Synthesis and Characterisation of Hindered Organophosphorus

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis and Characterisation of Hindered Organophosphorus Synthesis and characterisation of hindered organophosphorus compounds by T. E. Netshiozwi Submitted in fulfillment of the requirements for the degree PHILOSOPHIAE DOCTOR in Chemistry in the Faculty of Science of the Johannesburg University Supervisor: Prof. D. B. G. Williams 2009 ii DECLARATION I declare that this research is my own work and that it was conducted under the supervision of Prof D. B. G. Williams. No part of this research has been submitted in the past, or is being submitted, for degree at another university. Takalani. E Netshiozwi iii ACKNOWLEDGEMENTS I would like to express my sincere appreciation to my promotor, Prof. D. B. G. Williams, for his continued guidance, invaluable advice and for the knowledge I gained during the course of this study. I would also want to express my appreciation to Dr Cornelius Marthinus Erasmus, Dr Andre´ Pienaar and Mr Don Smith for persuading the Armscor Reseach and Development Management board to approve and financially support this project. I would want to thank my former colleagues Ms Talitha Hildebrand and Mr Francois van Straten for offering me an opportunity to use the GC•MS in their department. The unlimited love goes to my brothers Thivha, Maanda, Thizwi, Shumi, Thina, Mom and especially to my late father Mr J. M. H. Netshiozwi and grandmother Mrs Phophi Anna Netshiozwi. This thesis is dedicated to Khudi and Daki Phophi Netshiozwi. Finally, I want to thank Tina,Tlou and all my colleagues for their encouragement and support during the course of this study. iv Abstract The main objective of the research described in this dissertation was the preparation and characterisation of hindered organophosphorus compounds. For this purpose, ionic and free radical mechanisms were applied in the synthesis of selected hindered organophosphorus compounds, some with interesting spectral properties. A brief background of the element phosphorus and the early development of organophosphorus chemistry is provided. The early development of the chemical nerve agents derived from phosphorus, their toxicity and illicit manufacture by terrorist groups is discussed. The vital role played by the organisation for the prohibition of chemical weapons in enforcing the prohibition of the development, production, acquisition, stockpiling and the use of chemical nerve agents and their destruction by the state party is highlighted. The methodologies such as Michaelis • Arbuzov, Michaelis • Becker, Perkow Pudovik, Abramov and radical protocol reactions used to synthesise phosphorus containing compounds, are reviewed. In the present research project, diphenylphosphonous chloride and phenylphosphonous dichloride reagents were used in nucleophilic substitution reactions with bulky alcohols. This resulted in the synthesis and characterisation by1H, 13C, 31P NMR and GC•MS spectroscopy of the compounds shown in Scheme 0.1, where R’ was derived from 2,2•dimethylpropanol, 3• methylbutanol, 1,2•dimethylpropanol, 3,3•dimethyl•2•butanol, 1,1•dimethylethanol and 2•methyl•2• butanol. Y H2O2 R'OH or (R)xPCl(3•x) (R)xP(OR')(3•x) (R)xP(OR)(3•x) Et3N S8 R=Aryl, and Y=O, S Scheme 0.1 v The importance of using activated alcohols in the form of metal alkoxides in the cases of 1,1• dimethylethanol and 2•methyl•2•butanol for successful reactions was demonstrated. The influence of steric hindrance on the reactivity of these ionic reactions was studied by substituting diphenylphosphonous chloride, or phenylphosphosphonous dichloride, withtert• butylphosphonous dichloride or di•tert•butylphosphonous chloride. This resulted in no nucleophilic substitution reaction taking place betweentert•butylphosphonous dichloride