Chapter 117 Neuroinformatics Japan Node and Platforms

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 117 Neuroinformatics Japan Node and Platforms Chapter 117 Neuroinformatics Japan Node and Platforms Shiro Usui Abstract Since the establishment of NIJC in 2005 at the RIKEN Brain Science Institute, which represents the Japan Node of INCF, Japanese neuroinformatics activities has been enhanced to integrate outstanding research of neuroscience in Japan. We introduce the scheme and resources developed by NIJC. There are nine neuroinformatics platforms so far, including both already developed and under de- velopment. The J-Node portal has been accessed about 47,000 times per month on average inside and outside the country. We intend to increase the overseas users of the platforms on the J-Node site. Keywords Neuroinformatics · INCF · J-Node · platforms · XooNIps Introduction Neuroinformatics (NI) is concerned with integrating the diverse and complex neu- roscience data through information science in the inter/intranationally organized framework. The international framework is the International Neuroinformatics Co- ordinating Facility (INCF)1 established through the Global Science Forum of OECD on November 2005, while the intranational counterpart is the National Node of the INCF member country. The role of the National Nodes includes to coordinate neu- roinformatics activities within the country and to promote neuroinformatics devel- opment that supports the objectives of INCF. The Neuroinformatics Japan Center (NIJC) represents the INCF national Node of Japan (J-Node)2 . Together with the Japan Node Committee and the Platform Com- mittees, NIJC facilitates neuroinformatics research in Japan. Figure 117.1 shows J-Node in the center connected with nine platforms. Platform Committee members S. Usui RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198 Japan e-mail: [email protected] 1 http://www.incf.org/ 2 http://www.neuroinf.jp/ R. Wang et al. (eds.), Advances in Cognitive Neurodynamics, 679 C Springer Science+Business Media B.V. 2008 680 S. Usui Ministry of Education, Culture, Sports, Science and Technology INCF Request: Participation in INCF Paying the contributions Report INCF Support for drawing the framework Japan Node RIKEN BSI Committee Office Participation, JapanNode Paying the contributions Neuroinformatics Japan Center Establish Coordination Japanese-wide Framework for Maintenance of infrastructure Promoting research American European Support for developing and operating the system Node Nodes e vic NIJC Steering Committee Ad PF Coordinating Committee Committee Committee Committee Committee Committee Committee Committee Committee Committee Neuron CDT- Cerebellum NICT /Glia IVB BMI Visiome IBR NIMG DB PF PF PF PF PF PF PF PF Some platforms are under Neuroscience Researchers (Users) development and not released yet Fig. 117.1 Japan-Node scheme with INCF collaborate to develop their platforms. Each platform has been developed with a base platform system, XooNIps3 , which was developed by NI-Team at RIKEN BSI and is operated by NIJC. The registered users of a platform can freely download its contents and upload their own contents on it by a simple procedure with the approval of the platform Committee. These platforms are or will be accessible at the J-Node site. J-Node Platforms We here introduce each platform (PF) developed or under development at the J-Node portal site [1]. Cerebellar Development Transcriptome Database To elucidate the genetic basis for mouse cerebellar development, as a model sys- tem, the members analyze all of the transcriptional events (i.e., the transcriptome) responsible for developmental stages. CDT-DB has been developed to combine the large datasets of the expression profile information and the relevant bioinformatics, which not only allows us to delineate the complex genetic mechanisms underpinning cerebellar development but also provides a tool for sharing and mining of our large datasets. [PF head: Furuichi, Teiichi (RIKEN Brain Science Institute)] 3 http://xoonips.sourceforge.jp/ 117 Neuroinformatics Japan Node and Platforms 681 Neuron-Glia PF Focuses on how neuronal and glial cells and the networks of these cells work in a highly complex and dynamical system of brain and proposes to give math- ematical model descriptions to new findings and ideas on neural information pro- cessing. Neuron-Glia PF also provides the function to help collaboration of researchers. [PF head: Miyakawa, Hiroyoshi (Tokyo University of Pharmacy and Life Sciences)] Invertebrate Brain PF IVB PF allows us to share such resources as the physiological and behavioral data from insects and other invertebrate animals. For example, Invertebrate Brain Gallery - a collection of images of nervous systems in various invertebrates - is constructed and managed by the original XooNIps module. Original image data of invertebrate neurons, such as interneuron of antennal lobe of moth brain, are collected on the site. [PF head: Kanzaki, Ryohei (University of