Field Effect Transistors Based on Semiconductive Microbially Synthesized Chalcogenide Nanofibers ⇑ Ian R

Total Page:16

File Type:pdf, Size:1020Kb

Field Effect Transistors Based on Semiconductive Microbially Synthesized Chalcogenide Nanofibers ⇑ Ian R Acta Biomaterialia 13 (2015) 364–373 Contents lists available at ScienceDirect Acta Biomaterialia journal homepage: www.elsevier.com/locate/actabiomat Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers ⇑ Ian R. McFarlane a, Julia R. Lazzari-Dean b, Mohamed Y. El-Naggar a,c, a Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Seaver Science Center 215C, Los Angeles, CA 90089-0484, USA b Department of Chemistry, University of Southern California, Los Angeles, CA 90089-0484, USA c Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-0484, USA article info abstract Article history: Microbial redox activity offers a potentially transformative approach to the low-temperature synthesis of Received 27 June 2014 nanostructured inorganic materials. Diverse strains of the dissimilatory metal-reducing bacteria Received in revised form 3 October 2014 Shewanella are known to produce photoactive filamentous arsenic sulfide nanomaterials by reducing Accepted 4 November 2014 arsenate and thiosulfate in anaerobic culture conditions. Here we report in situ microscopic observations Available online 11 November 2014 and measure the thermally activated (79 kJ molÀ1) precipitation kinetics of high yield (504 mg per liter of culture, 82% of theoretical maximum) extracellular As2S3 nanofibers produced by Shewanella sp. strain Keywords: ANA-3, and demonstrate their potential in functional devices by constructing field effect transistors Shewanella (FETs) based on individual nanofibers. The use of strain ANA-3, which possesses both respiratory and Arsenic sulfide Nanostructures detoxification arsenic reductases, resulted in significantly faster nanofiber synthesis than other strains Field effect transistor previously tested, mutants of ANA-3 deficient in arsenic reduction, and when compared to abiotic arsenic 2 Biogenic materials sulfide precipitation from As(III) and S À. Detailed characterization by electron microscopy, energy-dis- persive X-ray spectroscopy, electron probe microanalysis and Tauc analysis of UV-vis spectrophotometry showed the biogenic precipitate to consist primarily of amorphous As2S3 nanofibers with an indirect optical band gap of 2.37 eV. X-ray diffraction also revealed the presence of crystalline As8S9-x minerals that, until recently, were thought to form only at higher temperatures and under hydrothermal condi- tions. The nanoscale FETs enabled a detailed characterization of the charge mobility (10À5 cm2 VÀ1 sÀ1) and gating behavior of the heterogeneously doped nanofibers. These studies indicate that the biotrans- formation of metalloids and chalcogens by bacteria enables fast, efficient, sustainable synthesis of technologically relevant chalcogenides for potential electronic and optoelectronic applications. Ó 2014 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC- ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction biominerals, especially carbonates and phosphates, the last decade has also witnessed additional interest in exploiting biological, The synthesis of nanomaterials by biological or biomimetic especially microbial, strategies for producing a wider range of syn- means in physiological conditions offers multiple advantages over thetic materials with technologically relevant mechanical, optical, traditional physical and chemical strategies that typically require electronic and magnetic functionalities [2–4]. Towards this goal, more extreme environments (temperature, pressure and pH). In recent reports [5–7] demonstrated the synthesis of extracellular addition to the promise of cheaper and greener synthesis pro- chalcogenide nanostructures with unique optoelectronic proper- cesses, the resulting biogenic materials can exhibit unique mor- ties using a bacterial process relying on anaerobic respiration and phologies and physical/chemical properties stemming from the detoxification activities to alter the oxidation states of the metal, tight control organisms exert over the composition, nucleation, metalloid and chalcogen precursors. crystallography and desired function of these materials [1]. While Chalcogenide compounds, resulting from the reaction of group significant attention has been dedicated to understanding the syn- VI elements (particularly S, Se and Te) with more electropositive thesis and structure–function relations of the most abundant elements (e.g. As, Sb, Si, Ge, Zn, Cd), represent an intriguing target for biogenic synthesis. Chalcogenides have been described as ‘‘cha- ⇑ Corresponding author at: Department of Physics and Astronomy, University of meleon’’ compounds because of their remarkable versatility: Southern California, 920 Bloom Walk, Seaver Science Center 215C, Los Angeles, CA depending on composition and synthesis techniques they may be 90089-0484, USA. Tel.: +1 (213) 740 2394; fax: +1 (213) 740 6653. crystalline, glassy, metallic, semiconductive or ionic conductors E-mail address: [email protected] (M.Y. El-Naggar). http://dx.doi.org/10.1016/j.actbio.2014.11.005 1742-7061/Ó 2014 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). I.R. McFarlane et al. / Acta Biomaterialia 13 (2015) 364–373 365 [8]. This versatility leads to a wide range of tunable functionalities with an ATPase subunit, ArsA, to drive As(III) efflux using ATP in various components including sensors, waveguides, photonic hydrolysis. In contrast, the arr pathway has only been recently crystals [9] and photoactive devices [10–12]. Chalcogenide glasses described [18,21].ThearrAB operon of strain ANA-3 encodes a are already commercially important in write-once and rewritable large Mo-containing enzyme, ArrA, and an Fe–S protein, ArrB. optical storage disks as well as phase-change memory relying on Both ArrA and ArrB are required for respiratory reduction of amorphous–crystalline transformations [8]. Some members of this As(V) [18,19]. The use of strain ANA-3 resulted in significantly family (e.g. As2S3) are infrared-transparent (700 nm–11.5 lm) and more rapid precipitation of As–S nanofibers than previously are therefore candidate materials for applications in infrared reported under similar conditions. Furthermore, we demonstrate devices [9,13]. From an energy conversion standpoint, chalcoge- novel field-effect transistors (FETs) based on single biogenic nides have been intensively investigated as photovoltaic materials nanofibers, and study their charge mobility and switching behav- for solar cells [12]. In addition, AsxSy and AsxSey glasses have been ior as a function of backgating to identify the doping type and reported to exhibit an optomechanical effect [10,11] for direct majority charge carriers in these semiconductors. light-to-mechanical energy conversion when irradiated with polar- ized light matching the band gap energy. This phenomenon has 2. Materials and methods been exploited to generate mechanical strain, resulting in all-opti- cal (electricity-free) actuation of chalcogenide-coated cantilevers 2.1. Bacterial growth [10]. Further interest in unique and tunable size-dependent prop- erties has motivated the development of quasi-one-dimensional A list of the bacterial strains and mutants used in this study is (nanotube and nanowire) chalcogenides. The majority of these provided in Table 1. The inocula were grown aerobically in 20 ml efforts, however, focus on physical and chemical synthesis tech- of LB medium from a frozen (À80 °C) stock up to an optical density niques requiring templates, precursors, and hydro- or solvothermal at 600 nm (OD ) of 1.5 ± 0.15. These aerobic pre-cultures were methods, typically under relatively extreme conditions [14]. 600 inoculated at 0.1% (v/v) into anaerobic serum bottles each contain- More recently, Hur et al. reported a microbiological route for ing 80 mL HEPES-buffered (30 mM) medium consisting of: 20 mM synthesizing chalcogenide nanostructures by exploiting dissimila- sodium DL-lactate, as electron donor; 28 mM ammonium chloride; tory metal-reducing bacteria, specifically a number of Shewanella 1.34 mM potassium chloride; 4.35 mM sodium phosphate species, to produce an extracellular network of filamentous arsenic monobasic; 20 mM sodium hydroxide; 10 mM thiosulfate, as sulfide nanofibers/nanotubes in anaerobic culture conditions [5,6]. Na S O Á5H O; and 5 mM arsenate, as Na HAsO Á7H O. Vitamins, This process relies on the remarkable metabolic versatility of 2 2 3 2 2 4 2 amino acids and trace mineral stock solutions were used to Shewanella [15,16] to concomitantly reduce S O2À to S2À and 2 3 supplement the medium as described previously [22]. The medium As(V) to As(III). In this system, the thiosulfate S O2À serves as a ter- 2 3 was adjusted to an initial pH of 7.25, and anaerobic conditions were minal electron acceptor for respiration in lieu of O under anaero- 2 reached by purging with 100% N for in excess of 45 min. The bic conditions, resulting in S2À, while arsenate reduction is thought 2 anaerobic serum bottles, sealed with butyl stoppers and aluminum to occur via As reductases tied to either the respiration or detoxi- seals, were sterilized by autoclaving at 120 °C for 15 min. Arsenate, fication pathways of Shewanella. Rather surprisingly, it was thiosulfate and vitamins were added after autoclaving. All cultures reported that the resulting amorphous
