Genome-Wide CRISPR Screen for PARKIN Regulators Reveals

Total Page:16

File Type:pdf, Size:1020Kb

Genome-Wide CRISPR Screen for PARKIN Regulators Reveals Genome-wide CRISPR screen for PARKIN regulators PNAS PLUS reveals transcriptional repression as a determinant of mitophagy Christoph Pottinga, Christophe Crochemorea, Francesca Morettia, Florian Nigscha, Isabel Schmidta, Carole Mannevillea, Walter Carbonea, Judith Knehra, Rowena DeJesusb, Alicia Lindemanb, Rob Maherb, Carsten Russb, Gregory McAllisterb, John S. Reece-Hoyesb, Gregory R. Hoffmanb, Guglielmo Romaa, Matthias Müllera, Andreas W. Sailera, and Stephen B. Helliwella,1 aNovartis Institutes for BioMedical Research, Basel CH 4002, Switzerland; and bNovartis Institutes for BioMedical Research, Cambridge, MA 02139 Edited by Beth Levine, The University of Texas Southwestern, Dallas, TX, and approved November 29, 2017 (received for review June 20, 2017) PARKIN, an E3 ligase mutated in familial Parkinson’s disease, promotes how these proteins are themselves regulated, is important for mitophagy by ubiquitinating mitochondrial proteins for efficient the further understanding of mitophagy and the pathogenesis engagement of the autophagy machinery. Specifically, PARKIN- of Parkinson’s disease. synthesized ubiquitin chains represent targets for the PINK1 kinase Previous studies identified regulators of PINK1/PARKIN- generating phosphoS65-ubiquitin (pUb), which constitutes the mitoph- mediated mitophagy employing RNAi screens with damage- agy signal. Physiological regulation of PARKIN abundance, however, induced mitochondrial translocation of overexpressed GFP- and the impact on pUb accumulation are poorly understood. Using PARKIN as a mitophagy proxy (12–15). These efforts pro- cells designed to discover physiological regulators of PARKIN abun- foundly advanced the understanding of mitophagy regulation; dance, we performed a pooled genome-wide CRISPR/Cas9 knockout however, little is known about how cells set the threshold for screen. Testing identified genes individually resulted in a list of mitophagy to proceed. In this regard, cellular regulation of 53 positive and negative regulators. A transcriptional repressor net- PARKIN abundance is of particular interest as it may represent work including THAP11 was identified and negatively regulates en- a mechanism to tune the progression of mitophagy by impacting CELL BIOLOGY dogenous PARKIN abundance. RNAseq analysis revealed the pUb accumulation to adapt to physiological state changes. PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR The CRISPR/Cas9 gene-editing technology as a screening knockout in multiple cell types enhanced pUb accumulation. Thus, our tool appears to be superior to RNAi in most cases of lethality screens work demonstrates the critical role of PARKIN abundance, identifies (16–18) and in phenotypic screens (19). Using cells expressing a regulating genes, and reveals a link between transcriptional repres- PARKIN reporter protein from the endogenous PARK2 pro- sion and mitophagy, which is also apparent in human induced plurip- moter and in which steady state PARKIN levels dictate the otent stem cell-derived neurons, a disease-relevant cell type. kinetics of pUb accumulation, a phenotypic genome-wide CRISPR/Cas9 pooled screen was performed and resulted in a PARKIN | mitophagy | phosphoubiquitin | THAP11 | genome-wide screen list of 53 positive and negative regulators. We show that transcriptional ysfunction of mitochondria is implicated in aging and hu- Significance Dman disease, including Parkinson’s disease. Mitochondrial functionality is assured by a hierarchical system of interdepen- In mitophagy, damaged mitochondria are targeted for disposal dent cellular quality-control mechanisms acting at molecular or by the autophagy machinery. PARKIN promotes signaling of organellar levels to allow rapid adaptation to mitochondrial stress PARK2 mitochondrial damage to the autophagy machinery for en- and damage (1). The E3 ligase PARKIN (encoded by the gagement, and PARKIN mutations cause Parkinson’s disease, gene) takes on the role of a major sentinel that integrates multiple possibly because damaged mitochondria accumulate in neu- quality-control mechanisms ranging from facilitating proteasomal rons. Because regulation