and hindered alcohols in the presence of triethylamine. For successful reactions, the use of excess activated hindered alcohols in the form of either the lithium or potassium alkoxide was required. It was found that replacing both of the chlorine atoms intert•butylphosphonous dichloride with hindered alcohols like 1,1•dimethylethanol and 2•methyl•2•butanol was sluggish, and in the present study this could not be realised. It was demonstrated that di•tert butylphosphonous chloride is resistant to react with activated hindered alcohols due to enhanced steric hindrance in the organophosphorus reagent. The use of free•radical mechanisms in the phosphorus•carbon (P•C) bond forming reaction is briefly reviewed. The importance of finding a non•toxic replacement of organotin reagents in radical protocols is also highlighted. The scope of the present work was limited to the reaction of phosphonyl•centered radicals generated by the triethylborane•oxygen system with various alkenes ranging from less electron rich to more electron rich alkenes, including those containing a free hydroxy moiety. The reaction of diphenyl thiophosphite or diphenyl phosphite (Scheme 0.2) in the presence of triethylborane under aerobic conditions with enol ether alkenes afforded the expected anti• Markovnikov products. On the other hand, the reactions of diphenyl phosphite with the same set vi of enol ether alkenes under the same reaction conditions afforded, most unusually, the Markovnikov products (Scheme 0.2). S S OR + PhO P H a OR PhO P OPh OPh (anti•Markovnikov products) O O a OR OR + PhO P H PhO P (Markovnikov products) OPh OPh a: Et3B•O2, toluene, rt Scheme 0.2 Furthermore, it was noted that no reaction took place between diphenyl phosphite with less electron rich alkenes such as cyclohexene or 1•dodecene under these reaction conditions. There were no addition products formed under the same reaction conditions with the same set of enol ether alkenes with diethyl phosphite (EtO)2P(O)H or di•iso•propyl phosphite i•(PrO)2P(O)H. However, all of the above phosphite reagents, with the exception of diphenylphosphine oxide (reaction not pursued), reacted with cyclic or acyclic enamines to afford Markovnikov products (Į• aminophosphonates) in good yields. vii List of abbreviations AIBN 2,2’•azo•bis•iso•butyronitrile ATP adenosine triphosphonate n•BuLi n•butyllithium CW chemical weapon CWC chemical weapon convention CI chemical ionisation d doublet dd double of doublets DEPT distortionless enhancement by polarisation transfer DMF N,N•dimethylformamide DMSO dimethyl sulfoxide DNA deoxyribonucleic acid EA2192 O•hydrogen•S•(2•diisopropylaminoethyl) methylphosphonothioate EI electron ionisation Et ethyl ESI electron spray ionisation esr electron spin resonance epr electron paramagnetic resonance GA Tabun GB Sarin GC gas chromatography GD Soman viii GF Cyclosarin HOMO highest occupied molecular orbital IR Infrared i•Pr iso•propyl LD50 the amount of material that it takes to kill 50% of the organism tested LUMO lowest unoccupied molecular orbital MHz megahertz MS mass spectrum NMR nuclear magnetic resonance OPCW Organisation for the Prohibition of Chemical Weapons 2•PAM 2(E)•2•(Nitromethylidene)•1H•pyridine q quartet RNA ribonucleic acid rt room temperature SOMO single occupied molecular orbital t triplet tert tertiary THF tetrahydrofuran UK United Kingdom US United States U.S.S.R Union of Soviet Socialist Republics VX O•ethyl•S•(2•di•iso•propylaminoethyl) methylphosphonothioate Vx O•iso•propyl•S•(2•diethylaminoethyl) methylphosphonothioate ix TABLE OF CONTENTS CHAPTER 1 LITERATURE OVERVIEW AND MOTIVATION 1.1 THE HISTORY OF PHOSPHORUS ELEMENT 1 1.2 EARLY DEVELOPMENT OF ORGANOPHOSPHORUS CHEMISTRY 1 1.3 HISTORY OF ORGANOPHOSPHORUS NERVE AGENTS 3 1.3.1 Background 3 1.3.2 Hydrolysis products of V•agents 6 1.3.3 