E1-E2 (Cfa) Fiber to the Home Fiber to the Home (Ftth)

Total Page:16

File Type:pdf, Size:1020Kb

E1-E2 (Cfa) Fiber to the Home Fiber to the Home (Ftth) E1E1--E2E2 (CFA) FIBER TO THE HOME (FTTH) © BHARAT SANCHAR NIGAM LIMITED To day customers wants Dependable High Speed Data High Quality Voice Video Service These services are delivered by Digital Subscriber Lines (DSL) Cable Modems Wireless USER REQUIREMENT Video Data User The preferred user’s requirement Voice • Many services on one infrastructure is efficient • Efficiency = lower costs for users and service providers • Enhanced choice is attractive to customers • Commercially viable for network owner/operator © BHARAT SANCHAR NIGAM LIMITED To meet the costumers demand, service provider needs a Robust networking solution. The solution is fiber based networks on fiber based technologies or FTTH © BHARAT SANCHAR NIGAM LIMITED FTTH OFFERS Unlimited bandwidth The flexibility to meet customer demand for interactive, video-based services. © BHARAT SANCHAR NIGAM LIMITED Fiber in the loop In FITL network architecture the fiber optic technology is being deployed from Central Office (CO) of a telephone carrier to a remote serving area interface(SAI) to an Optical Network Unit (ONU) located at the customer premises . Normally, the fiber is deployed in either all or part of the local loop distribution network. • FITL includes various architectures such as FTTC, FTTH & FTTP. © BHARAT SANCHAR NIGAM LIMITED Fiber to the x ( FTTX) It is a generic term for any network architecture that uses optical fiber to replace all or part of the usual copper local loop used form telecommunications . © BHARAT SANCHAR NIGAM LIMITED Today, fiber networks come in many varieties, depending on the termination point .i.e. FTTx Fiber To The Node/Network (FTTN) Fiber To The Curb or Cabinet (FTTC) Fiber To The Buildings (FTTB), Fiber To The Home (FTTH), For simplicity, most people have begun to refer to the fiber network as FTTx, in which x stands for the termination point. © BHARAT SANCHAR NIGAM LIMITED FTTN Fiber to the node/ Neighbourhood (FTTN)/ Fiber to the cabinet (FTT Cab). Fiber- optic cables runs to a nearest serving cabinet (neighbourhood). Customers connect to this cabinet is using twisted pair wiring. The area served by the cabinet is less than 1500 meters in radius. If the cabinet serve an area of less than 300 meters in radius then the architecture is normally called fiber to the curb. © BHARAT SANCHAR NIGAM LIMITED Advantages :- Low Cost Non-blocking or low- blocking performance better supports convergence. Extremely flexible to deploy. Allows the use of a variety of media from the Telephone Exchange to the User . Disadvantages :- Supports less bandwidth © BHARAT SANCHAR NIGAM LIMITED FTTC (Fiber To The Curb) User’s Home Optical Fiber Cable O ONU L T Copper Cable E ONU Central Office A method of installing optical fiber cable by the curb near the user’s home. © BHARAT SANCHAR NIGAM LIMITED FTTB (Fiber To The Building ) User’s Building Copper loops O Optical Fiber Cable L ONU T E Central Office By introducing fiber cables from the fiber termination point to the home living space or business office space FTTB can be converted to full FTTH. © BHARAT SANCHAR NIGAM LIMITED FTTH (Fiber To The Home) User’s Home ONU O Optical Fiber Cable L T E Central Office FTTH is the final configuration of access networks using optical fiber cable. © BHARAT SANCHAR NIGAM LIMITED Steps in Evolution of FTTH FTTC, the next step, ensures that fiber is available very close to the customer/building. FTTN ensure that all the Network Elements shall have fiber medium. FTTB fiber shall be made available to all buildings. FTTH is the next and ultimate stage in this plan. © BHARAT SANCHAR NIGAM LIMITED Fiber to the Premises It is a form of fiber-optic communication delivery in which an optical fiber runs directly onto the customers' premises. 