of PARKIN abundance and the impact degradation of mitochondrial proteins to suppressing mitochon- on signaling are poorly understood, we performed a genetic drial antigen presentation (2, 3). screen to identify PARKIN abundance regulators. Both positive ’ PARKIN s best-characterized role in mitochondrial quality and negative regulators were identified and will help us to control is in PINK1/PARKIN-mediated mitophagy where PARKIN further understand mitophagy and Parkinson’s disease. We acts in concert with the PINK1 kinase in the signaling of mitochon- show that some of the identified genes negatively regulate drial damage to the autophagy machinery. Herein, PINK1 accumu- PARKIN gene expression, which impacts signaling of mito- lates on the surface of dysfunctional mitochondria and recruits and chondrial damage in mitophagy. This link between transcrip- activates cytosolic PARKIN. Preformed ubiquitin chains on multiple tional repression and mitophagy is also apparent in neurons in mitochondrial surface proteins are extended by activated PARKIN culture, bearing implications for disease. and S65-phosphorylated by PINK1 (4–7). The accumulation of S65- phosphorylated ubiquitin (pUb) on mitochondria constitutes the Author contributions: C.P. and S.B.H. designed research; C.P., C.C., F.M., F.N., I.S., C.M., signaling mechanism to engage the autophagy machinery for selective W.C., J.K., R.D., A.L., and R.M. performed research; C.P. and F.N. contributed new re- agents/analytic tools; C.P., C.C., F.M., F.N., W.C., J.K., C.R., G.M., J.S.R.-H., G.R.H., G.R., clearance of dysfunctional mitochondria (8). The efficiency of M.M., A.W.S., and S.B.H. analyzed data; and C.P. and S.B.H. wrote the paper. mitophagy appears to depend on the pUb signal: while PINK1 Conflict of interest statement: All authors are employees of, and may own shares of, generated pUb from preformed chains in the absence of PARKIN Novartis Pharma AG. can induce some mitophagy, the presence of PARKIN amplifies the This article is a PNAS Direct Submission. accumulation of pUb via a feed-forward mechanism and enhances This open access article is distributed under Creative Commons Attribution-NonCommercial- mitophagy (8, 9). Mutations in both PINK1 and PARKIN are a cause NoDerivatives License 4.0 (CC BY-NC-ND). of familial Parkinson’s disease, suggesting that compromised 1To whom correspondence should be addressed. Email: [email protected]. mitophagy is an underlying feature (10, 11). Thus, the thorough This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. understanding of how these proteins regulate mitophagy, and 1073/pnas.1711023115/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1711023115 PNAS Early Edition | 1of10 Downloaded by guest on September 28, 2021 repression negatively regulates endogenous PARKIN steady-state contains enhancer and repressor sites for physiological control of level. In particular, THAP11 depletion affects both PARKIN pro- expression (20) (Fig. S1B). We selected a clone showing the lowest tein levels and pUb accumulation in multiple cell types. Finally, discrete GFP-signal in flow cytometry (endoGFP-PARKIN cells) human induced pluripotent stem cell (iPSC)-derived inducible (Fig. 1A). The fluorescence signal is below the detection threshold Neurogenin 2 (iNGN2) neurons in which THAP11 was targeted of conventional fluorescence microscopy, but is GFP-PARKIN– by CRISPR/Cas9 display de-repression of PARK2 transcription dependent because PARKIN-directed single guide RNAs (sgRNAs) and enhanced pUb accumulation, demonstrating the impact of resulted in the concomitant loss of GFP-PARKIN protein and GFP- PARKIN-level regulation in a relevant cell type. fluorescence (Fig. 1 B and C). While endogenous PARKIN protein levels in the parental cells were near the detection threshold, GFP- Results PARKIN was readily detectable, likely reflecting multiple transgene PARKIN Levels Dictate Kinetics of pUb Accumulation. To assess the insertions (Fig. 1D). effects of cellular PARKIN abundance on downstream processes, We then examined the downstream effects of PARKIN-level we generated cellular models with different levels of PARKIN ex- alterations by assessing the accumulation of pUb upon mito- pression. HEK293-based JumpIN TI 293 cells expressing endoge- chondrial damage