Hydrolysis products of Sarin and Soman 8 1.3.4 Hydrolysis products of Tabun 9 1.4 BIOLOGICAL ACTION OF NERVE AGENTS 9 1.5 MISUSE OF ORGANOPHOSHORUS COMPOUNDS 11 1.6 THE ORGANISATION OF PROHIBITION OF CHEMICAL WEAPONS 12 1.7 LITERATURE REVIEW ON PREPARATION OF DIALKYL AKYLPHOSPHONATES AND ALKYL HYDROGEN ALKYLPHOSPHONATES 13 1.7.1 Michaelis•Arbuzov and Perkow Reaction 14 1.7.2 Michaelis•Becker Reaction 16 1.7.3 Phosphonylation by Abramov Reaction 16 1.7.4 Transesterification of trimethyl phosphite 18 1.7.5 Phosphonates from alkylphosphonic halides 19 1.7.6 Phosphonates from nucleophillic substitution at phosphorus 21 1.7.7 Preparation of dialkyl alkylphosphonates fromH•phosphonates using a free•radical mechanism 22 x 1.8 MOTIVATION AND AIMS 24 1.9 REFERENCES 29 CHAPTER 2 SYNTHESIS OF HINDERED P•OR SYSTEMS 2.1 INTRODUCTION 37 2.2 SYNTHESIS OF ALKYL DIPHENYLPHOSPHINITES AND THEIR ELABORATION TO THEIR TO THE PHOSPHORYL AND THIOPHOSPHORYL FORMS 44 2.3 THE USE OF NMR SPECTROSCOPY IN IDENTIFYING THE SYNTHESISED PRODUCTS 45 2.4 SYNTHESIS OF DI•ALKYLPHOSPHONITES AND THEIR ELABORATION INTO THE PHOSPHORYL AND THIOPHOSPHORYL FORMS 54 2.5 SYNTHESIS OF ALKYL PHENYLCHLOROPHOSPHONITES AND THEIR ELABORATION INTO THE PHOSPHORYL AND THIOPHOSPHORYL FORMS 57 2.6 SYNTHESIS OF S•ETHYL DIPHENYLPHOSPHINOTHIOATE, DI•(S•ETHYL) PHENYLPHOSPHONOTHIOITE ESTER AND THE HALF ESTER 58 2.7 SYNTHESIS OF TERT•BUTYL DIPHENYLPHOSPHINITES AND THEIR ELABORATION INTO THE PHOSPHORYL FORMS 61 2.8 SYNTHESIS OF DI•(TERT•ALKYL) PHENYLPHOSPHONITES AND TERT•ALKYLPHENYLCHLOROPHOSPHONITES 65 2.9 SYNTHESIS OF ALKYL DI•TERT•BUTYLPHOSPHIONITES AND THEIR ELABORATION TO THE PHOSPHORYL AND THIOPHOSPHORYL FORMS 67 2.10 ATTEMPETD SYNTHESIS OF O•TERT•BUTYL DI•TERT•BUTYLPHOSPHINITE 69 2.11 ATTEMPTED SYNTHESIS OF DIALKYL•TERT•BUTYLPHOSPHONITES 69 2.12 DISCUSSION 71 2.12.1 Alkyl diphenylphosphinites(94) and their analogues 71 2.12.2 Dialkyl phenylphosphonites (98) and their analogues 75 xi 2.13 CONCLUSION 79 2.14 REFERENCES 81 CHAPTER 3 ADDITION OF DIFFERENT PHOSPHORUS•CENTRED RADICALS TO VARIOUS ALKENES 3.1 INRODUCTION
Recommended publications
  • Verification of Chemical Warfare Agent Exposure in Human Samples
    Toxichem Krimtech 2013;80(Special Issue):288 Verification of chemical warfare agent exposure in human samples Paul W. Elsinghorst, Horst Thiermann, Marianne Koller Institut für Pharmakologie und Toxikologie der Bundeswehr, München Abstract Aim: This brief presentation provides an overview of methods that have been developed for the verification of human exposure to chemical warfare agents. Methods: GC–MS detection of nerve agents (V- and G-type) has been carried out with respect to unreacted agents as well as enzyme-bound species and metabolites. Methods involving di- rect SPE from plasma, fluoride-induced release of protein-bound nerve agents in plasma and analysis of their metabolites in plasma and urine have been developed. Exposure to blistering agents, i.e., sulfur mustard, has been verified by GC–MS detection of the unreacted agent in plasma and by LC– and GC–MS analysis of its metabolites in urine. Results: After incorporation nerve agents quickly bind to proteins, e.g., acetylcholinesterase, butyrylcholinesterase or serum albumin, and only small parts remain freely circulating for a few hours (G-type) or up to 2 days (V-type). Concurrently they are converted to O-alkyl methylphosphonic acids by phosphotriesterases and/or simply by aqueous hydrolysis. As a re- sult, different biomarkers can be detected depending on the time passed between exposure and sampling. Unreacted V-type agents can be detected in plasma for 2 days, the O-alkyl methyl- phosphonic acids in plasma for about 2–4 days and in urine for up to 1 week. Fluoride-indu- ced release of protein-bound nerve agents can be carried out until 3 weeks post exposure.