2. This is dissimilar with other fiber optic communication networks such as (FTTN), (FTTC) or hybrid fiber coaxial (HFC), all of which depends upon copper wires or coaxial cable for "last mile" delivery. © BHARAT SANCHAR NIGAM LIMITED Fiber to the premises can be further categorized according to the optical fiber ends. FTTH (Fiber to the Home):- It is the form of fiber optic communication network in which optical signal reaches upto the end user’s office. 2- FTTB (Fiber to the Building):- It is the form of fiber optic communication delivery in which optical signal reaches upto the building, but where the fiber terminate before reaching the home, business premises or set of customers. The remaining path uses other than Optical Fiber. © BHARAT SANCHAR NIGAM LIMITED Optical Portion :-Optical Distribution Network have several technologies to deploy. Direct Shared Fiber fiber Active Passive Optical Optical Network Network © BHARAT SANCHAR NIGAM LIMITED DIRECT FIBER Here each fiber leaving the central office goes to exactly one customer .i.e. point to point topology Provides excellent bandwidth because each customer have their own dedicated fiber. Costlier due to the large amount of fiber requirement. © BHARAT SANCHAR NIGAM LIMITED SHARED FIBER In this architecture, each fiber leaving the central office is actually shared by many customers. There are two leading optical distribution networks with which we can achieve this split. Active optical network (AONs) Passive optical network (PONs) © BHARAT SANCHAR NIGAM LIMITED Active optical network In this architecture, power equipment is used to distribute the signal such as switch, router or multiplexer. Each signal leaving the central office is directed only to the particular customer. Active Ethernet uses optical switches to distribute the signal. Equipment performs layer 2/layer 3 switching and routing. It can handle upto 1000 customers. © BHARAT SANCHAR NIGAM LIMITED Passive Optical Networks PON is a point -to-multi point, fiber to the premises network architecture. Un-powered optical splitters are used to enable a single optical fiber to serve multiple customers. A PON configuration with 1:32 splitters reduces the amount of fiber. Down stream signal from the Central Office is broadcasted to each customer premises sharing a fiber. Upstream signals are combined using a multiple excess protocol towards Central Office. © BHARAT SANCHAR NIGAM LIMITED Technology Options for FTTH © BHARAT SANCHAR NIGAM LIMITED Functioning of PON Architecture The Optical Line Terminal (OLT) equipment is installed in Central Office as head end. OLT transmits optical signal to splitter, from where the signal is distributed to multiple customers directly or via another splitters. Optical Network Terminals (ONT) terminate the signal at the customer premises. © BHARAT SANCHAR NIGAM LIMITED Maximum distance is 20 km in between OLT and ONT for 1:32 splitter. PONs do not require any power for the splitters so operational cost and complexity is reduced. Passive optical splitters are used to split the fiber/ bandwidth and share among many customers. © BHARAT SANCHAR NIGAM LIMITED Telechoice 1:4 1:8 1:16 1:32 © BHARAT SANCHAR NIGAM LIMITED PON Architecture Voice Management System Data ONU Other Video Networks TDM ONU Video/Audio over IP services PABX O 1:32(64) Optical Splitter PON L T CATV overlay services TDMA Central Office IP N/Ws TDM Data 2G BTS ONU 0-20 Km physical reach (60 Km logical reach supported by protocol) © BHARAT SANCHAR NIGAM LIMITED The basic elements in any PON system are: OLT : A Central Office (CO) equipment providing PON with the various network interfaces ONU/ONT : An External Plant / Customer Premises equipment providing user interface for many/single customer PON : distributed or single staged passive optical splitters/combiners providing connectivity between OLT & multiple ONU/ONTs. NMS : Management of the complete PON system from OLT © BHARAT SANCHAR NIGAM LIMITED BSNL FTTH PLAN Phase-I (2008-09): In phase-I overlay access network is planned in 98 cities where the number of Direct Exchange Lines are more than 3 lakhs i.e 30 millions, therefore Ethernet in the first mile using the FTTB, FTTH is proposed to be deployed. FTTH systems are deployed as either point to point optical system or point to multi point fiber system (PON). 