Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer Nan Hu1, Mitsutaka Kadota2, Huaitian Liu2, Christian C

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer Nan Hu1, Mitsutaka Kadota2, Huaitian Liu2, Christian C Published OnlineFirst February 8, 2016; DOI: 10.1158/0008-5472.CAN-15-0338 Cancer Integrated Systems and Technologies Research Genomic Landscape of Somatic Alterations in Esophageal Squamous Cell Carcinoma and Gastric Cancer Nan Hu1, Mitsutaka Kadota2, Huaitian Liu2, Christian C. Abnet1, Hua Su1, Hailong Wu2, Neal D. Freedman1, Howard H. Yang2, Chaoyu Wang1, Chunhua Yan2, Lemin Wang1, Sheryl Gere2, Amy Hutchinson1,3, Guohong Song2, Yuan Wang4, Ti Ding4, You-Lin Qiao5, Jill Koshiol1, Sanford M. Dawsey1, Carol Giffen6, Alisa M. Goldstein1, Philip R. Taylor1, and Maxwell P. Lee2 Abstract Gastric cancer and esophageal cancer are the second and that oxidation of guanine may be a potential mechanism sixth leading causes of cancer-related death worldwide. Multi- underlying cancer mutagenesis. Furthermore, we identified ple genomic alterations underlying gastric cancer and esoph- genes with mutations in gastric cancer and ESCC, including ageal squamous cell carcinoma (ESCC) have been identified, well-known cancer genes, TP53, JAK3, BRCA2, FGF2, FBXW7, but the full spectrum of genomic structural variations and MSH3, PTCH, NF1, ERBB2, and CHEK2, and potentially novel mutations have yet to be uncovered. Here, we report the results cancer-associated genes, KISS1R, AMH, MNX1, WNK2,and of whole-genome sequencing of 30 samples comprising tumor PRKRIR. Finally, we identified recurrent chromosome altera- and blood from 15 patients, four of whom presented with tions in at least 30% of tumors in genes, including MACROD2, ESCC, seven with gastric cardia adenocarcinoma (GCA), and FHIT,andPARK2 that were often intragenic deletions. These four with gastric noncardia adenocarcinoma. Analyses revealed structural alterations were validated using the The Cancer that an A>CmutationwascommoninGCA,andinadditionto Genome Atlas dataset. Our studies provide new insights into the preferential nucleotide sequence of A located 5 prime to the understanding the genomic landscape, genome instability, mutation as noted in previous studies, we found enrichment of and mutation profile underlying gastric cancer and ESCC T in the 5 prime base. The A>C mutations in GCA suggested development. Cancer Res; 76(7); 1714–23. Ó2016 AACR. Introduction region have been attributed to these diseases (3). However, the cause of the high rates and geographical overlap of these two Gastric cancer and esophageal cancer cause an estimated anatomically adjacent but histologically distinct tumors has not 783,000 and 407,000 deaths, respectively, each year, and repre- been determined. Gastric cancers in this area occur primarily sent the second and sixth leading causes of cancer-related death in the uppermost portion of the stomach and are referred to as worldwide (1). In China, gastric cardia adenocarcinoma (GCA) GCA, whereas those in the remainder of the stomach are referred and esophageal squamous cell carcinoma (ESCC) occur together to as gastric noncardia adenocarcinoma (GNCA). In addition to in the Taihang Mountains of north central China, including being anatomically adjacent, GCA and ESCC share many of the Shanxi and Henan Provinces, at some of the highest rates reported same etiologic risk factors, and before the widespread use of for any cancer (2), and historically over 20% of all deaths in this endoscopy and biopsy, they were diagnosed as a single disease referred to as "esophageal cancer" (4). The reason for the high 1Division of Cancer Epidemiology and Genetics, National Cancer Insti- rates of GCA and ESCC in this geographic area and their relation to tute, NIH, Bethesda, Maryland. 2Center for Cancer Research, National each other remains unclear, but there are almost certainly com- 3 Cancer Institute, NIH, Bethesda, Maryland. Cancer Genomics mon etiologically important environmental exposures, and a Research Laboratory, Leidos, Gaithersburg, Maryland. 4Shanxi Cancer Hospital, Taiyuan, Shanxi, PR China. 5Cancer Institute, Chinese Acad- recent genome-wide association study of germline DNA found emy of Medical Sciences, Beijing, PR China. 