    [Show full text]
  • United States Patent Office Patented Apr
    3,803,252 United States Patent Office Patented Apr. 9, 1974 1. 2 3,803,252 in which R is as hereinbefore defined and Y represents PROCESS FOR THE PREPARATION OF CAROTENOD COMPOUNDS a hydrogen atom or a retinyl radical. This formula may Pierre Chabardes, Lyon, and Marc Julia, Paris, France, represent sterically pure products, or mixtures of differ assignors to Rhone-Poulenc S.A., Paris, France ent isomers. 5 The unsubstituted sulphones used as starting mate No Drawing. Filed May 17, 1972, Ser. No. 254,103 rials have the Formula I in which Y represents a hy Claims priority, applicitFrance, May 19, 1971, drogen atom; they are called herein retinyl-Sulphones. Int, C. C07c9 13/00 They can be prepared by known methods for the prep U.S. C. 260-666 C 9 Claims aration of sulphones. A particularly advantageous method O consists of reacting an alkali metal sulphinate of the formula RSOM, in which R represents alkyl, aryl, alkyl ABSTRACT OF THE DISCLOSURE aryl or aralkyl, preferably phenyl or tolyl, and M rep Caroteine compounds e.g. g-caroteine, are prepared by resents an alkali metal, with retinol or a retinol ester reacting a sulphone Ret-SO-R, in which Ret repre of an inorganic or organic acid, such as retinyl chloride sents retinyl or substituted retinyl and R represents a 15 or bromide, or retinyl formate or acetate. They can also hydrocarbon radical, in the presence of an alkaline be prepared by reacting a sulphinic acid RSOH with reagent with an ester Ret-X, in which X represents an retinol, it being possible to form this acid in situ, if re acid residue, and then desulphonating the product, for quired, from a metal sulphinate in an acid medium.
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Phosphorus-Containing Amino Acids with a P–C Bond in the Side Chain Or a P–O, P–Sorp–N Bond: Cite This: RSC Adv., 2020, 10, 6678 from Synthesis to Applications
    RSC Advances View Article Online REVIEW View Journal | View Issue Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–SorP–N bond: Cite this: RSC Adv., 2020, 10, 6678 from synthesis to applications a b b Mathieu Arribat, Florine Cavelier * and Emmanuelle Remond´ * Since the discovery of (L)-phosphinothricin in the year 1970, the development of a-amino acids bearing a phosphorus group has been of renewed interest due to their diverse applications, including their use in [18F]-fluorolabeling, as fluorescent probes, as protecting groups and in the reversible immobilization of amino acids or peptide derivatives on carbon nanomaterials. Considerable progress has also been achieved in the field of antiviral agents, through the development of phosphoramidate prodrugs, which increase significantly the intracellular delivery of nucleoside monophosphate and monophosphonate analogues. This review aims to summarize the strategies reported in the literature for the synthesis of P(III), P(IV) and P(V) phosphorus-containing amino acids with P–C, P–O, P–SorP–N bonds in the side Received 2nd December 2019 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. chains and their related applications, including their use in natural products, ligands for asymmetric Accepted 22nd January 2020 catalysis, peptidomimetics, therapeutic agents, chemical reagents, markers and nanomaterials. The DOI: 10.1039/c9ra10917j discussion is organized according to the position of the phosphorus atom linkage to the amino acid side rsc.li/rsc-advances chain, either in an a-, b-, g-ord-position or to a hydroxyl, thiol or amino group. 1. Introduction phosphinothricin has engendered the development of numerous drugs for neurodegenerative disease treatment.