Tokyo)] Cerebellum PF Is a database of the all kinds of information on a cerebellum with an unique structure and role in motor learning. The platform will provide a history of the cerebellar research and the basic concepts of the cerebellar structure and function, references and images, experimental data for the modeling, source codes of neural network models, and other tools for the study of the cerebellum. The members will focus on the two important cerebellum-dependent experimental paradigms, i.e., adaptation of the eye movements and eyeblink conditioning. [PF head: Nagao, Soichi (RIKEN Brain Science Institute)] Brain-Machine Interface PF BMI is the interface in which mechanical devices provide sensory input to the brain, or are controlled by the motor output signals recorded in the brain. BMI PF is a database of BMI researches covering the research fields of neuroscience, compu- tational theory, robotics etc. It provides organically linked information about BMI to researchers of the field inside and outside the country and support researches to develop their study or understanding of BMI. By using a clickable map of re- search sites about BMI, users can figure out trends of BMI studies around the world. [PF head: Iijima, Toshio (Tohoku University)] 682 S. Usui Visiome PF is a vision science neuroinformatics platform, which was developed by NRV project [2]. Since reproducibility is a key principle of the scientific method, published re- sults must be testable by other researchers using the same methods. The platform collects various kinds of reference files and makes them organized and packaged as a single item in Visiome Binder, which is useful for providing a reading list for students, a collection of models and data with a particular interest, a collection of ed- ucative movies in vision science. [PF head: Kamiyama, Yoshimi (Aichi Prefectural University)] Integrative Brain Research PF The IBR project is comprised of about 300 principal investigators (PIs) from dif- ferent neuroscience areas. The database committee is planning both top-down and bottom-up types of databases. For the former, the database committee will collect the outcomes of the research of individual PIs and will publish these research out- comes on IBR PF. Although the activity of the project will finish in 5 years, the content will be maintained and updated by the IBR-PF committee under the J-Node afterwards. [PF head: Isa, Tadashi (National Institute for Physiological Sciences)] Neuroimaging PF NIMG-PF committee members are registering bibliographies, tutorial materials, software contents, experimental data and other information and links related to var- ious neuroimaging technologies such as MRI, MEG, EEG, PET, and NIRS, and their integrations. They are also developing convenient visualization functions for neuroimaging databases, which are capable of an easy-to-use display of 3D brain images and a function of search by pointing locations on the images. In addition, there is a plan of registering MEG multi-dipole analysis software and raw data of MRI and MEG. [PF head: Suzuki, Ryoji (Kanazawa Institute of Technology)] Neuroinformatics Common Tools PF NICT PF aims to share mathematical theory, algorithm, analytical tool and NI- supporting environment. At present, software tools and NI-supporting environment developed by NI-Team for neuroscientists are being registered, such as (1) Cus- tomizable base platform; XooNIps, (2) Personal database software; Concierge, (3) System analysis total environment; SATELLITE, and (4) Visualization tools; Samurai-Graph. [PF head: Usui, Shiro (RIKEN Brain Science Institute)] 117 Neuroinformatics Japan Node and Platforms 683 Concluding Remarks We have kept track of the access log to the J-Node site regularly since it was revised in July 2006. Figure 117.2 shows the records on monthly basis as of May 31 2007. The average number of site access is approximately 47,000 per month. This number has much increased because the portal was revised to be easier to find the informa- tion of users’ interests and to provide information in English as well. Figure 117.2 also reveals that the site is accessed not only from jp domain but also from other country domains (us, au, eu, de, and so on). It is necessary to collect significant resources to attract users and promote the J-Node site over the countries. 60,000 50,000 40,000 30,000 Non JP Access JP 20,000 10,000 0 e ly g ct v c b n u u O e Jan e Ju J A Sep No D F Mar Apr May Month 2006 2007 Year Fig. 117.2 The number of access to the J-Node portal site (June ’06 - May ’07) Acknowledgements I would like to thank Dr.Amari, Shun-ichi at RIKEN BSI and all members of the PF Committees for their supports and collaborations. References 1. Usui, S., Furuichi, T., Miyakawa, H., Ikeno, H., Nagao, S., Iijima, T., Kamiyama,Y., Isa, T., Suzuki, R., Ishikane, H.: Japanese Neuroinformatics Node and Platforms. ICONIP2007 Pro- ceedings, (2007). 2. Usui, S.: Visiome: Neuroinformatics research in vision project. Neural Networks, 16 (2003) 1293–1300..