6Information Management that the same SNPs in the PLCE1 gene had the strongest associa- Services, Inc., Silver Spring, Maryland. tions with risk for both GCA and ESCC (5). This led to our Note: Supplementary data for this article are available at Cancer Research concurrent examination of these two cancers plus GNCA in the Online (http://cancerres.aacrjournals.org/). current study. Corresponding Authors: Philip R. Taylor, Genetic Epidemiology Branch, Division Recent advances in next-generation sequencing technology of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical have revolutionized how we study cancer genomes. The iden- Center Drive, Rm 6E444 MSC 90892, Rockville, MD 90892-9769. Phone: 240- tification of IDH1/2 mutations, initially in glioma (6, 7) and 276-7235; Fax: 240-276-7832; E-mail: [email protected]; and Maxwell P. Lee, more recently in many other cancers such as AML (8), has [email protected] transformed our understanding of cancer by relating mutations doi: 10.1158/0008-5472.CAN-15-0338 to metabolic control and epigenetic regulation (9). IDH1/2 Ó2016 American Association for Cancer Research. encodes isocitrate dehydrogenases (IDH), which convert 1714 Cancer Res; 76(7) April 1, 2016 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2016 American Association for Cancer Research. Published OnlineFirst February 8, 2016; DOI: 10.1158/0008-5472.CAN-15-0338 Somatic Alterations in Esophageal and Gastric Cancer isocitrate to 2-oxoglutarate. But mutant IDHs produce 2-hydro- Materials and Methods xyglutarate, which inhibits the methyl cytosine hydroxylase Study population TET2 as well as H3K36 demethylases, thus changes the global This study was approved by the Institutional Review Boards of epigenetic landscape. Whole genome sequencing (WGS) is the Shanxi Cancer Hospital, the Cancer Institute and Hospital of particularly useful for elucidating complex genomic changes, the Chinese Academy of Medical Sciences (CICAMS, Shanxi, PR including translocations, inversions, tandem duplications, and China), and the U.S. National Cancer Institute (NCI, Bethesda, large deletions. The importance of these structural changes has MD). Fifteen cases were analyzed with WGS. These cases came from been well documented in the case of BCR-ABL in leukemia, a larger study sample and were selected on the basis of high-quality, TMPRESS2-ERG in prostate cancer (10), and EML4-ALK in lung sufficiently large amount of DNA (requiring at least 10 mg) avail- cancer (11). able for WGS, and patients being deceased. Three cases with ESCC, For gastric adenocarcinoma and ESCC, several publications seven cases with GCA, and four cases with GNCA diagnosed have reported genomic scale analyses of cancers using exome between 1998 and 2001 in the Shanxi Cancer Hospital in Taiyuan, or WGS technology. Wang and colleagues performed exome Shanxi Province, PR China, were recruited to participate in this sequencing of 22 gastric cancer samples and identified fre- study. One ESCC case from Yaocun Commune Hospital in Linxian, quent mutations in ARID1A (12). Mutations in ARID1A were Henan Province was also recruited. None of the cases had therapy particularly high in gastric cancers with microsatellite insta- before their surgical resection. After obtaining informed consent, bility (MSI; 83%) or with Epstein-Barr virus (EBV) infection cases were interviewed to obtain information on demographics, (73%). Exome sequencing of 15 gastric adenocarcinomas and cancer risk factors (e.g., detailed family history of cancer), and their matched normal DNAs by Zang and colleagues also clinical information. Only deceased cases were selected for study. identified frequent mutations of ARID1A (13). In addition, Clinical data are described in Supplementary Table S1. they found 5% of gastric cancer contained FAT4 mutations. A study by Agrawal and colleagues reported exomic sequencing Biological specimen collection and processing of 11 esophageal adenocarcinomas (EAC) and 12 ESCCs Venous blood (10 mL) was taken from each case before surgery NOTCH1 and found frequent mutations in ESCC (14). and germline DNA from whole blood was extracted and purified Nagarajan and colleagues performed WGS analysis for two using the standard phenol/chloroform method. Tumors obtained gastric cancer samples and found three mutational signatures during surgery were snap-frozen in liquid nitrogen and stored at (15). Dulak and colleagues did exome sequencing for 149 À130C until used. The specimens were chosen for this study EAC tumor-normal pairs and WGS for 15 EACs and matched based on two criteria: (i) histologic diagnosis of ESCC or gastric > normals. They found a high prevalence of A C transversions at cancer