    [Show full text]
  • Nerve Agent Hydrolysis Activity Designed Into a Human Drug Metabolism Enzyme
    Nerve Agent Hydrolysis Activity Designed into a Human Drug Metabolism Enzyme Andrew C. Hemmert1, Tamara C. Otto2, Roberto A. Chica3¤, Monika Wierdl4, Jonathan S. Edwards1, Steven L. Lewis1, Carol C. Edwards4, Lyudmila Tsurkan4, C. Linn Cadieux2, Shane A. Kasten2, John R. Cashman5, Stephen L. Mayo3, Philip M. Potter4, Douglas M. Cerasoli2, Matthew R. Redinbo1* 1 Department of Biochemistry/Biophysics and Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 2 United States Army Medical Research Institute for Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America, 3 Department of Biology and Chemistry, California Institute of Technology, Pasadena, California, United States of America, 4 Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America, 5 Human BioMolecular Research Institute, San Diego, California, United States of America Abstract Organophosphorus (OP) nerve agents are potent suicide inhibitors of the essential neurotransmitter-regulating enzyme acetylcholinesterase. Due to their acute toxicity, there is significant interest in developing effective countermeasures to OP poisoning. Here we impart nerve agent hydrolysis activity into the human drug metabolism enzyme carboxylesterase 1. Using crystal structures of the target enzyme in complex with nerve agent as a guide, a pair of histidine and glutamic acid residues were designed proximal to the enzyme’s native catalytic triad. The resultant variant protein demonstrated significantly increased rates of reactivation following exposure to sarin, soman, and cyclosarin. Importantly, the addition of these residues did not alter the high affinity binding of nerve agents to this protein. Thus, using two amino acid substitutions, a novel enzyme was created that efficiently converted a group of hemisubstrates, compounds that can start but not complete a reaction cycle, into bona fide substrates.
    [Show full text]
  • United States Patent (19) 11 4,311,652 Abramson Et Al
    United States Patent (19) 11 4,311,652 Abramson et al. 45 Jan. 19, 1982 54 ARBUZOV REACTIONS EMPLOYING AN 56) References Cited ALEPHATIC SOLVENT U.S. PATENT DOCUMENTS 3,483,279 12/1969 Davis et al. ......................... 260/969 75 Inventors: Alan Abramson, White Plains; 3,699,193 10/1972 Melton ..... ... 260/969 Edward D. Weil, 3,776,984 12/1973 Ratts ................................... 260/969 Hastings-on-Hudson, both of N.Y. Primary Examinter-Anton H. Sutto Attorney, Agent, or Firm-Vivienne T. White 73 Assignee: Stauffer Chemical Company, 57 ABSTRACT Westport, Conn. An improved process for phosphite rearrangement wherein the phosphite is rearranged to the phospho nate. The improvement comprises conducting the phos 21 Appl. No.: 154,170 phite rearrangement reaction in an aliphatic solvent which is miscible with the reactants at reaction temper atures, and immiscible with the product at lower tem 22 Filed: May 28, 1980 peratures. Increased yields of the phosphonate product are obtained without the need for additional distillation 51 int. Cl. ................................................ C07F 9/40 for solvent separation. 52 U.S. C. ................ ... 260/969; 260/990 58 Field of Search ................................ 260/969, 990 12 Claims, No Drawings 4,311,652 3 4. The advantage of conducting the rearrangement in a process for rearranging tris(2-chloroethyl) phosphite. solvent were found to be a more easily controlled exo The invention is directed to phosphite rearrangements, therm due to the heating and reflux of the solvent which wherein the novel process comprises conducting the removes the heat of reaction, and inhibiting the degra rearrangement process in an essentially aliphatic Solvent dation of the phosphonate product produced.