Recommended publications
  • Vision Science Meets Visualization
    Vision Science Meets Visualization Organizers: Christine Nothelfer Zoya Bylinskii Madison Elliott Cindy Xiong Danielle Albers Szafir Northwestern Massachusetts Institute University of British Northwestern University of Colorado University of Technology Columbia University Boulder Panelists: Ronald Rensink Todd Horowitz Steven Franconeri Karen Schloss Ruth Rosenholtz University of British National Cancer Northwestern University of Massachusetts Institute Columbia Institute University Wisconsin-Madison of Technology presenters each year. Recent developments in these research ABSTRACT topics (e.g., in visual attention, scene understanding, and quantity Vision science can explain what people see when looking at a perception) can inform our understanding of how people interpret visualization--what data features people attend to, what statistics visualized information. However, historically, few VIS they ascertain, and what they ultimately remember. These findings researchers have attended VSS, and few vision scientists have have significant relevance to visualization and can guide effective attended IEEE VIS. This limited overlap has stifled the exchange techniques and design practices. Intersections between of information, ideas, and questions between the two visualization and vision science have traditionally built upon communities. topics such as visual search, color perception, and pop-out. However, there is a broader space of vision science concepts that Further, while crossover between vision science and visualization could inform and explain ideas in visualization but no dedicated is not without precedent (e.g., work by Cleveland & McGill [2] venue for collaborative exchanges between the two communities. and Healey & Enns [8]), these interactions can benefit from This panel provides a space for this exchange by bringing five exposure to a broader set of vision science topics, such as object vision science experts to IEEE VIS to survey the modern vision tracking, ensemble statistics, and visual crowding.
    [Show full text]
  • 1 Human Color Vision
    CAMC01 9/30/04 3:13 PM Page 1 1 Human Color Vision Color appearance models aim to extend basic colorimetry to the level of speci- fying the perceived color of stimuli in a wide variety of viewing conditions. To fully appreciate the formulation, implementation, and application of color appearance models, several fundamental topics in color science must first be understood. These are the topics of the first few chapters of this book. Since color appearance represents several of the dimensions of our visual experience, any system designed to predict correlates to these experiences must be based, to some degree, on the form and function of the human visual system. All of the color appearance models described in this book are derived with human visual function in mind. It becomes much simpler to understand the formulations of the various models if the basic anatomy, physiology, and performance of the visual system is understood. Thus, this book begins with a treatment of the human visual system. As necessitated by the limited scope available in a single chapter, this treatment of the visual system is an overview of the topics most important for an appreciation of color appearance modeling. The field of vision science is immense and fascinating. Readers are encouraged to explore the liter- ature and the many useful texts on human vision in order to gain further insight and details. Of particular note are the review paper on the mechan- isms of color vision by Lennie and D’Zmura (1988), the text on human color vision by Kaiser and Boynton (1996), the more general text on the founda- tions of vision by Wandell (1995), the comprehensive treatment by Palmer (1999), and edited collections on color vision by Backhaus et al.