confirmed by pathologists at the Shanxi Cancer Hospital or AAdinucleotides(16).ArecentstudybyWangandcolleagues CICAMS, and the NCI; (ii) availability of high purity tumor tissue – analyzed 100 tumor normal pairs of gastric cancer with (at least >75%). WGS and identified MUC6, CTNNA2, GLI3, RNF43,and RHOA fi as signi cantly mutated driver genes. They found that Tissue DNA isolation RHOA fi mutations are speci c for diffuse-type tumors (17). DNA from frozen tumors was extracted using AllPrep DNA/ Recently, the International Cancer Genome Consortium re- RNA/Protein Mini Kit (Qiagen, Inc.). DNA was dissolved in 100 search team published a study involving WGS of 17 ESCC mL Buffer BE. Concentrations of DNA were measured with the cases and exome sequencing of 71 ESCC cases, which iden- NanoDrop
Recommended publications
  • Sequence Overlap Between Autosomal and Sex-Linked Probes on the Illumina Humanmethylation27 Microarray
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 97 (2011) 214–222 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Sequence overlap between autosomal and sex-linked probes on the Illumina HumanMethylation27 microarray Yi-an Chen a,b, Sanaa Choufani a, Jose Carlos Ferreira a,b, Daria Grafodatskaya a, Darci T. Butcher a, Rosanna Weksberg a,b,⁎ a Program in Genetics and Genome Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada b Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada article info abstract Article history: The Illumina Infinium HumanMethylation27 BeadChip (Illumina 27k) microarray is a high-throughput Received 12 August 2010 platform capable of interrogating the human DNA methylome. In a search for autosomal sex-specific DNA Accepted 18 December 2010 methylation using this microarray, we discovered autosomal CpG loci showing significant methylation Available online 4 January 2011 differences between the sexes. However, we found that the majority of these probes cross-reacted with sequences from sex chromosomes. Moreover, we determined that 6–10% of the microarray probes are non- Keywords: specific and map to highly homologous genomic sequences. Using probes targeting different CpGs that are Illumina Infinium HumanMethylation 27 BeadChip exact duplicates of each other, we investigated the precision of these repeat measurements and concluded Non-specific cross-reactive probe that the overall precision of this microarray is excellent. In addition, we identified a small number of probes Sex-specific DNA methylation targeting CpGs that include single-nucleotide polymorphisms.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome
    Vol. 10, 5785–5791, September 1, 2004 Clinical Cancer Research 5785 Amplification of the BRCA2 Pathway Gene EMSY in Sporadic Breast Cancer Is Related to Negative Outcome Carmen Rodriguez,1 Luke Hughes-Davies,2 INTRODUCTION He´le`ne Valle`s,1 Be´atrice Orsetti,1 DNA amplification is a common mechanism of oncogenic Marguerite Cuny,1 Lisa Ursule,1 activation in human tumors, and band q13 of chromosome 11 is a frequent site of genetic aberration in a number of human Tony Kouzarides,2 and Charles Theillet1 malignancies, particularly breast and head and neck cancers (1). 1 Ge´notype et Phe´notypes Tumoraux E 229 INSERM, Centre Val Several candidate oncogenes have been proposed, among which d’Aurelle, Montpellier, France; 2Cancer Research UK/Wellcome Institute, Cambridge, United Kingdom only CCND1 and EMS1 meet the criteria for genes activated by DNA amplification (2). Both genes map to chromosome 11q13.3, 0.8 Mb apart, with CCND1 occupying a more centro- ABSTRACT meric position than EMS1 (3). Because CCND1 is frequently DNA amplification at band q13 of chromosome 11 is rearranged by chromosomal translocations in hematologic ma- common in breast cancer, and CCND1 and EMS1 remain lignancies and overexpressed in several human tumors, this gene the strongest candidate genes. However, amplification pat- has been considered the principal target for DNA amplification terns are consistent with the existence of four cores of am- at 11q13 (4). However, some findings suggested that 11q13 plification, suggesting the involvement of additional genes. amplification could be more complex. On the basis of the Here we present evidence strongly suggesting the involve- recently completed genome map, the 11q13 amplification do- ment of the recently characterized EMSY gene in the for- main spans up to 7 Mb and the existence of four distinct cores mation of the telomeric amplicon.