in parental and endoGFP-PARKIN cells, nous PARKIN were infected with lentiviruses for stable integration additionally infected with either a PARK2-specific or a control of Cas9 to enable gene editing and PARKIN depletion (parental [scrambled (SCR)] sgRNA. After treatment of parental cells cells) (Fig. S1A). Next, we aimed at generating cells with mildly transduced with control viruses with the mitochondria-damaging elevated PARKIN expression additionally amenable to functional agent carbonyl cyanide m-chlorophenyl hydrazone (CCCP) for screening for physiological regulators of PARKIN. Thus, parental 6h,α-pUb signals appeared that were absent in DMSO-treated cells were transfected with a transgene encoding GFP-PARKIN samples (Fig. 1E), indicating the initiation of mitophagy. pUb under the control of a large PARK2 promoter fragment, which accumulation in endoGFP-PARKIN cells was robustly induced endo AB C DGFP- parental PARKIN endoGFP-PARKIN sgRNA vs. SCR endoGFP-PARKIN GFP-negative parental PARK2 #i PARK2 #ii Day 8 Day 15 300 250 SCR PARK2#i SCR PARK2#i Day 8
Recommended publications
  • Sequence Overlap Between Autosomal and Sex-Linked Probes on the Illumina Humanmethylation27 Microarray
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 97 (2011) 214–222 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray Yi-an Chen a,b, Sanaa Choufani a, Jose Carlos Ferreira a,b, Daria Grafodatskaya a, Darci T. Butcher a, Rosanna Weksberg a,b,⁎ a Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada b Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada article info abstract Article history: The Illumina Infinium HumanMethylation27 BeadChip (Illumina 27k) microarray is a high-throughput Received 12 August 2010 platform capable of interrogating the human DNA methylome. In a search for autosomal sex-specific DNA Accepted 18 December 2010 methylation using this microarray, we discovered autosomal CpG loci showing significant methylation Available online 4 January 2011 differences between the sexes. However, we found that the majority of these probes cross-reacted with sequences from sex chromosomes. Moreover, we determined that 6–10% of the microarray probes are non- Keywords: specific and map to highly homologous genomic sequences. Using probes targeting different CpGs that are Illumina Infinium HumanMethylation 27 BeadChip exact duplicates of each other, we investigated the precision of these repeat measurements and concluded Non-specific cross-reactive probe that the overall precision of this microarray is excellent. In addition, we identified a small number of probes Sex-specific DNA methylation targeting CpGs that include single-nucleotide polymorphisms.
    [Show full text]
  • PRKN Gene Parkin RBR E3 Ubiquitin Protein Ligase
    PRKN gene parkin RBR E3 ubiquitin protein ligase Normal Function The PRKN gene, one of the largest human genes, provides instructions for making a protein called parkin. Parkin plays a role in the cell machinery that breaks down ( degrades) unneeded proteins by tagging damaged and excess proteins with molecules called ubiquitin. Ubiquitin serves as a signal to move unneeded proteins into specialized cell structures known as proteasomes, where the proteins are degraded. The ubiquitin- proteasome system acts as the cell's quality control system by disposing of damaged, misshapen, and excess proteins. This system also regulates the availability of proteins that are involved in several critical cell activities, such as the timing of cell division and growth. Because of its activity in the ubiquitin-proteasome system, parkin belongs to a group of proteins called E3 ubiquitin ligases. Parkin appears to be involved in the maintenance of mitochondria, the energy- producing centers in cells. However, little is known about its role in mitochondrial function. Research suggests that parkin may help trigger the destruction of mitochondria that are not working properly. Studies of the structure and activity of parkin have led researchers to propose several additional activities for this protein. Parkin may act as a tumor suppressor protein, which means it prevents cells from growing and dividing too rapidly or in an uncontrolled way. Parkin may also regulate the supply and release of sacs called synaptic vesicles from nerve cells. Synaptic vesicles contain chemical messengers that transmit signals from one nerve cell to another. Health Conditions Related to Genetic Changes Parkinson disease Researchers have identified more than 200 PRKN gene mutations that cause Parkinson disease, a condition characterized by progressive problems with movement and balance.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer Nan Hu1, Mitsutaka Kadota2, Huaitian Liu2, Christian C