Recommended publications
  • Theoretical Studies on As and Sb Sulfide Molecules
    Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Theoretical studies on As and Sb sulfide molecules J. A. TOSSELL Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742, U.S.A. Abstract-Dimorphite (As4S3) and realgar and pararealgar (As4S4) occur as crystalline solids con- taining As4S3 and As4S4 molecules, respectively. Crystalline As2S3 (orpiment) has a layered structure composed of rings of AsS3 triangles, rather than one composed of discrete As4S6 molecules. When orpiment dissolves in concentrated sulfidic solutions the species produced, as characterized by IR and EXAFS, are mononuclear, e.g. ASS3H21, but solubility studies suggest trimeric species in some concentration regimes. Of the antimony sulfides only Sb2S3 (stibnite) has been characterized and its crystal structure does not contain Sb4S6 molecular units. We have used molecular quantum mechanical techniques to calculate the structures, stabilities, vibrational spectra and other properties of As S , 4 3 As4S4, As4S6, As4SIO, Sb4S3, Sb4S4, Sb4S6 and Sb4SlO (as well as S8 and P4S3, for comparison with previous calculations). The calculated structures and vibrational spectra are in good agreement with experiment (after scaling the vibrational frequencies by the standard correction factor of 0.893 for polarized split valence Hartree-Fock self-consistent-field calculations). The calculated geometry of the As4S. isomer recently characterized in pararealgar crystals also agrees well with experiment and is calculated to be about 2.9 kcal/mole less stable than the As4S4 isomer found in realgar. The calculated heats of formation of the arsenic sulfide gas-phase molecules, compared to the elemental cluster molecules As., Sb, and S8, are smaller than the experimental heats of formation for the solid arsenic sulfides, but shown the same trend with oxidation state.
    [Show full text]
  • Effect of Size and Processing Method on the Cytotoxicity of Realgar Nanoparticles in Cancer Cell Lines
    International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines Weizhong Zhao1 Abstract: In this study, the effects of the size and Chinese traditional processing (including Xun Lu3 elutriation, water cleaning, acid cleaning, alkali cleaning) on realgar nanoparticles (RN)-induced Yuan Yuan1 antitumor activity in human osteosarcoma cell lines (MG-63) and hepatoma carcinoma cell lines Changsheng Liu1 (HepG-2) were investigated. The human normal liver cell line (L-02) was used as control. RN Baican Yang3 was prepared by high-energy ball milling technology. The results showed that with the assistance Hua Hong1 of sodium dodecyl sulfate, the size of realgar could be reduced to 127 nm after 12 hours’ ball milling. The surface charge was decreased from 0.83 eV to -17.85 eV and the content of As O Guoying Wang3 2 3 clearly increased. Except for elutriation, the processing methods did not clearly change the size Fanyan Zeng2 of the RN, but the content of As2O3 was reduced dramatically. In vitro MTT tests indicated that 1The State Key Laboratory in the two cancer cell lines, RN cytotoxicity was more intense than that of the coarse realgar of Bioreactor Engineering, 2Key Laboratory for Ultrafine nanoparticles, and cytotoxicity was typically time- and concentration-dependent. Also, RN Materials of Ministry of Education cytotoxicities in the HepG-2 and L-02 cells all increased with increasing milling time. Due to and Engineering Research Center the reduction of the As O content, water cleaning, acid cleaning, and alkali cleaning decreased for Biomedical Materials of Ministry 2 3 of Education, East China University RN cytotoxicity in HepG-2, but RN after elutriation, with the lowest As2O3 (3.5 mg/g) and the of Science and Technology, 3Pharmacy smallest size (109.3 nm), showed comparable cytotoxicity in HepG-2 to RN without treatment.
