Janouškovec, J.; Keeling, P.J.; to improve our understanding of heterolobosean relationships and their representation in aquatic Tikhonenkov, D.V. The Morphology, benthos. Using light and electron microscopy, and molecular phylogenies based on the SSU rRNA Ultrastructure and Molecular and ITS loci, we describe the fine morphology and evolutionary relationships of a new heterolobosean Phylogeny of a New Freshwater Parafumarolamoeba stagnalis n. sp. from a small pond in European Russia. Cells of P. stagnalis possess Heterolobose Amoeba a clearly distinguishable anterior hyaline pseudopodium, eruptive movement, several thin and Parafumarolamoeba stagnalis n. -
A Viable Therapy Against Metastatic Breast Cancer
Graduate Theses, Dissertations, and Problem Reports 2017 Dual Targeting of the Mesenchymal and Amoeboid Pathways: A Viable Therapy against Metastatic Breast Cancer Brandon C. Jones Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation Jones, Brandon C., "Dual Targeting of the Mesenchymal and Amoeboid Pathways: A Viable Therapy against Metastatic Breast Cancer" (2017). Graduate Theses, Dissertations, and Problem Reports. 5905. https://researchrepository.wvu.edu/etd/5905 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Dual Targeting of the Mesenchymal and Amoeboid Pathways: A Viable Therapy against Metastatic Breast Cancer Brandon C. Jones Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry & Molecular Biology Elena Pugacheva, Ph.D., Chair J. Michael Ruppert, M.D., Ph.D. Maxim Sokolov, Ph.D. Michael Schaller, Ph.D. Scott Weed, Ph.D. -
Can Protozoa Prove the Beginning of the World?
Southeastern University FireScholars Classical Conversations Spring 2020 Can Protozoa Prove the Beginning of the World? Karina L. Burton Southeastern University - Lakeland, [email protected] Follow this and additional works at: https://firescholars.seu.edu/ccplus Part of the Cell Biology Commons, and the Evolution Commons Recommended Citation Burton, Karina L., "Can Protozoa Prove the Beginning of the World?" (2020). Classical Conversations. 9. https://firescholars.seu.edu/ccplus/9 This Term Paper is brought to you for free and open access by FireScholars. It has been accepted for inclusion in Classical Conversations by an authorized administrator of FireScholars. For more information, please contact [email protected]. 1 Can Protozoa Prove the Beginning of the World? Karina L. Burton Classical Conversations: Challenge 4; Southeastern University ENGL 1233: English Composition II Grace Veach April 16, 2020 2 Abstract Protozoa are magnificent creatures. They exhibit all of the functions intrinsic to living organisms: irritability, metabolism, growth and reproduction. Within these functions, there are numerous examples of mutations that occur in order for organisms to adapt to their given environments. Irritability is demonstrated in protozoa by their use of pseudopodia, flagella, or cilia for motility; it has been shown that such locomotors exhibit diversity while maintaining similar protein and chemical structures that appear to be a result of evolutionary processes. Metabolism in protozoa is similar to that of larger animals, but their diet is unique. They primarily feast upon bacteria, which have begun mutating to evade easy ingestion and digestion by protozoa, therefore increasing their survival rate and making it necessary for protozoa to adapt. -
Amoeba, Paramoecium, Euglena and Diatom
BIOLOGY CLASSIFICATION OF PLANTS Kingdom Protista Introduction to Kingdom Protista Kingdom Protista consists of unicellular organisms. They contain a well-defined nucleus and a nucleolus enclosed in a nuclear membrane. The protoplasm is surrounded by the plasma membrane. The cytoplasm contains various cell organelles. Nuclear material is organised in the form of a linear, double-stranded and helical DNA, along with proteins. The mode of nutrition is either autotrophic or heterotrophic. Examples: Amoeba, Paramoecium, Euglena and diatom Amoeba Paramoecium Euglena Diatom Amoeba Amoeba is microscopic and one of the simplest organisms made of just one cell. It is found in ponds, ditches, mud or on submerged water plants in freshwater bodies. The body of Amoeba is irregular in shape. The outer membrane called cell membrane or plasmalemma encloses the cytoplasm. A prominent nucleus, several food vacuoles, a contractile vacuole and reserve food granules are present. Amoeba uses pseudopodia for feeding and locomotion. It reproduces by binary fission. During unfavourable conditions (e.g. drying up of pond), it forms a protective cyst within which it reproduces by multiple fission, producing several offspring. Structure of Amoeba www.topperlearning.com 2 BIOLOGY CLASSIFICATION OF PLANTS Movement in Amoeba Movement in Amoeba occurs with the help of temporary or false feet called pseudopodia. Pseudopodia are finger-like projections formed by the flowing of cytoplasm into these extensions. At a time, several pseudopodia can be seen projecting out from the body of an Amoeba. However, only one of them extends longer than the others towards the direction it wants to move. This type of movement is called amoeboid movement. -