    Published OnlineFirst February 8, 2016; DOI: 10.1158/0008-5472.CAN-15-0338 Cancer Integrated Systems and Technologies Research Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer Nan Hu1, Mitsutaka Kadota2, Huaitian Liu2, Christian C. Abnet1, Hua Su1, Hailong Wu2, Neal D. Freedman1, Howard H. Yang2, Chaoyu Wang1, Chunhua Yan2, Lemin Wang1, Sheryl Gere2, Amy Hutchinson1,3, Guohong Song2, Yuan Wang4, Ti Ding4, You-Lin Qiao5, Jill Koshiol1, Sanford M. Dawsey1, Carol Giffen6, Alisa M. Goldstein1, Philip R. Taylor1, and Maxwell P. Lee2 Abstract Gastric cancer and esophageal cancer are the second and that oxidation of guanine may be a potential mechanism sixth leading causes of cancer-related death worldwide. Multi- underlying cancer mutagenesis. Furthermore, we identified ple genomic alterations underlying gastric cancer and esoph- genes with mutations in gastric cancer and ESCC, including ageal squamous cell carcinoma (ESCC) have been identified, well-known cancer genes, TP53, JAK3, BRCA2, FGF2, FBXW7, but the full spectrum of genomic structural variations and MSH3, PTCH, NF1, ERBB2, and CHEK2, and potentially novel mutations have yet to be uncovered. Here, we report the results cancer-associated genes, KISS1R, AMH, MNX1, WNK2,and of whole-genome sequencing of 30 samples comprising tumor PRKRIR. Finally, we identified recurrent chromosome altera- and blood from 15 patients, four of whom presented with tions in at least 30% of tumors in genes, including MACROD2, ESCC, seven with gastric cardia adenocarcinoma (GCA), and FHIT,andPARK2 that were often intragenic deletions. These four with gastric noncardia adenocarcinoma. Analyses revealed structural alterations were validated using the The Cancer that an A>CmutationwascommoninGCA,andinadditionto Genome Atlas dataset.
    [Show full text]
  • Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
    Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Heterogeneous Phenotype in a Family with Compound Heterozygous Parkin Gene Mutations
    ORIGINAL CONTRIBUTION Heterogeneous Phenotype in a Family With Compound Heterozygous Parkin Gene Mutations Hao Deng, PhD; Wei-Dong Le, MD, PhD; Christine B. Hunter, RN; William G. Ondo, MD; Yi Guo, MS; Wen-Jie Xie, MD; Joseph Jankovic, MD Background: Mutations in the parkin gene (PRKN) cause mutations in compound heterozygotes. The phenotype autosomal recessive early-onset Parkinson disease (EOPD). of patients was that of classic autosomal recessive EOPD characterized by beneficial response to levodopa, rela- Objective: To investigate the presence of mutations in tively slow progression, and motor complications. All het- the PRKN gene in a white family with EOPD and the geno- erozygous mutation carriers (T240M or EX 5_6 del) and type-phenotype correlations. a 56-year-old woman who was a compound heterozy- gous mutation carrier (T240M and EX 5_6 del) were free Design: Twenty members belonging to 3 generations of of any neurological symptoms. the EOPD family with 4 affected subjects underwent ge- netic analysis. Direct genomic DNA sequencing, semi- Conclusions: Compound heterozygous mutations quantitative polymerase chain reaction, real-time quan- (T240M and EX 5_6 del) in the PRKN gene were found titative polymerase chain reaction, and reverse- to cause autosomal recessive EOPD in 4 members of a transcriptase polymerase chain reaction analyses were large white family. One additional member with the same performed to identify the PRKN mutation. mutation, who is more than 10 years older than the mean age at onset of the 4 affected individuals, had no clinical Results: Compound heterozygous mutations (T240M manifestation of the disease. This incomplete pen- and EX 5_6 del) in the PRKN gene were identified in 4 etrance has implications for genetic counseling, and it patients with early onset (at ages 30-38 years).