    [Show full text]
  • Genome-Wide CRISPR Screen for PARKIN Regulators Reveals Transcriptional Repression As a Determinant of Mitophagy
    Genome-wide CRISPR screen for PARKIN regulators PNAS PLUS reveals transcriptional repression as a determinant of mitophagy Christoph Pottinga, Christophe Crochemorea, Francesca Morettia, Florian Nigscha, Isabel Schmidta, Carole Mannevillea, Walter Carbonea, Judith Knehra, Rowena DeJesusb, Alicia Lindemanb, Rob Maherb, Carsten Russb, Gregory McAllisterb, John S. Reece-Hoyesb, Gregory R. Hoffmanb, Guglielmo Romaa, Matthias Müllera, Andreas W. Sailera, and Stephen B. Helliwella,1 aNovartis Institutes for BioMedical Research, Basel CH 4002, Switzerland; and bNovartis Institutes for BioMedical Research, Cambridge, MA 02139 Edited by Beth Levine, The University of Texas Southwestern, Dallas, TX, and approved November 29, 2017 (received for review June 20, 2017) PARKIN, an E3 ligase mutated in familial Parkinson’s disease, promotes how these proteins are themselves regulated, is important for mitophagy by ubiquitinating mitochondrial proteins for efficient the further understanding of mitophagy and the pathogenesis engagement of the autophagy machinery. Specifically, PARKIN- of Parkinson’s disease. synthesized ubiquitin chains represent targets for the PINK1 kinase Previous studies identified regulators of PINK1/PARKIN- generating phosphoS65-ubiquitin (pUb), which constitutes the mitoph- mediated mitophagy employing RNAi screens with damage- agy signal. Physiological regulation of PARKIN abundance, however, induced mitochondrial translocation of overexpressed GFP- and the impact on pUb accumulation are poorly understood. Using PARKIN as a mitophagy proxy (12–15). These efforts pro- cells designed to discover physiological regulators of PARKIN abun- foundly advanced the understanding of mitophagy regulation; dance, we performed a pooled genome-wide CRISPR/Cas9 knockout however, little is known about how cells set the threshold for screen. Testing identified genes individually resulted in a list of mitophagy to proceed.