    [Show full text]
  • Color Vision and Night Vision Chapter Dingcai Cao 10
    Retinal Diagnostics Section 2 For additional online content visit http://www.expertconsult.com Color Vision and Night Vision Chapter Dingcai Cao 10 OVERVIEW ROD AND CONE FUNCTIONS Day vision and night vision are two separate modes of visual Differences in the anatomy and physiology (see Chapters 4, perception and the visual system shifts from one mode to the Autofluorescence imaging, and 9, Diagnostic ophthalmic ultra- other based on ambient light levels. Each mode is primarily sound) of the rod and cone systems underlie different visual mediated by one of two photoreceptor classes in the retina, i.e., functions and modes of visual perception. The rod photorecep- cones and rods. In day vision, visual perception is primarily tors are responsible for our exquisite sensitivity to light, operat- cone-mediated and perceptions are chromatic. In other words, ing over a 108 (100 millionfold) range of illumination from near color vision is present in the light levels of daytime. In night total darkness to daylight. Cones operate over a 1011 range of vision, visual perception is rod-mediated and perceptions are illumination, from moonlit night light levels to light levels that principally achromatic. Under dim illuminations, there is no are so high they bleach virtually all photopigments in the cones. obvious color vision and visual perceptions are graded varia- Together the rods and cones function over a 1014 range of illu- tions of light and dark. Historically, color vision has been studied mination. Depending on the relative activity of rods and cones, as the salient feature of day vision and there has been emphasis a light level can be characterized as photopic (cones alone on analysis of cone activities in color vision.
    [Show full text]
  • Vision Science and Adaptive Optics, the State of the Field
    Vision Research 132 (2017) 3–33 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Vision science and adaptive optics, the state of the field ⇑ Susana Marcos a, John S. Werner b, Stephen A. Burns c, , William H. Merigan d, Pablo Artal e, David A. Atchison f, Karen M. Hampson g, Richard Legras h, Linda Lundstrom i, Geungyoung Yoon d, Joseph Carroll j, Stacey S. Choi k, Nathan Doble k, Adam M. Dubis l, Alfredo Dubra m, Ann Elsner c, Ravi Jonnal b, Donald T. Miller c, Michel Paques n, Hannah E. Smithson o, Laura K. Young o, Yuhua Zhang p, Melanie Campbell q, Jennifer Hunter d, Andrew Metha r, Grazyna Palczewska s, Jesse Schallek d, Lawrence C. Sincich p a Instituto de Optica, CSIC, Madrid, Spain b University of California, Davis, USA c Indiana University, Bloomington, USA d University of Rochester, New York, USA e Universidad de Murcia, Spain f Queensland University of Technology, Australia g University of Bradford University, UK h Université de Paris Sud, France i KTH (Royal Institute of Technology), Stockholm, Sweden j Medical College of Wisconsin, Milwaukee, USA k The Ohio State University, Columbus, OH, USA l University College London, London, UK m Stanford University, Palo Alto, CA, USA n Pierre et Marie Curie University, Paris o University of Oxford, UK p University of Alabama at Birmingham, Birmingham, USA q University of Waterloo, Canada r University of Melbourne, Australia s Polgenix, Inc., Cleveland, OH, USA article info abstract Article history: Adaptive optics is a relatively new field, yet it is spreading rapidly and allows new questions to be asked Received 20 September 2016 about how the visual system is organized.
    [Show full text]
  • Visual Psychophysics Has Been Around Even Longer Than the Word Psychophysics
    City Research Online City, University of London Institutional Repository Citation: Solomon, J. A. (2013). Visual Psychophysics. In: Dunn, S. (Ed.), Oxford Bibliographies in Psychology. New York: OUP. This is the accepted version of the paper. This version of the publication may differ from the final published version. Permanent repository link: https://openaccess.city.ac.uk/id/eprint/5032/ Link to published version: http://dx.doi.org/10.1093/OBO/9780199828340-0128 Copyright: City Research Online aims to make research outputs of City, University of London available to a wider audience. Copyright and Moral Rights remain with the author(s) and/or copyright holders. URLs from City Research Online may be freely distributed and linked to. Reuse: Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. City Research Online: http://openaccess.city.ac.uk/ [email protected] Visual Psychophysics Joshua A. Solomon 1 Introduction Paradigms for attacking the problem of how vision works continue to develop and mutate, and the boundary between them can be indistinct. Nonetheless, this bibliography represents an attempt to delineate one such paradigm: Visual Psychophysics. Unlike, for example, anatomical paradigms, the psychophysical paradigm requires a complete organism. Most of the studies discussed below involve human beings, but psychophysics can be used to study the vision of other organisms too. At minimum, the organism must be told or taught how to respond to some sort of stimulus.