Emergence of Self-Organized Amoeboid Movement in a Multi-Agent Approximation of Physarum Polycephalum
Emergence of Self-Organized Amoeboid Movement in a Multi-Agent Approximation of Physarum polycephalum Jeff Jones and Andrew Adamatzky Centre for Unconventional Computing, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK. [email protected] , [email protected] Abstract: The giant single-celled slime mould Physarum polycephalum exhibits complex morphological adaptation and amoeboid movement as it forages for food and may be seen as a minimal example of complex robotic behaviour. Swarm computation has previously been used to explore how spatio- temporal complexity can emerge from, and be distributed within, simple component parts and their interactions. Using a particle based swarm approach we explore the question of how to generate collective amoeboid movement from simple non-oscillatory component parts in a model of P. polycephalum . The model collective behaves as a cohesive and deformable virtual material, approximating the local coupling within the plasmodium matrix. The collective generates de-novo and complex oscillatory patterns from simple local interactions. The origin of this motor behaviour is distributed within the collective rendering is morphologically adaptive, amenable to external influence, and robust to simulated environmental insult. We show how to gain external influence over the collective movement by simulated chemo-attraction (pulling towards nutrient stimuli) and simulated light irradiation hazards ( pushing from stimuli). The amorphous and distributed properties of the collective are demonstrated by cleaving it into two independent entities and fusing two separate entities to form a single device, thus enabling it to traverse narrow, separate or tortuous paths. We conclude by summarising the contribution of the model to swarm based robotics and soft-bodied modular robotics and discuss the future potential of such material approaches to the field. -
Brown Algae and 4) the Oomycetes (Water Molds)
Protista Classification Excavata The kingdom Protista (in the five kingdom system) contains mostly unicellular eukaryotes. This taxonomic grouping is polyphyletic and based only Alveolates on cellular structure and life styles not on any molecular evidence. Using molecular biology and detailed comparison of cell structure, scientists are now beginning to see evolutionary SAR Stramenopila history in the protists. The ongoing changes in the protest phylogeny are rapidly changing with each new piece of evidence. The following classification suggests 4 “supergroups” within the Rhizaria original Protista kingdom and the taxonomy is still being worked out. This lab is looking at one current hypothesis shown on the right. Some of the organisms are grouped together because Archaeplastida of very strong support and others are controversial. It is important to focus on the characteristics of each clade which explains why they are grouped together. This lab will only look at the groups that Amoebozoans were once included in the Protista kingdom and the other groups (higher plants, fungi, and animals) will be Unikonta examined in future labs. Opisthokonts Protista Classification Excavata Starting with the four “Supergroups”, we will divide the rest into different levels called clades. A Clade is defined as a group of Alveolates biological taxa (as species) that includes all descendants of one common ancestor. Too simplify this process, we have included a cladogram we will be using throughout the SAR Stramenopila course. We will divide or expand parts of the cladogram to emphasize evolutionary relationships. For the protists, we will divide Rhizaria the supergroups into smaller clades assigning them artificial numbers (clade1, clade2, clade3) to establish a grouping at a specific level. -
On the Physiology of Amoeboid Movement