    [Show full text]
  • Mayuko Hamada 1, 3*, Katja
    1 Title: 2 Metabolic co-dependence drives the evolutionarily ancient Hydra-Chlorella symbiosis 3 4 Authors: 5 Mayuko Hamada 1, 3*, Katja Schröder 2*, Jay Bathia 2, Ulrich Kürn 2, Sebastian Fraune 2, Mariia 6 Khalturina 1, Konstantin Khalturin 1, Chuya Shinzato 1, 4, Nori Satoh 1, Thomas C.G. Bosch 2 7 8 Affiliations: 9 1 Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University 10 (OIST), 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495 Japan 11 2 Zoological Institute and Interdisciplinary Research Center Kiel Life Science, Kiel University, 12 Am Botanischen Garten 1-9, 24118 Kiel, Germany 13 3 Ushimado Marine Institute, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 14 Okayama, 701-4303 Japan 15 4 Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, 16 Japan 17 18 * Authors contributed equally 19 20 Corresponding author: 21 Thomas C. G. Bosch 22 Zoological Institute, Kiel University 23 Am Botanischen Garten 1-9 24 24118 Kiel 25 TEL: +49 431 880 4172 26 [email protected] 1 27 Abstract (148 words) 28 29 Many multicellular organisms rely on symbiotic associations for support of metabolic activity, 30 protection, or energy. Understanding the mechanisms involved in controlling such interactions 31 remains a major challenge. In an unbiased approach we identified key players that control the 32 symbiosis between Hydra viridissima and its photosynthetic symbiont Chlorella sp. A99. We 33 discovered significant up-regulation of Hydra genes encoding a phosphate transporter and 34 glutamine synthetase suggesting regulated nutrition supply between host and symbionts.
    [Show full text]
  • WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064702 A2 10 May 2013 (10.05.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/EP2012/071868 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 5 November 20 12 (05 .11.20 12) NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 1118985.9 3 November 201 1 (03. 11.201 1) GB kind of regional protection available): ARIPO (BW, GH, 13/339,63 1 29 December 201 1 (29. 12.201 1) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: DIAGENIC ASA [NO/NO]; Grenseveien 92, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, N-0663 Oslo (NO).
    [Show full text]
  • Downregulation of Carnitine Acyl-Carnitine Translocase by Mirnas
    Page 1 of 288 Diabetes 1 Downregulation of Carnitine acyl-carnitine translocase by miRNAs 132 and 212 amplifies glucose-stimulated insulin secretion Mufaddal S. Soni1, Mary E. Rabaglia1, Sushant Bhatnagar1, Jin Shang2, Olga Ilkayeva3, Randall Mynatt4, Yun-Ping Zhou2, Eric E. Schadt6, Nancy A.Thornberry2, Deborah M. Muoio5, Mark P. Keller1 and Alan D. Attie1 From the 1Department of Biochemistry, University of Wisconsin, Madison, Wisconsin; 2Department of Metabolic Disorders-Diabetes, Merck Research Laboratories, Rahway, New Jersey; 3Sarah W. Stedman Nutrition and Metabolism Center, Duke Institute of Molecular Physiology, 5Departments of Medicine and Pharmacology and Cancer Biology, Durham, North Carolina. 4Pennington Biomedical Research Center, Louisiana State University system, Baton Rouge, Louisiana; 6Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York. Corresponding author Alan D. Attie, 543A Biochemistry Addition, 433 Babcock Drive, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, (608) 262-1372 (Ph), (608) 263-9608 (fax), [email protected]. Running Title: Fatty acyl-carnitines enhance insulin secretion Abstract word count: 163 Main text Word count: 3960 Number of tables: 0 Number of figures: 5 Diabetes Publish Ahead of Print, published online June 26, 2014 Diabetes Page 2 of 288 2 ABSTRACT We previously demonstrated that micro-RNAs 132 and 212 are differentially upregulated in response to obesity in two mouse strains that differ in their susceptibility to obesity-induced diabetes. Here we show the overexpression of micro-RNAs 132 and 212 enhances insulin secretion (IS) in response to glucose and other secretagogues including non-fuel stimuli. We determined that carnitine acyl-carnitine translocase (CACT, Slc25a20) is a direct target of these miRNAs.