    [Show full text]
  • Curriculum Vitae
    Curriculum Vitae Bruno A. Olshausen Born September 28, 1962, Sunset Beach, California. Address: 2403 McGee Avenue [email protected] Berkeley, California 94703 http://redwood.berkeley.edu/bruno (530) 518-0859 (cell) (510) 642-7250 (office) Degrees Ph.D. 1994 Computation and Neural Systems, California Institute of Technology. M.S. 1987 Electrical Engineering, Stanford University. B.S. 1986 Electrical Engineering, Stanford University. Positions 2010{ Professor, Helen Wills Neuroscience Institute and School of Optometry, University of California, Berkeley. 2005{ Director, Redwood Center for Theoretical Neuroscience, UC Berkeley. 2005{2010 Associate Professor, Helen Wills Neuroscience Institute and School of Op- tometry, University of California, Berkeley. 2003{2005 Associate Professor, Section of Neurobiology, Physiology & Behavior, Uni- versity of California, Davis. 2002{2005 Senior Research Scientist, Redwood Neuroscience Institute, Menlo Park, California. 2001{2003 Associate Professor, Department of Psychology, University of California, Davis. 1996{2001 Assistant Professor, Department of Psychology, University of California, Davis. 1996 Postdoctoral Fellow, Center for Biological and Computational Learning, Massachusetts Institute of Technology. 1994{1996 Postdoctoral Fellow, Department of Psychology, Cornell University. 1987{1989 Research Associate, Research Institute for Advanced Computer Science, NASA Ames Research Center. Awards and honors 2007{ Fellow, Canadian Institute for Advanced Research, Learning in Brains and Machines program. 2008{2009 Fellow, Wissenschaftskolleg zu Berlin Patents 2008 Rozell CJ, Olshausen BA, Baraniuk RG, Johnson DH, Ortman RL, \Ana- log System For Computing Sparse Codes," U.S. Patent Application No: 12/035,424 Grants Active 2019{2021 Bruno A. Olshausen, P.I., Pentti Kanerva, Co-P.I., \Computing in Holo- graphic Representation," Air Force Office of Scientific Research, $412,000 (total) 2017{2020 Friedrich Sommer, P.I., Bruno A.
    [Show full text]
  • Call for Papers
    Journal of Vision Special Issue Visual Metacognition Visual metacognition is the ability to make cognitive judgments on our own visual perceptual decisions. A paramount example of visual metacognition is visual confidence, classically defined as the ability to judge the correctness of our perceptual decisions given the evidence. New issues are emerging thanks to recent advances in measuring and analysing tools, and following a growing body of experimental work from psychophysics and brain imaging studies. These issues address not only visual metacognition per se, but more generally, they also inform us about the mechanisms underlying visual perception. For this special issue we invite not only research papers on new behavioral work, but also neural studies on humans and other animal species, as well as related computational models. Authors may use any of the available article types, including regular, Review, Comment, Emerging trends in Vision Science, and Perspective. Feature Editors: Rachel Denison, Boston University, USA Steve Fleming, University College London, UK Janneke Jehee, Donders Institute, The Netherlands Pascal Mamassian, CNRS & Ecole Normale Supérieure, Paris, France Megan Peters, UC Irvine, USA Doby Rahnev, Georgia Institute of Technology, USA Submissions Accepted through October 31, 2022. Accepted papers will be published as ready in the current monthly issue as well as presented together as a special issue on the JOV website. Journal of Vision is an online, open access, peer-reviewed scientific journal devoted to all aspects of visual function in humans and other organisms. The journal is published exclusively in digital form: full-text articles may be accessed for free via the internet. The journal encourages the effective use of color, multimedia, hyperlinks, program code, and other digital enhancements.