    [Show full text]
  • Some Transition Metal Complexes of Trivalent Phosphorus Esters
    AN ABSTRACT OF THE THESIS OF HARRY VAUGHN STUDER for the MASTER OF SCIENCE (Name) (Degree) inCHEMISTRY (Inorganic) presented on ///( (Major) / (Date') Title: SOME TRANSITION METAL COMPLEXES OF TRIVALENT PHOSPHORUS ESTERS Redacted for Privacy Abstract approved: Dr. In T. Yoke r The ligands in the series EtnP(OEt)3_11, n = 0 - 3,all form pseudotetrahedral high-spin bis -complexes with cobalt (II) chloride. Magnetic, spectrophotometric, conductivity, and molecular weight data show that the phosphorus ester ligands (but not the phosphine) also form five-coordinate low-spin tris-complexes; these can be isolated with the phosphonite and phosphinite ligands, while the existence of the tris -phosphite is marginal.At cobalt (II) to phosphorus ester mole ratios of 1:2, a mixture of species is present in all cases.All are non-conducting in nitrobenzene. The ester complexes are much more susceptible to autoxidation than is the phosphine complex. Some Transition Metal Complexes of Trivalent Phosphorus Esters by Harry Vaughn Studer A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science June 1972 APPROVED: Redacted for Privacy Profes of Chemi str y / in crge of major Redacted for Privacy Head of Department of Chemistry Redacted for Privacy Dean of Graduate School Date thesis is presented Typed by Donna Olson f arry Vatighn Studer ACKNOWLEDGEMENTS The author wishes to thank his research advisor, Dr. John T. Yoke, for his expert direction of this research, for his patience, and for the opportunity of learning through association with him. Acknowledgement is made to the donors of the Petroleum Re- search Fund, administered by the American Chemical Society, for the support of this work.
    [Show full text]
  • Synthetic, Sterochemical, and Electronic Studies of Organophosphorous Ligands and Their Transition Metal Complexes James Timothy Spencer Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1984 Synthetic, sterochemical, and electronic studies of organophosphorous ligands and their transition metal complexes James Timothy Spencer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Inorganic Chemistry Commons Recommended Citation Spencer, James Timothy, "Synthetic, sterochemical, and electronic studies of organophosphorous ligands and their transition metal complexes " (1984). Retrospective Theses and Dissertations. 7727. https://lib.dr.iastate.edu/rtd/7727 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Synthesis of 4-Phosphono Β-Lactams and Related Azaheterocyclic Phosphonates
    SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES IR . KRISTOF MOONEN To Elza Vercauteren Promotor: Prof. dr. ir. C. Stevens Department of Organic Chemistry, Research Group SynBioC Members of the Examination Committee: Prof. dr. ir. N. De Pauw (Chairman) Prof. dr. J. Marchand-Brynaert Prof. dr. A. Haemers Prof. dr. S. Van Calenbergh Prof. dr. ir. E. Vandamme Prof. dr. ir. R. Verhé Prof. dr. ir. N. De Kimpe Dean: Prof. dr. ir. H. Van Langenhove Rector: Prof. dr. P. Van Cauwenberge IR . KRISTOF MOONEN SYNTHESIS OF 4-PHOSPHONO β-LACTAMS AND RELATED AZAHETEROCYCLIC PHOSPHONATES Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences: Chemistry Dutch translation of the title: Synthese van 4-fosfono-β-lactamen en aanverwante azaheterocyclische fosfonaten ISBN-Number: 90-5989-129-5 The author and the promotor give the authorisation to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. Woord Vooraf Toen ik op een hete dag in de voorbije zomer dit woord vooraf schreef, stond ik voor één van de laatste horden te nemen in de weg naar het “doctoraat”. Het ideale moment voor een nostalgische terugblik op een zeer fijne periode, hoewel het onzinnig zou zijn te beweren dat alles rozegeur en maneschijn was. En op het einde van de rit komt dan ook het moment waarop je eindelijk een aantal mensen kunt bedanken, omwille van sterk uiteenlopende redenen.