    [Show full text]
  • Ralphcannonite, Agzn2tlas2s6, a New Mineral of the Routhierite
    1 1 Ralphcannonite, AgZn2TlAs2S6, a new mineral of the 2 routhierite isotypic series from Lengenbach, Binn 3 Valley, Switzerland 4 1* 2 3 5 LUCA BINDI , CRISTIAN BIAGIONI , THOMAS RABER , PHILIPPE 4 5 6 ROTH , FABRIZIO NESTOLA 7 8 9 10 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I- 11 50121 Firenze, Italy 12 2 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, 13 Italy 14 3 FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, 15 Germany 16 4 FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland 17 5 Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy 18 19 20 21 22 *e-mail address: [email protected] 23 2 24 ABSTRACT 25 The new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach 26 quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to 27 prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar, and baryte. 28 Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 29 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe 30 analyses give (wt%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 31 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71).
    [Show full text]
  • Amorphous Arsenic Chalcogenide Films Modified Using Rare-Earth
    ARTICLE IN PRESS Journal of Non-Crystalline Solids xxx (2006) xxx–xxx www.elsevier.com/locate/jnoncrysol Amorphous arsenic chalcogenide films modified using rare-earth complexes S.A. Kozyukhin a,*, E.N. Voronkov b, N.P. Kuz’mina c a Department of Magnetic Materials, Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninskii Pr., 31, Moscow 119991, Russia b Moscow Power Engineering Institute (Technical University), Moscow, 111250, Russia c Department of Chemistry, Moscow State University, Moscow, 119899, Russia Abstract The optical absorption and current–voltage characteristic of amorphous arsenic chalcogenide As2X3 (X = S, Se) films modified by rare-earth complexes with organic mixed-ligands have been studied. The following two types of complexes were used: europium dipiva- loylmethanate Eu(thd)3 and lanthanide diethyldithiocarbamates Ln(ddtc)3 (Ln = Pr, Eu). It was shown that the use of rare-earth mixed- complexes with similar volatility to the chalcogenide volatility permits the deposition of amorphous films by thermal evaporation. The decrease in absorption coefficient at the Urbach’s edge after introduction of the europium dipivaloylmethanate complexes containing oxygen in arsenic selenide has been revealed. The type of organic ligands, incorporated in the amorphous matrix, determines the shape of current–voltage characteristic. The observed results have been discussed on the basis of the different rigidity of the structure of amor- phous arsenic chalcogenides. Ó 2006 Elsevier B.V. All rights reserved. PACS: 73.61.Jc; 78.66.Jg Keywords: Electrical and electronic properties; Conductivity; Films and coatings; Chemical vapor deposition; Infrared glasses; Chalcogenides; Optical properties; Absorption; Rare-earths in glasses 1. Introduction e.g.
    [Show full text]
  • Characterization and Comparative Physico-Chemical Studies Of
    RESEARCH COMMUNICATIONS 19. Peng, L. and Yu, B., Numerical study of regional environmental Characterization and comparative carrying capacity for livestock and poultry farming based on planting-breeding balance. J. Environ. Sci., 2013, 25(9), 1882– physico-chemical studies of 1889. 20. State Environmental Protection Administration, Investigation and Manahshila (traditionally used arsenic Control Counter Measures of Pollution Situation of Livestock and mineral) and the corresponding Poultry Breeding Industry in China, China Environmental Science Press, Beijing, 2002, pp. 14–103. polymorphs of realgar (As4S4) 21. Peng, L. and Wang, D., Estimation of annual quantity of total excretion from livestock and poultry in Chongqing municipality. 1, 2 Trans. Chin. Soc. Agric. Eng., 2004, 20(1), 288–292. Vinamra Sharma *, Amiya K. Samal , 22. Yan, B. J. and Pan, Y. C., Estimation of nitrogen pollution load of Anand K. Chaudhary1 and Rajesh K. Srivastava2 farmland from livestock manure in China based on grid. Bull. Soil 1Department of Rasa Shastra, Faculty of Ayurveda, Water Conserv., 2015, 35(5), 133–137. Institute of Medical Sciences, and 23. Yan, B. J., Zhao, C. J., Pan, Y. C. and Wang, Y., Estimation of the 2Centre of Advanced Study in Geology, Institute of Science, amount of livestock manure and its environmental influence of Banaras Hindu University, Varanasi 221 005, India large-scaled culture based on spatial information. China Environ. Sci., 2009, 29(7), 733–737. 24. Yan, B. J., Zhao, C. J., Pan, Y. C., Yan, J. J. and Guo, X., Estima- This communication presents characterization and tion of livestock manure nitrogen load and pollution risk evalua- comparison of the physico-chemical properties of dif- tion of farmland in Daxing District.