7 lakhs customers are targeting in the first year. 1.5 lakhs customers in 73 cities with GE-PON. 5.5 lakhs customers in 25 cities with GE-PON & G-PON. © BHARAT SANCHAR NIGAM LIMITED Phase-II (2009-10): In second phase of G-PON/GE-PON deployment will be extended to other cities having Optical Access Network cables laid as per OAN target. In second phase FTTH plan will target 7 lakhs customers to be extended with fast Ethernet/ Gigabit Ethernet service to their buildings on Fiber. © BHARAT SANCHAR NIGAM LIMITED Phase-III (2010-11): In third phase OAN project is proposed to be commenced in 198 cities. Sufficient fiber structure shall be laid in all these cities for commencing FTTH service. The total target of FTTH deployment in third phase will be approximately 7.5 lakhs. The customer base on FTTH upto March-2011 shall be 20 lakhs (200 million). © BHARAT SANCHAR NIGAM LIMITED FLAVORS OF PON Broadband PON Ethernet PON (EPON) / Gigabit Ethernet PON (GEPON) Gigabit PON (GPON) © BHARAT SANCHAR NIGAM LIMITED © BHARAT SANCHAR NIGAM LIMITED © BHARAT SANCHAR NIGAM LIMITED © BHARAT SANCHAR NIGAM LIMITED GEPON based Next Generation Play Networks Planning: The GEPON network do not support the redundancy so only single fiber and single input splitters are planned. There are 20 PON ports per GEPON chassis and each chassis is capable to cater 32X20=640 customers. There are only 1:2, 1:4, 1:8. 1:16 and 1:32 splitters. 1:32 split architecture shall be used in the highly dense locations and multistoried buildings. © BHARAT SANCHAR NIGAM LIMITED PLANNING GUIDELINES Out Door Network (ODN) planning & fiber planning for GPON The OAN to be planned in all broadband cities by deploying high count Optical Fiber cables. The minimum fiber count to be deployed in these cities will be 96Fibers or 288Fibers and above in main routes and 24Fiber/12Fiber cables for the buildings.
Recommended publications
  • Break-Out Sessions
    Break -out Sessions Abstracts APPLICATIONS HALL Applications Software Group Portfolio Enterprises and carriers have similar software needs. Enterprises seek software applications that help them provide innovative service to their customers. Carriers seek software applications that help them create innovative, profitable products to sell to consumers. In both cases, the service or product must be delivered across multiple devices and channels. This session will highlight the Application Software Group portfolio positioning, the benefits for customers looking at portfolio solutions and also highlight a few cross portfolio use cases such as Customer Experience Management. Jessica Stanley-Yurkovic, Vice-President, North American Marketing Maximize Customer Experience and Accelerate Business Transactions Using Open APIs End users expect the type of rapid application innovation known from the Internet. Leading network services providers have recognized that they need to work together with innovative third party application developers and create a win-win situation for both parties. The key to this is application enablement. By utilizing network assets, developers can create a more seamless service experience for end users and can help businesses close transactions with their customers more effectively. This session will describe the open API program of the Alcatel-Lucent Application Software Group. The program is designed to help our customers turn their network assets into valuable enablers for maximizing the end-user experience. Sandip Mukerjee, Senior Vice President, Marketing, Applications Software Group Enriched Unified IP Communications for the Web 2.0 Generation Your boss likes to get text messages. Your father always has his mobile phone close by. Your mother prefers to talk on the phone.