    [Show full text]
  • Efficacy of the Repon1 Mutant IIG1 to Prevent Cyclosarin Toxicity in Vivo and to Detoxify Structurally Different Nerve Agents in Vitro
    Arch Toxicol (2014) 88:1257–1266 DOI 10.1007/s00204-014-1204-z MOLECULAR TOXICOLOGY Efficacy of the rePON1 mutant IIG1 to prevent cyclosarin toxicity in vivo and to detoxify structurally different nerve agents in vitro Franz Worek · Thomas Seeger · Moshe Goldsmith · Yacov Ashani · Haim Leader · Joel S. Sussman · Dan Tawfik · Horst Thiermann · Timo Wille Received: 30 September 2013 / Accepted: 16 January 2014 / Published online: 30 January 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract The potent human toxicity of organophos- alkylmethylfluorophosphonates but had low efficiency with phorus (OP) nerve agents calls for the development of the phosphoramidate tabun and was virtually ineffective effective antidotes. Standard treatment for nerve agent with the nerve agent VX. This quantitative analysis vali- poisoning with atropine and an oxime has a limited effi- dated the model for predicting in vivo protection by cata- cacy. An alternative approach is the development of cata- lytic bioscavengers based on their catalytic efficiency, the lytic bioscavengers using OP-hydrolyzing enzymes such level of circulating enzyme, and the dose of the intoxicat- as paraoxonases (PON1). Recently, a chimeric PON1 ing nerve agent. The in vitro and in vivo results indicate mutant, IIG1, was engineered toward the hydrolysis of the that IIG1 may be considered as a promising candidate toxic isomers of soman and cyclosarin with high in vitro bioscavenger to protect against the toxic effects of a range catalytic efficiency. In order to investigate the suitabil- of highly toxic nerve agents. ity of IIG1 as a catalytic bioscavenger, an in vivo guinea pig model was established to determine the protective Keywords Nerve agents · Paraoxonase · Mutant · effect of IIG1 against the highly toxic nerve agent cyclo- Detoxification · Protection · Bioscavenger sarin.
    [Show full text]
  • Neo Diol Phosphite Esters and Polymeric Compositions Thereof
    ^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 785 209 A1 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt ci * C07F 9/6574, C08K 5/527 23.07.1997 Bulletin 1997/30 (21) Application number: 97300269.4 (22) Date of filing: 17.01.1997 (84) Designated Contracting States: • Gray, Carloss L. DE ES FR GB IT NL P.O. Box 843, Belpre, Ohio 45714-0843 (US) (30) Priority: 22.01.1996 US 589832 (74) Representative: Szary, Anne Catherine, Dr. et al London Patent Operation, (71) Applicant: GENERAL ELECTRIC COMPANY GE International, Inc., Schenectady, NY 12345 (US) Essex House, 12-13 Essex Street (72) Inventors: London WC2R 3AA (GB) • Prabhu, Vaikunth S. Vienna, West Virginia 26105 (US) (54) Neo diol phosphite esters and polymeric compositions thereof (57) A phosphite and stabilized themoplastic composition comprising the phosphite where the phosphite has the formula: In the above compound, R7 and R8 are preferably alkyl of from 1 to 6 carbon atoms, most preferably an unsubstituted alkyl group. R9 is preferably alkyl of 1 to 1 2 carbon atoms, m is from 0 to 5. The dicumyl group includes the OX groups which are the phosphite portion. The OX group is hindered by only one alkylaryl group at the ortho position with the other ortho position being occupied by hydrogen. X has the following formula: —r'-^C—C C— O ^c— o (Rsk C p- !/C p- *2 2 C— O (R5)r-CZ2-^c^ O) o (R5)/(R5)2' CM or lO 00 wherein R2 is independently selected from the consisting of alkyl having from 1 to 12 carbon atoms, Is- group groups z-, and z2 can be 0 or 1.
    [Show full text]
  • Metal Complexes As Catalysts for the Synthesis of Heterocycles
    METAL COMPLEXES AS CATALYSTS FOR THE SYNTHESIS OF HETEROCYCLES Steven Lal Department of Chemistry, Imperial College London A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Imperial College London May 2013 1 Declaration I certify that all the work in this thesis is solely my own, except where explicitly stated and appropriately referenced. No part of the thesis has been submitted previously for a degree at this, or any other, university. 2 Copyright Notice Imperial College of Science, Technology and Medicine Department Of Chemistry Metal Complexes as Catalysts for the Synthesis of Heterocycles © 2013 Steven Lal [email protected] The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives License. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the license terms of this work. Steven Lal Department of Chemistry Imperial College London Exhibition Road London SW7 2AZ UK www.imperial.ac.uk 3 Contents Abstract ...................................................................................................................................... 8 Acknowledgements .................................................................................................................
    [Show full text]