    [Show full text]
  • The Evaluation of Waste Minimization/Waste
    36 THEEVALUATIONOFWASTEMINIMIZATION/WASTE TREATMENTSTRATEGIESFORACOMMERCIAL PRODUCTIONPROCESSOF4-METHYL-3- THIOSEMICARBAZIDE by WILROYBENNEN BachelorDegree HogeschoolDrenthe(TheNetherlands) Adissertationsubmittedinpartialfulfilment oftherequirementsforthedegreeof MASTERTECHNOLOGIAE inthefacultyofAppliedScienceatthe PORTELIZABETHTECHNIKON January2002 Promotor : ProfB.Zeelie CORE Metadata, citation and similar papers at core.ac.uk Co-promotor : MrG.Rubidge Provided by South East Academic Libraries System (SEALS) 37 H i n g s t a k k e r s 4 4 9 4 1 1 N P B e i l e n T h e N e t h e r l a n d s T h e F a c u l t y C o m m i t t e e F a c u l t y o f A p p l i e d S c i e n c e P E T e c h n i k o n P r i v a t e B a g X 6 0 1 1 P o r t E l i z a b e t h 6 0 0 0 D e a r S i r / M a d a m ¢¡¤£¦¥¨§ © ¡¤¡¥¨¡¤¥¨¡¤©£©¤£¦© ¨ I h e r e b y c o n f i r m t h a t t h e p r o p o s e d a m e n d m e n t s h a v e b e e n m a d e t o m y d i s s e r t a t i o n i n c o m p l i a n c e w i t h t h e r u l e s s e t o u t b y t h e P E T e c h n i k o n E x a m i n a t i o n D e p a r t m e n t a n d F a c u l t y C o m m i t t e e .
    [Show full text]
  • Minerals in a Computer
    MINERALS IN TYPICAL COMPUTERS Computer Component Element/Compound Mineral Source of Element Monitor Phosphorescent Coating - Transition Metals: ZnS - Zinc Sulfide Zn, S Sulfur, Hemmimorphite, Zincite Smithsonite, Franklenite Ag - Silver Ag Ag, Pyrargyrite, Cerargyrite Cl - Chlorine Cl Halite Al - Aluminum Al Bauxite Cu - Copper Cu Chalcopyrite, Boronite, Enargite, Cuprite, Malachite, Azurite, Chrysocolla, Chalcocite Au - Gold Au Gold Y2O2S - Yittrium Sulfate Y Eu - Europium Eu (KF, MgF2): Mn Potasium-Magnesium Floride: K, F, Mg, Mn Alunite, Orthoclase, Nephelite, Leucite, Manganese Apophullite; Flourite, Cryolite, Vesuvianite; Lepidolite: Dolomite, Magnesite, Espomite, Spinel, Olivine, Pyrope, Biotite, Talc (Zn,Cd)S - Zinc Cadmium Sulfate Cd Zn2SiO4:O4: Mn, As - ZincSilicate, Manganese, Arsenic As Realgar, Orpiment, Niccolite, Cobalite, Arsenopyrite, Tetrahedrite Gd2O2S: Tb - Gadolinium Sulfate: Tebrium Gd, Tb Y2SiO12:Ce - Yitrium Silicate: Cerium Ce Monzanite, Orthite CRT Glass: Pb - Lead Pb Galena, Cerussite, Anglesite, Pyromorphite SiO2 Si Quartz Plastic Case, Keyboard Thermoplastic - Polypropylene, PVC CaCO2 - additive Ca Calcite, Gypsum, Apatite, Aragonite TiO2 - White Pigment Ti Rutile, Ilmenite, Titanite Amonium Polyphosphate P Apetite, Pyromorphite, Wavellite __________________________________________________________________________________________________________ National Mining Association - 101 Constitution Ave. NW Suite 500 East - Washington, DC 20001 - Phone (202) 463-2600 - Fax (202) 463-2666 Liquid Crystal Display (LCD)
    [Show full text]
  • The Koman Dawsonite and Realgar–Orpiment Deposit, Northern Albania