    [Show full text]
  • Understanding Gene Regulatory Mechanisms of Mouse Immune Cells Using a Convolutional Neural Network
    Understanding gene regulatory mechanisms of mouse immune cells using a convolutional neural network by Alexandra Maslova B.Sc. Physics, The University of British Columbia, 2013 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Bioinformatics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) April 2020 c Alexandra Maslova 2019 The following individuals certify that they have read, and recommend to the Faculty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled: Understanding gene regulatory mechanisms of mouse immune cells using a convolutional neural network submitted by Alexandra Maslova in partial fulfillment of the requirements for the degree of Master of Science in Bioinformatics. Examining Committee: Sara Mostafavi, Statistics and Medical Genetics Supervisor Maxwell Libbrecht, Computing Science (Simon Fraser University) Supervisory Committee Member Elodie Portales-Casamar, Pediatrics Supervisory Committee Member Martin Hirst, Microbiology and Immunology Committee Chair ii Abstract Cell differentiation is controlled via complex interactions of genomic regu- latory sites such as promoters and enhancers that lead to precise cell type- specific patterns of gene expression through a process that is not yet well understood. Local chromatin accessibility at these sites is a requirement of regulatory activity, and is therefore an important component of the gene reg- ulation machinery. To understand how DNA sequence drives local chromatin accessibility within the context of immune cell differentiation, we examined a dataset of open chromatin regions (OCRs) derived with the ATAC-seq assay from 81 closely related mouse immune cell types. We trained a model that predicts local chromatin accessibility in each cell type based on DNA sequence alone, then analyzed the model to extract informative sequence features.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases Permalink https://escholarship.org/uc/item/5xk430qk Author Rhead, Brooke Publication Date 2019 Supplemental Material https://escholarship.org/uc/item/5xk430qk#supplemental Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases By Brooke Rhead A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computational Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Lisa F. Barcellos, Chair Professor Nir Yosef Professor Lexin Li Professor John Colford Summer 2019 Abstract Computational Methods and Epidemiologic Approaches for Revealing the Etiology of Autoimmune Diseases By Brooke Rhead Doctor of Philosophy in Computational Biology University of California, Berkeley Professor Lisa F. Barcellos, Chair Autoimmune diseases, in which normal tissues are inappropriately attacked by the immune system, are complex diseases driven by a combination of genetic and environmental factors. Most are chronic inflammatory diseases with some treatments available but no known cures, and the disease mechanisms are not completely understood. Epigenetic factors, such as DNA methylation and microRNAs, are affected by genetic and environmental exposures and in turn affect gene expression and thus may play a role in autoimmune disease pathogenesis. In this dissertation, I employ a combination of computational, bioinformatic, statistical, and epidemiologic methods to study the role of epigenetics in autoimmune diseases in humans, and to characterize inflammatory changes in human cell lines.
    [Show full text]
  • Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements
    Whole Genome Analyses of a Well-Differentiated Liposarcoma Reveals Novel SYT1 and DDR2 Rearrangements Jan B. Egan1, Michael T. Barrett2, Mia D. Champion3,4, Sumit Middha5, Elizabeth Lenkiewicz2, Lisa Evers2, Princy Francis 6 Jessica Schmidt 6 Chang-Xin , Shi 6 , Scott Van Wier, 6 Sandra, Badar 6 , Gregory Ahmann 6 K., Martin Kortuem 7 , Nicole J. Boczek8 , Rafael Fonseca 1 , 9, David W. Craig10, John D. Carpten11, Mitesh J. Borad1,9, A. Keith Stewart1,9* 1 Comprehensive Cancer Center, Mayo Clinic, Scottsdale, Arizona, United States of America, 2 Clinical Translational Research Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America, 3 Department of Biomedical Statistics and Informatics, Mayo Clinic, Scottsdale, Arizona, United States of America, 4 Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America, 5 Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America, 6 Research, Mayo Clinic, Scottsdale, Arizona, United States of America, 7 Hematology, Mayo Clinic, Scottsdale, Arizona, United States of America, 8 Mayo Graduate School, Mayo Clinic, Rochester, Minnesota, United States of America, 9 Division of Hematology/Oncology Mayo Clinic, Scottsdale, Arizona, United States of America, 10 Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America, 11 Integrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America Abstract Liposarcoma is the most common soft tissue sarcoma, but little is known about the genomic basis of this disease. Given the low cell content of this tumor type, we utilized flow cytometry to isolate the diploid normal and aneuploid tumor populations from a well-differentiated liposarcoma prior to array comparative genomic hybridization and whole genome sequencing.
    [Show full text]