ON THE PHYSIOLOGY OF AMOEBOID MOVEMENT. IV.—THE ACTION OF MAGNESIUM. BY C. F. A. PANTIN. {The Marine Biological Laboratory, Plymouth?) (Received January 6th, 1926.) CONTENTS 1. Maintenance of the cell-surface . 297 6. The action of Ce'" in the pres- 2. The action of barium . 300 ence of Ca" .... 306 3. The action of cerium . 301 4. Action of Mg" in the presence 7. Discussion 306 of Ca" 302 8. Summary 310 5. Interaction of the ions of sea- 9. References 311 water 303 THE previous paper of this series (Pantin, 1926) described the action of certain ions upon a species of marine amoeba, and especially the relation of calcium to amoeboid movement. The same paper detailed the method of preparing isotonic salt solutions and of determining their effect on amoeboid movement. The essential feature is that the average velocity is taken as a measure of the effect of a solution upon the power of movement, apart from other effects produced upon the cell. Unless otherwise stated, the CH of the solutions was maintained at /H 7.0 to 7.2. 1. Maintenance of the cell-surface. It was shown previously that whereas cytolysis occurred rapidly in pure isotonic NaCl or KCl (at about />H 7), amoebae remained alive for a longer time in isotonic CaCl= and MgClj. Movement was inhibited in these solutions, but reversibly, for, provided immersion had been brief, recovery occurred on return to natural sea-water. In mixtures of two salts, it was found that movement only occurred if Ca were 297 C. F. A. -
The Pseudopodia of the Leucocytes of Invertebrates
PSEUDOPODIA OF THE LEUCOCYTES OF INA^EBTDBEATES. 19 The Pseudopodia of the Leucocytes of Invertebrates. By Edwin S. Ooodricli, F.R.S., Fellow of Merton College, Oxford. With Plates 1 and 2. IT is to Wharton Jones that we owe the first comprehensive account of the leucocytes in the various groups of Inverte- brata: in an important paper, published in 1846 (6), he described and figured them as of "stellate appearance/' and sometimes as shooting out "cilia-like processes." Since then numberless authors have studied these cells and pictured them as provided with free outstanding pseudopodia. Evidence is brought forward in this paper that the spiny appearance of leucocytes is of the nature of an optical illusion or due to changes taking place under abnormal conditions, that freely projecting fine processes are seldom, if ever, produced in the fluids of living invertebrates, and that the pointed pseudo- podia so often figured are merely the optical sections of deliciite, more or less folded films. Various authors have from time to time mentioned the flattened expanded shape of the processes of the leucocytes of the inv- rtebrates, as, for instance, Cattaneo (1) and Dek- hiu'M'ii (2), referred to below ; but none seem to have realised thai i his is ihe normal shape of the pseudopodia. In 1898 (4) I drew attention to the presence of membranous expansions of the lriicocytes in the Polychaste worm G-lycera, ahd at that tim<" observed the same structures in other invertebrates; but 20 EDWIN S. GOODRICH. other work prevented my pursuing the subject, and it was not till last winter that it was again taken up, when I had the opportunity of confirming and extending my observations at the Marine Biological Laboratory in Plymouth. -
A Contribution to the Life History of Spongospora Subterránea
A CONTRIBUTION TO THE LIFE HISTORY OF SPONGOSPORA SUBTERRÁNEA [A PRELIMINARY REPORT] By L. O. KUNKEL, Pathologist, Office of Cotton- and Truck-Disease Investigations, Bureau of Plant Industry INTRODUCTION The manner of infection of tubers of the potato (Solatium tuberosum) by Spongospora subterránea seems never to have been observed. Osbora (14)1 has described and figured what he considers a single amœba in a potato cell, but as will be seen from the writer's descriptions this can not be regarded as a significant step in the process of infection. It has usually been assumed that each potato cell becomes parasitized by one, or at most only a very few, amoebae in much the same way as suggested by Woronin (17) for cabbage cells attacked by Plasmodiophora brassicae. Spongospora subterránea was first technically described by Wallroth (16) in 1842 as Erysibe subterránea. Although it seems to have been widely distributed in Europe, it received little attention until 1885, when Brun- chorst (2), a Norwegian botanist, made a careful study of the disease. His observation of plasmodia in the potato cells led him to place it in the group of the Plasmodiophoraceae. It was his opinion that the organism could live saprophytically in the soil, and he states that it is a general belief among farmers that lime and excess moisture favor the disease. In 1892 Von Lagerheim (9) reported 5. subterránea as very generally distributed in Quito, South America, which is the native habitat of the potato and may also be the home of Spongospora. Johnson (7) studied the germination of the spores and describes eight swarm spores coming from each cell of the spore ball. -
ZOOLOGY Biology of Parasitism Morphology, Life Cycle