    [Show full text]
  • Huawei HCIA-Iot V. 2.5 Evaluation Questions Michel Bakni
    Huawei HCIA-IoT v. 2.5 Evaluation Questions Michel Bakni To cite this version: Michel Bakni. Huawei HCIA-IoT v. 2.5 Evaluation Questions. Engineering school. Huawei HCIA-IoT v. 2.5, Bidart, France. 2021, pp.77. hal-03189245 HAL Id: hal-03189245 https://hal.archives-ouvertes.fr/hal-03189245 Submitted on 2 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Huawei HCIA-IoT v. 2.5 Evaluation Questions March 2021 Michel BAKNI Author: Michel BAKNI Editor: Sandra HANBO Version: 1.0 , 2021 DOI: 10.6084/m9.figshare.14336687 Copyright notice This work is licensed under Creative Commons Attribution 4.0 International (CC BY 4.0) You are free to: Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms: Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
    [Show full text]
  • To View the Latest Issue of Access
    Communications Offers & Insights Januar y 2017 Building the Foundation for the Next Wireless Boom Inside View Gigabit and MDUs: The Art of STEALTH® White Paper Trevor Putrah Capturing Generation Y Wireless Concealment Meeting the Unique Solutions Page 4 ADTRAN Test Challenges of Page 12 FTTx Deployment Page 6 AFL Page 27 In This Issue This In Januar y 2017 Gigabit and MDUs: Capturing Generation Y Advertisers 6-9 2 Telect 5 CommScope 8 ADTRAN 10 Preformed Line Products (PLP) 11 Viavi 15 STEALTH® 16, 25 PREMIER 21 BlueStream 23 Comtrend 26 AFL 42 APC | Schneider Electric 43 3M Inside View Features Page 6-9 Gigabit and MDUs: Capturing Generation Y - Michael Sumitra, Strategic Solutions Marketing Manager, ADTRAN 4 ® 12-14 The Art of STEALTH - STEALTH® 17 Filling the Gaps of the Ever-expanding Communications Network Ordering Guide - PREMIER 18-20 Communication Trends 2020 Pages - BlueStream 22 AT&T’s Golden Boy 40-41 27-39 White Paper Meeting the Unique Test Challenges of FTTx Deployment - AFL Upcoming Events Pages , 24 12 17 18 42, © 2017 KGP Logistics All rights reserved. The name PREMIER and the PREMIER logo are trademarks of KGP Logistics. All other marks are property of their respective owners. 44 ACCESS | January 2017 3 INSIDE VIEW Customers, Suppliers, Colleagues and Friends: I hope your 2017 is off to a strong and healthy start. With the pace of change today across our industry, there is no shortage of initiatives to work on, changes to initiate and investments to make. KGP Companies has grown and evolved to the company it is today through more than forty years of organic investment and growth, along with a collection of targeted acquisitions, while always anchored by the uncom- promised core values embedded in the very essence of who we are by our founders.
    [Show full text]
  • Fibre-Optics: 21St Century Communication Backbone
    SECTOR FOCUS COMMUNICATION INFRASTRUCTURE Fibre-optics: 21st century communication backbone The growing need for fast broadband ‘connectivity’ in society and the economy requires a reliable, affordable, and scalable state-of-the art communications infrastructure network. To accommodate this, considerable investments are needed to expand and upgrade today’s communication infrastructure network. This opens up an attractive new asset class for institutional investors: passive telecommunications infrastructure assets – such as fixed-line cabling, communication towers and data centers. These assets have lifecycles and utility-like characteristics with long investment horizons and can offer modest but reliable cash returns to institutional investors, backed by long-term lease contracts with telecom operators. Moreover, by introducing private capital to the world of communication infrastructure, institutional investors can play a vital role in the development of the ‘digital economy’, thus delivering important economic and social benefits. SECTOR FOCUS COMMUNICATION INFRASTRUCTURE 2016 However, investing in cable infrastructure nowadays effectively means putting one’s money on one specific infrastructure asset: fiber-optics. That might seem a risky thing to do in an era of fast technological change and ‘disruption’, even if the exposure to technological developments is limited for institutional investors because they would not be investing in the telecom operators themselves. Can institutional investors invest in passive telecommunication infrastructure in the confidence that fiber-optic assets have the ‘longevity’ that not only provides investors with an attractive cash return during the lease term, but also maintains or even grows long-term capital value? Bouwfonds IM explains in this report that such confidence would be justified: fiber-optic technology has matured over the past two decades and is expected to provide the backbone for global telecommunications for most of this century, if not beyond.