    413 The Canadian Mineralogist Vol. 41, pp. 413-427 (2003) THE KOMAN DAWSONITE AND REALGAR–ORPIMENT DEPOSIT, NORTHERN ALBANIA: INFERENCES ON PROCESSES OF FORMATION VINCENZO FERRINI§ Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, P.le A. Moro, 5, I–00185 Roma, Italy LUCIO MARTARELLI Centro di Studio per gli Equilibri Sperimentali in Minerali e Rocce del C.N.R., P.le A. Moro, 5, I–00185 Roma, Italy CATERINA DE VITO Dipartimento di Scienze della Terra, Università degli Studi di Roma “La Sapienza”, P.le A. Moro, 5, I–00185 Roma, Italy ALEKSANDER ÇINA AND TONIN DEDA Geological Survey of Albania, Rruga Vasil Shanto, Tirana, Albania ABSTRACT The deposit of dawsonite and realgar–orpiment in the Koman area, northern Albania, is aligned along the NE–SW-trending tectonic line joining the Krasta–Cukal and Mirdita structural-tectonic zones. The deposit contains the following main paragenetic assemblages: i) marcasite – greigite (Fe-sulfide stage), ii) stibnite – realgar – orpiment (As–Sb-sulfide stage), iii) dolomite – calcite – dawsonite – aragonite – barite – gypsum (carbonate–sulfate stage), iv) native As – gibbsite (supergene stage). There was lithostratigraphic control of mineralization; carbonate-rich wallrocks reacted with the mineralizing fluids emanating from a bur- ied magmatic body and migrating along Albanian transversal faults, rather than argillaceous lithotypes. Values of ␦18O and ␦13C indicate that dawsonite and hydrothermal dolomite are derived at the expense of carbonate rocks, which occur extensively in the stratigraphic sequence of the host rocks. The water:rock ratio during the carbonate–sulfate stage of deposition was probably small. Moreover, oxygen and carbon isotopic exchange during metasomatic transformation of the rocks, recrystallization and late involvement of groundwater, probably all occurred.
    [Show full text]
  • 1 Title Page Mineral Arsenicals in Traditional Medicines: Orpiment
    JPET Fast Forward. Published on May 7, 2008 as DOI: 10.1124/jpet.108.139543 JPETThis Fast article Forward. has not been Published copyedited and on formatted. May 7, The 2008 final as version DOI:10.1124/jpet.108.139543 may differ from this version. JPET #139543 PiP Title Page Mineral arsenicals in traditional medicines: Orpiment, realgar, and arsenolite Jie Liu*, Yuanfu Lu, Qin Wu, Robert A Goyer and Michael P. Waalkes Downloaded from Inorganic Carcinogenesis Section, Laboratory of Comparative Carcinogenesis, Centers for Cancer Research, National Cancer Institute at NIEHS, Research Triangle Park, NC, USA (J.L., R.A.G, M.P.W.), Department of Pharmacology, Zunyi Medical College, China (Y.L., Q.W.) jpet.aspetjournals.org at ASPET Journals on September 30, 2021 1 Copyright 2008 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on May 7, 2008 as DOI: 10.1124/jpet.108.139543 This article has not been copyedited and formatted. The final version may differ from this version. JPET #139543 PiP Running Title Page Arsenic in traditional medicines Send correspondence to: Jie Liu, Ph.D. Inorganic Carcinogenesis Section, NCI at NIEHS Mail Drop F0-09, Research Triangle Park, NC 27709 E-mail: [email protected] Downloaded from Phone: 919-541-3951, fax: 919-541-3970 Statistics jpet.aspetjournals.org Number of text pages: 13 Number of tables: 4 Number of figures: 1 at ASPET Journals on September 30, 2021 Number of references: 40 Number of words in abstract: 247 Number of words in Introduction: 214 Abbreviations: Orpiment (As2S3), Realgar (As4S4), Arsenolite (contains arsenic trioxide, As2O3); Acute promyecytic leukemia (APL); Promyelocytic leukemia-retinoic acid receptor α (PML- RARα); Monomethylarsononous acid (MMA), Dimethylarsinic acid (DMA), Trimethylarsonic acid (TMA), sodium arsenate (As5+) , sodium arsenite (As3+).