    [Show full text]
  • Schall Curriculum Vita Page 3
    Curriculum Vita Jeffrey D. Schall October 17, 2017 Address Department of Psychology Phone (615) 322-0868 voice Wilson Hall (615) 343-8449 FAX Vanderbilt University Nashville, TN 37240 Email [email protected] ORCID orcid.org/0000-0002-5248-943X Education 1986 Ph.D., Anatomy, University of Utah, Salt Lake City, Utah. 1982 B.S.Chem., Chemistry, University of Denver, Denver, Colorado. Scholastic and Professional Distinction 2014 Fellow, American Association for the Advancement of Science 2009 Chancellor’s Research Award, Vanderbilt University 2004 Fellow, Association of Psychological Science 2002 Elected, International Neuropsychology Symposium 2001 Ellen Gregg Ingalls Award for Excellence in Classroom Teaching 1998 Troland Research Award, National Academy of Sciences 1997-2000 Investigator Award, McKnight Endowment Fund for Neuroscience 1990-1992 Alfred P. Sloan Research Fellow 1987 Association of Anatomy Chairmen Outstanding Dissertation Award Finalist, American Association of Anatomists. 1986 James W. Prahl Memorial Award for the Outstanding Graduate Student, University of Utah School of Medicine. 1986 Phi Kappa Phi, University of Utah. 1984 Graduate Research Fellow, University of Utah. 1982 Phi Beta Kappa, University of Denver. 1980 University Scholar, University of Denver. Professional Experience 2003 - E. Bronson Ingram Professor of Neuroscience, Vanderbilt University 2000- Director, Center for Integrative & Cognitive Neuroscience 1999- Professor, Department of Psychology, Vanderbilt University 1998-2015 Director, Vanderbilt Vision Research Center 1998-2019 Director, Vision Training Program 1995-1999 Associate Professor, Department of Psychology, Vanderbilt University 1990- Kennedy Center Investigator 1989-1995 Assistant Professor, Department of Psychology, Vanderbilt University 1986-1989 Postdoctoral Fellow, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, P.H.
    [Show full text]
  • Guidelines for School Vision Screening Programs: Kindergarten Through Grade12
    Guidelines for School Vision Screening Programs: Kindergarten through Grade12 Colorado Department of Education January 2006 Preface The guidelines in this manual have been revised from the Guidelines for School Vision Screening Programs, September 1991, 2nd Edition.1 Recommendations for the updated guidelines are based on C.R.S. 22-1-116 and the National Association of School Nurses, To See or Not To See: Screening the Vision of Children in School, by Susan Proctor2. Standardization of school vision screening programs is lacking according to Susan Proctor (2005). Areas of needed remediation noted are (1) methodology, (2) frequency of screening, (3) visual functions assessed, and (4) criteria for referral. There remain no clinical standards for schools and children in school programs endorsed by, developed by, and disseminated to, all professionals interested and affected, including nurses, which recommend specific criteria to be employed in school screening programs for children of all ages. 3 In her book Susan Proctor references several researchers who have commented on the need for more standardization in the screening process.4 There remains a void in clear and cogent direction for comprehensive school screening parameters for persons from birth through age 22, which is the population range served by contemporary public schools. The intent of the revised Colorado Vision Screening Guidelines is to identify the tests and appropriate equipment to use for an optimal screening program as recommended by the latest research. These guidelines will continue to be amended and updated as new research and methodology evolve. 1 Colorado Department of Public Health & Environment (1991). Guidelines for school vision screening programs.
    [Show full text]
  • Vision Science & Perception
    Vision Science & Perception George Legrady © 2021 Experimental Visualization Lab Media Arts & Technology University of California, Santa Barbara Vision Science & Perception Presentation: Main Themes Jonathan Crary (1990), Art History – camera innovation parallel to neuroscience discoveries David Marr (1982) Vision: Computer Scientists are listening to neuroscientists Visual Perception from a physiological perspective “Vision Science: Photons to Phenomenology”, Stephen Palmer, https://palmerlab.berkeley.edu/ Paul Virilio, “Vision Machine” (1994) Philosophy, Cultural Theory Bela Julesz & Michal Noll (Bell Labs pioneers) Vision Perception Research Paper Eye tracking study John Baldessari artworks to go beyond the rectangular frame https://ethw.org/First Hand:Howard_Wise_Gallery_Show_of_Digital_Art_and_Patterns_(1965):_A_50th_Anniversary_Memoir “Techniques of the Observer”, Jonathan Crary (1990) Prof. Modern Art & Theory, Columbia University, NYC Inverting conventional approaches, Crary considers the problem of visuality not through the study of art works and images, but by analyzing the historical construction of the observer. He insists that the problems of vision are inseparable from the operation of social power and examines how, beginning in the 1820s, the observer became the site of new discourses and practices that situated vision within the body as a physiological event. Alongside the sudden appearance of physiological optics, Crary points out, theories and models of "subjective vision" were developed that gave the observer a new autonomy and productivity. https://mitpress.mit.edu/books/techniques-observer “Techniques of the Observer”, Jonathan Crary (1990) Chapter 1: Relation of vision to image capture technologies Chapter 2: The impact of the camera obscura in rethinking our presence in relation to the world Chapter 3: Subjective Vision and the Separation of the Senses, Goethe’s color theory, physical stimulus to the optical and audio senses Chapter 4: Techniques of the Observer, 19th century technical devices Chapter 5: Visionary Abstraction.