    [Show full text]
  • Broadband – the World’S Newest Public Utility
    City of New Orleans Broadband – the World’s Newest Public Utility Making the Case for Public Sector Involvement in Expanding Broadband Access Author - Jennifer Terry December 9, 2014 1 2 Acknowledgments This report was prepared for the City of New Orleans under the auspices of the US Department of Housing and Urban Development’s Strong Cities, Strong Communities (SC2) Fellowship program. During my two-year fellowship, I worked with staff in the City’s Department of Information Technology and Innovation to develop a long-term Broadband Master Plan for the City. Pursuant to that project, I conducted research into the importance of broadband, reasons why people lack broadband access, and possible strategies to help bring broadband to people who currently do not have it. This report, along with the companion report, “Broadband Around the World: Best Practices and Lessons Learned from Other Jurisdictions,” documents the research findings. I would like to thank my colleagues at the City of New Orleans for their assistance during this process. The people who selflessly shared relevant information and willingly served as sounding boards for ideas are too numerous to name. I also want to thank the SC2 Fellowship Management team for their assistance in framing the research and for keeping me on task to completion. Sincerely, Jennifer 3 4 Foreword As of August 29, 2013, in one second on the internet, there were approximately 200 Reddit votes casted, 500 Instagram photos uploaded, 900 Tumblr posts posted, 1,050 Skype calls connected, 5,000 tweets tweeted, 10,000 files uploaded to Dropbox, 30,000 Google searches, 55,000 YouTube videos viewed and Facebook likes, and multiple billions of emails written and sent.1 Undoubtedly, these numbers are horribly out of date as you read this document.
    [Show full text]
  • FIBER to the X (Fttx) NEXT GENERATION NETWORK ACCESS Fttx / PON
    FIBER TO THE X (FTTx) NEXT GENERATION NETWORK ACCESS FTTx / PON Optimized Solutions for Next Generation Passive Optical Network Challenges Increased bandwidth demand is driving Passive Optical Network (PON) upgrades globally. Where there is existing PON infrastructure, providers are extending the life of the existing PON network by an upgrading or adding to an existing network. These so-called “brownfield deployments” of new PON infrastructure will require new optical devices in order to leverage the existing Passive Optical Network and allow coexistence (CEx) of different generations of PON. Since Optical Network Terminations (ONT) could now receive multiple wavelengths, a blocking filter (WBF) may become necessary to avoid interference issues. In the case of NGPON-2 deployments, a solution for muxing and demuxing wavelengths at the Optical Line Termination (OLT) is required as well. Molex integrates its optical expertise with a strong capability in mechanical design, software develop- ment, electronic integration and supply chain management to deliver market-leading solutions and services. We have a long track record of providing many of the highest performing, field-proven wave- length management products in the market. We deliver end-to-end solutions for the optical infra- structure of next-generation networks. Molex can provide technically optimized solutions for the new PON challenges • Manufacturer with 3,000-employee factory making WDMs from filter/subcomponent level • Manufacturing excellence with more than 20 years’ track record
    [Show full text]
  • Comparing the Docsis® 3.1 and Hfc Evolution to the Ftth Revolution
    COMPARING THE DOCSIS® 3.1 AND HFC EVOLUTION TO THE FTTH REVOLUTION A TECHNICAL PAPER PREPARED FOR THE SOCIETY OF CABLE TELECOMMUNICATIONS ENGINEERS BY: MICHAEL EMMENDORFER TABLE OF CONTENTS INTRODUCTION .............................................................................................. 4 WIRELINE NETWORK OVERVIEW ................................................................... 4 Fiber to the Node (FTTN) with Twisted Pair Copper xDSL / G.fast ................................. 6 VDSL2 Solution ................................................................................................................ 6 G.fast Solution ................................................................................................................. 