Paper : 08 Biology of Parasitism Module : 18 Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Development Team Principal Investigator : Prof. Neeta Sehgal Department of Zoology, University of Delhi Co-Principal Investigator : Prof. D.K. Singh Department of Zoology, University of Delhi Paper Coordinator : Dr. Pawan Malhotra ICGEB, New Delhi Content Writer : Dr. Ranjana Saxena Dyal Singh College, University of Delhi Content Reviewer : Prof. Rajgopal Raman Department of Zoology, University of Delhi 1 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Description of Module Subject Name ZOOLOGY Paper Name Biology of Parasitism; Zool 008 Module Name/Title Protozoans Module Id M18: Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 Keywords Trophozoite, precyst, cyst, chromatoidal bars, excystation, encystation, metacystictrophozoites, amoebiasis, amoebic dysentery, extraintestinalinvasion. Contents 1. Learning Outcomes 2. Introduction 3. History of Entamoeba 4. Classification of Entamoeba 5. Geographical distribution of Entamoeba histolytica 6. Habit and Habitat 7. Host 8. Reservoir 9. Morphology 10. Life cycle 11. Transmission 12. Entamoeba dispar 13. Entamoeba gingivalis 14. Entamoeba coli 15. Entamoeba hartmanni 16. Comparison between the various Entamoeba 17. Summary of Entamoeba histolytica 2 Biology of Parasitism ZOOLOGY Morphology, Life cycle, Pathogenecity, Diagnosis and Prophylaxis of Entamoeba Part 1 1. Learning Outcomes After studying this unit you will be able to: Classify Entamoeba Understand the medical importance of Entamoeba Distinguish between the different species of Entamoeba Identify the pathogenic species of Entamoeba Describe the morphology ofEntamoeba histolytica Explain the life cycle of Entamoeba histolytica Compare the life cycle of different species of Entamoeba 2. -
Protists: Amoeba
Microorganisms – Protists: Amoeba The amoeba is a protozoan that belongs to the Kingdom Protista. The name amoeba comes from the Greek word amoibe, which means change. (Amoeba is also spelled ameba.) Protists are microscopic unicellular organisms that don't fit into the other kingdoms. Some protozoans are considered plant- like while others are considered animal-like. The amoeba is considered an animal-like protist because it moves and consumes its food. Protists are classified by how they move, some have cilia or flagella, but the ameba has an unusual way of creeping along by stretching its cytoplasm into fingerlike extensions called pseudopodia. The word "pseudopodia" means "false foot". Label the pseudopodia. When looking at ameba under a microscope, an observer will note that no amoeba looks the same as any other. The cell membrane is very flexible and allows for the amoeba to change shape. Amoebas live in ponds or puddles, and some can even live inside people. Color and label the cell membrane red. There are two types of cytoplasm in the amoeba. The darker cytoplasm toward the interior of the protozoan is called endoplasm. The clearer cytoplasm that is found near the cell membrane is called ectoplasm. On the diagram, the endoplasm is indicated by the dotted area, and the ectoplasm by the white area. Color and label the endoplasm pink. Color and label the ectoplasm light blue. By pushing the endoplasm toward the cell membrane, the amoeba causes its body to extend and creep along. It is also by this method that the amoeba consumes its food. -
Pressure Sensing Through Piezo Channels Controls Whether Cells Migrate with Blebs Or Pseudopods
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods Nishit Srivastavaa,c,d, David Traynorb,1, Matthieu Pielc,d, Alexandre J. Kablaa, and Robert R. Kayb,2 aDepartment of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom; bLaboratory of Molecular Biology, Medical Research Council, Cambridge CB20QH, United Kingdom; cInstitut Curie, Université Paris Sciences et Lettres, CNRS, UMR 144, 75005 Paris, France; and dInstitut Pierre-Gilles de Gennes, Université Paris Sciences et Lettres, 75005 Paris, France Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved December 24, 2019 (received for review April 4, 2019) Blebs and pseudopods can both power cell migration, with blebs Dictyostelium amoebae move through varied environments often favored in tissues, where cells encounter increased mechan- during their life cycle. As single cells, they hunt bacteria through ical resistance. To investigate how migrating cells detect and the interstices of the soil, and when starved and developing, they respond to mechanical forces, we used a “cell squasher” to apply chemotax to cyclic AMP and move in coordinated groups that uniaxial pressure to Dictyostelium cells chemotaxing under develop into stalked fruiting bodies, with cell sorting playing a soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained key role (33, 34). We found previously that Dictyostelium cells shift to movement with blebs rather than pseudopods. Cells are prefer pseudopods when moving under buffer, but blebs under a flattened under load and lose volume; the actin cytoskeleton is stiff agarose overlay (35). In both cases, the cells move on the reorganized, with myosin II recruited to the cortex, which may same glass substratum, but under agarose they must also break pressurize the cytoplasm for blebbing.