    [Show full text]
  • 10800 Realgar
    10800 Realgar Chemical composition : As4S4 C.I. 77085, Pigment Yellow 39 Realgar is the natural orange-red sulphide of arsenic. It is closely related chemically and associated in nature with orpiment. The two minerals are often found in the same deposits. Realgar occurs as a minor constituent in certain ore veins associated with orpiment and other arsenic minerals, with stibnite, lead, gold and silver. It is found in Romania, the former Czechoslovakia, and the former Yugoslavia, Greece, Germany, Italy, Corsica and the western United States. The name is derived from the Arabic rahj al ghar, powder of the mine. The Latin term was sandarach and De Mayerne who was writing in the seventeenth-century referred to it as rubis d'orpiment. Realgar has been found on a few works by Tintoretto and from Bulgarian icons dating from the Middle Ages to the Renaissance. Realgar has also been reported on Indian sixteenth- to seventeenth-century paintings and an eleventh- to thirteenth-century manuscript from Central Asia. Realgar appears to be less permanent and is known to change to orpiment after long exposure to light. Chinese realgar figurines from the eighteenth-century had oxidized to orpiment and arsenious oxide (Daniels). The chemical and physical properties are similar to orpiment. It belongs to the same crystal system (monoclinic). Its color is orange or an orange-red by transmitted light but usually many yellow particles of orpiment can also be seen. The particles of mineral realgar are usually granular, coarse to fine and have a resinous to greasy luster. Excerpts from: Artist's Pigments Vol.3 Elisabeth West Fitzhugh (editor) and Painting Materials Rutherford J.
    [Show full text]
  • Monitoring of Mercury, Arsenic and Lead in Traditional Asian Herbal Preparations on the Dutch Market and Estimation of Associated Risks Martijn J
    Monitoring of mercury, arsenic and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks Martijn J. Martena, Jacqueline C.A. van der Wielen, Ivonne M.C.M. Rietjens, Walther N.M. Klerx, Henk de Groot, Erik J.M. Konings To cite this version: Martijn J. Martena, Jacqueline C.A. van der Wielen, Ivonne M.C.M. Rietjens, Walther N.M. Klerx, Henk de Groot, et al.. Monitoring of mercury, arsenic and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks. Food Additives and Contaminants, 2009, 27 (02), pp.190-205. 10.1080/02652030903207235. hal-00573919 HAL Id: hal-00573919 https://hal.archives-ouvertes.fr/hal-00573919 Submitted on 5 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Food Additives and Contaminants For Peer Review Only Monitoring of mercury, arsenic and lead in traditional Asian herbal preparations on the Dutch market and estimation of associated risks Journal: Food Additives and Contaminants Manuscript ID: TFAC-2009-105.R1 Manuscript Type: Original
    [Show full text]
  • Geology and Ore Deposits of the Manhattan District Nevada
    DEPARTMENT OF THE INTERIOR HUBERT WORK, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 723 GEOLOGY AND ORE DEPOSITS OF THE MANHATTAN DISTRICT NEVADA BY HENRY G. FERGUSON WASHINGTON GOVERNMENT PRINTING OFFICE 1924 ADDITIONAL COPFES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 50 CENTS PER COPY CONTENTS. J/age. Outline of the report______________________________ vn Introduction_.___________________________________ 1 Field work and acknowledgments- ______________ 1 Location and topography___________^_____________ 2 Climate and vegetation___________________________ 4 History and production___________________________ 5 Bibliography_______________________________'_;_ 10 General geology___________________________________ 14 Summary _ _________________________ 14 Paleozoic rocks_______________________________ 17 Cambrian (?) rocks___________r_________________________ 18 Gold Hill formation______________1_____________ 18 Ordovician (?) rocks__________________________ 20 Mayflower schist________________________ 20 Zanzibar limestone_________________________ 21 Ordovician rocks________________'.__________________ 22 Toquima formation__________________________ 22 Permian (?) sandstone_________________________ 25 Relation to other Paleozoic sections of southwestern Nevada__ 26 Granitic rocks (Cretaceous?)__ __________________ 38 Tertiary rocks____________ _____1________ 42 Summary_____________ _______________ 42 Esmeralda formation____ _____!_______________
    [Show full text]