7 Coax to the Home (CTTH) using HFC and DOCSIS ........................................................... 8 Overview of PON Terms and Technologies ................................................................... 10 FSAN/ITU‐T GPON Family ......................................................................................... 11 IEEE EPON Family ...................................................................................................... 12 SCTE IPS910 RFoG (RF over Glass) ............................................................................ 13 Hybrid Passive Optical Network (HPON) .................................................................. 15 TELCO WIRELINE ACCESS NETWORK EVOLUTION ........................................ 17 AT&T U‐verse® Fiber to the Node with VDSL2
    [Show full text]
  • Implementing Anti-Theft Systems for ATM and Vehicles Mahalakshmi H1, Nikhitha J2, Varsha B3 1
    Perspectives in Communication, Embedded-Systems and Signal-Processing (PiCES) ISSN: 2566-932X, Vol. 1, Issue 12, March 2018 Implementing Anti-theft Systems for ATM and Vehicles Mahalakshmi H1, Nikhitha J2, Varsha B3 1. ECE, Atria institute of technology, Bangalore, India, [email protected] 2. ECE, Atria institute of technology, Bangalore, India, [email protected] 3. ECE, Atria institute of technology, Bangalore, India, [email protected] Abstract: Anti-theft technology can be implemented on conditioners, UPS, light bulbs, security camera and light many systems such as ATM, automobiles, mobiles etc. collection boards. The assets and security is managed In ATM security we use silent indicate systems, manually so it shrinks the gross margin of ATM integrated video surveillance cameras, etc. which are operators. Therefore they are looking for a more reliable all implemented with help of M2M communication source to maintain ATMs. technologies. M2M needs new system architecture so The main aim of the Anti-theft ATM security is to we implement a low cost embedded web server based provide protection against physical and electronic on ARM11 processor and Linux operating system thieving. This is achieved by using M2M using Raspberry Pi. It has modules such as web communication technology which is abbreviation for enabled control, sensors, shutter lock and camera Machine-to-Machine. It provides no human intervention control. Anti-theft in vehicles can be implemented and provides a real time monitoring control. M2M using GSM and GPS or Bluetooth technologies. In architecture needs a new system architecture which is GSM and GPS we install a tracking system and implemented using an Embedded Web Server (EWS) fingerprint verification.
    [Show full text]
  • Datacenter & Telecom
    IPSR-I MARKET DRIVERS DATACENTER & TELECOM Contents Executive Summary .............................................................................................................................................. 1 Market Potential .................................................................................................................................................... 2 Applications ........................................................................................................................................................ 11 CATV and Radio .................................................................................................................................... 12 RF Analog applications .......................................................................................................................... 12 Active optical cable (AOC) .................................................................................................................... 14 Fibre to the X (FTTX) ............................................................................................................................ 17 5G front-haul and back-haul ................................................................................................................... 19 Optical wireless (Li-Fi) ........................................................................................................................... 24 Undersea and long haul photonic components ......................................................................................