    [Show full text]
  • PACRG (Human) Recombinant Protein (P01)
    PACRG (Human) Recombinant Gene Summary: This gene encodes a protein that is Protein (P01) conserved across metazoans. In vertebrates, this gene is linked in a head-to-head arrangement with the Catalog Number: H00135138-P01 adjacent parkin gene, which is associated with autosomal recessive juvenile Parkinson's disease. Regulation Status: For research use only (RUO) These genes are co-regulated in various tissues and they share a bi-directional promoter. Both genes are Product Description: Human PACRG full-length ORF ( associated with susceptibility to leprosy. The parkin NP_001073847.1, 1 a.a. - 257 a.a.) recombinant protein co-regulated gene protein forms a large molecular with GST-tag at N-terminal. complex with chaperones, including heat shock proteins 70 and 90, and chaperonin components. This protein is Sequence: also a component of Lewy bodies in Parkinson's disease MVAEKETLSLNKCPDKMPKRTKLLAQQPLPVHQPHSL patients, and it suppresses unfolded Pael VSEGFTVKAMMKNSVVRGPPAAGAFKERPTKPTAFR receptor-induced neuronal cell death. Multiple transcript KFYERGDFPIALEHDSKGNKIAWKVEIEKLDYHHYLPLF variants encoding different isoforms have been found for FDGLCEMTFPYEFFARQGIHDMLEHGGNKILPVLPQLII this gene. [provided by RefSeq] PIKNALNLRNRQVICVTLKVLQHLVVSAEMVGKALVPY YRQILPVLNIFKNMNVNSGDGIDYSQQKRENIGDLIQET LEAFERYGGENAFINIKYVVPTYESCLLN Host: Wheat Germ (in vitro) Theoretical MW (kDa): 55.7 Applications: AP, Array, ELISA, WB-Re (See our web site product page for detailed applications information) Protocols: See our web site at http://www.abnova.com/support/protocols.asp or product page for detailed protocols Preparation Method: in vitro wheat germ expression system Purification: Glutathione Sepharose 4 Fast Flow Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Instruction: Store at -80°C. Aliquot to avoid repeated freezing and thawing.
    [Show full text]
  • Human Genetic Variation Influences Enteric Fever Progression
    cells Review Human Genetic Variation Influences Enteric Fever Progression Pei Yee Ma 1, Jing En Tan 2, Edd Wyn Hee 2, Dylan Wang Xi Yong 2, Yi Shuan Heng 2, Wei Xiang Low 2, Xun Hui Wu 2 , Christy Cletus 2, Dinesh Kumar Chellappan 3 , Kyan Aung 4, Chean Yeah Yong 5 and Yun Khoon Liew 3,* 1 School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; [email protected] 2 School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia; [email protected] (J.E.T.); [email protected] (E.W.H.); [email protected] (D.W.X.Y.); [email protected] (Y.S.H.); [email protected] (W.X.L.); [email protected] (X.H.W.); [email protected] (C.C.) 3 Department of Life Sciences, International Medical University, Kuala Lumpur 57000, Malaysia; [email protected] 4 Department of Pathology, International Medical University, Kuala Lumpur 57000, Malaysia; [email protected] 5 Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia; [email protected] * Correspondence: [email protected] Abstract: In the 21st century, enteric fever is still causing a significant number of mortalities, espe- cially in high-risk regions of the world. Genetic studies involving the genome and transcriptome have revealed a broad set of candidate genetic polymorphisms associated with susceptibility to Citation: Ma, P.Y.; Tan, J.E.; Hee, and the severity of enteric fever. This review attempted to explain and discuss the past and the E.W.; Yong, D.W.X.; Heng, Y.S.; Low, W.X.; Wu, X.H.; Cletus, C.; Kumar most recent findings on human genetic variants affecting the progression of Salmonella typhoidal Chellappan, D.; Aung, K.; et al.
    [Show full text]