    [Show full text]
  • Evaluation of Fttx Access Network Migration for IPTV Services Yekta Turk1 Engin Zeydan2 1 Ericsson Research, Istanbul, Turkey, 34396
    Evaluation of FTTx Access Network Migration for IPTV Services Yekta Turk1 Engin Zeydan2 1 Ericsson Research, Istanbul, Turkey, 34396. E-mail: [email protected] 2 Centre Technologic de Telecomunicacions de Catalunya, Castelldefels, Barcelona, Spain, 08860. Email: [email protected] Abstract—Fixed network operators (FNOs) are seeking to upgrade their existing infrastructure with better investment strategies. For this reason, migration of the existing technolo- gies into new and high income generating technologies is of paramount importance for FNOs. However, even though the end- users have the infrastructure support to receive better services such as HD IPTV, FNOs are not willing to upgrade the status of their existing services to end-users most of the time due to possibility of service disruptions. In this paper, we study a case study and propose Fiber-to-the-X (FTTX) migration strategy where subscribers with ADSL2+ connectivity can be migrated to VDSL2 technology via the proposed methodology that analyses the real operator data and acts based on the proposed criteria. Fig. 1: Comparison of the theoretic performances of VDSL2 After proposed mitigation study studied in this paper, HD IPTV service has been successfully offered to the end-users that have and ADSL2+ changing with distance [2]. the potential to have upgraded services thanks to their potential infrastructure capabilities. Index Terms—network planning, IPTV, FTTx, broadband, down. As the distance increases more, the VDSL signal is services. getting weaker quickly, while the ADSL signal cannot reach to further distances. However, the theoretical study of Fig. 1 is not well reflecting the numerical results in practice.
    [Show full text]
  • Ciena Telecom Glossary.Pdf
    Telecom Glossary edited by Erin Malone Chris Janson 1st edition Publisher Acknowledgement: This is the first edition of this book. Please notify us of any acronyms we may have missed by submitting them via the form at www.ciena.com/glossary. We will be happy to in- clude them in further editions of “The Acronyms Guide”. For additional information on Ciena’s Carrier Ethernet or Optical Communications Certification programs please contact [email protected]. Table of Contents A .......................................1 B .......................................2 C .......................................3 D .......................................5 E .......................................6 F........................................6 G .......................................7 H .......................................8 I .........................................8 J ........................................9 K .......................................9 L ........................................9 M ....................................10 N .....................................11 O.....................................12 P .....................................13 Q.....................................14 R .....................................15 S......................................16 T .....................................17 U .....................................18 V .....................................18 W ....................................19 X .....................................19 A Add/Drop Allows optical wavelengths to be added or dropped at
    [Show full text]
  • 5G Implementation Guidelines
    5G Implementation Guidelines July 2019 2 Overview Introduction Acknowledgements 5G is becoming a reality as early adopters Special thanks to the following GSMA have already commercialized data-oriented 5G Checklist for Non-Standalone 5G Deployment networks in 2018 and are planning to launch taskforce members for their contribution and consumer mobile 5G in 2019 and beyond. review of this document: Whilst early adopters do not necessarily AT&T Mobility require guidance, there are still majority of the EE Limited operator community that are yet to launch Ericsson commercial 5G services. This document Huawei Technologies Co. Ltd. intends to provide a checklist for operators that are planning to launch 5G networks in NSA Hutchison 3G UK Limited (non-standalone) Option 3 configuration. KDDI LG Electronics Inc. MediaTek Inc. Scope Nokia This document provides technological, NTT DOCOMO spectrum and regulatory considerations in the Softbank Corp. deployment. Syniverse Technologies, Inc. Telecom Italia SpA This version of the document currently Telefónica S.A. provides detailed guidelines for implementation Telia Finland Oyj of 5G using Option 3, reflecting the initial United States Cellular Corporation launch strategy being adopted by multiple operators. However, as described in “GSMA Utimaco TS GmbH Operator Requirements for 5G Core Verizon Wireless Connectivity Options” there is a need for the Vodafone Group industry ecosystem to support all of the 5G ZTE Corporation core connectivity options (namely Option 2, Option 4, Option 5 and Option 7) in addition to Abbreviations Option 3. As a result, this document will be updated during 2019 to provide guidelines for Term Description all 5G deployment options.
    [Show full text]