    [Show full text]
  • Ninety Years of Vision Science Research
    UNIVERSITY OF CALIFORNIA VOL. 7, NO. 1 | FALL 2014 Berkeley Optometry magazine NINETY YEARS OF VISION SCIENCE RESEARCH ADVANCING EDUCATION AND RESEARCH AT BERKELEY OPTOMETRY EXECUTIVE EDITOR dean’s message Lawrence Thal MANAGING EDITOR arrived at the School of Optometry, University of California, Berkeley, nearly six months ago; and Kellie Rogers what a six months it has been. I am delighted to be here and delighted to have this opportunity to write my first message for the Berkeley Optometry Magazine. Although it would be premature to EDITOR I make any definitive announcements with regard to the direction I see us headed over the next ten years, LeeAnn Pickrell it seems like a good time to share some of my observations so far. ART DIRECTOR AND PROJECT MANAGER I have been overwhelmed by the support that Berkeley Optometry enjoys from its alumni. Over the last month alone I have experienced a record-breaking alumni weekend with over 500 attendees at the Tom Sharp Saturday evening event, hosted a raucous reception at the Academy meeting in Denver, and enjoyed a WRITERS/CONTRIBUTORS strident Optometry performance for the inaugural “Big Give”. I have been humbled by our students; their intelligence, humility, sense of humor and intuitive sense of responsibility. The profession has a John Fiorillo, Karsten Gronert, Calista great future in their hands. I have also been astonished by the talents and accomplishments of our faculty Ming, Monica Rodriguez, Michelle Wong and staff; they run the busiest, biggest and best clinics, offer exceptional student services, attract extraor- dinary levels of research funding, and passionately teach to the highest possible standards.
    [Show full text]
  • Analysis of the Mechanisms of Human Visual Processing
    Christopher W . Tyler, Ph.D. Analysis of the Mechanisms of Human Visual Processing Christopher W. Tyler, Ph.D. Smith-Kettlewell Eye Research Institute 2318 Fillmore Street San Francisco, CA 94115, USA. Application for the degree of Doctor of Science University of Keele 1 Christopher W . Tyler, Ph.D. Education: Institution Degree Conferred Field of Study University of Leicester, U.K. B.A. 1966 Psychology University of Aston, U.K. M.Sc. 1967 Applied Psychology University of Keele, U.K. Ph.D. 1970 Communications Reseach and Professional Experience: 1990-2003 Associate Director, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1981- Senior Scientist, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1977- External Doctoral Thesis Advisor, Dept. of Psychology, University of California, Berkeley. 1986-87 Adjunct Professor, School of Optometry, University of California, Berkeley. 1985-89 Visiting Professor, UCLA Medical Center, Jules Stein Institute. 1978-80 External Doctoral Thesis Advisor, Dept. of Psychology, Stanford University, Stanford, CA. 1978-82 Honorary Res. Associate, Institute of Ophthalmology, London, U.K. 1975-81 Scientist, Smith-Kettlewell Eye Res. Institute, San Francisco, CA. 1974-75 Res. Fellow, Dept. of Sensory and Perceptual Processes, Bell Laboratories, Murray Hill, NJ. 1973-74 Res. Fellow, Dept. of Psychology, University of Bristol, U.K. 1972-73 Assistant Professor, Northeastern University, Boston, MA. (Psychology Courses: Experimental, Introductory, History, Social Issues, Vision). 1972 Visiting Assistant Professor, Dept. of Psychology, University of California, Los Angeles, CA. (Course: Perception). 1970-72 Res. Fellow, Dept. of Psychology, Northeastern University, Boston, MA. Dissertations M.Sc. A study of the electrical activity of the brain in a simple decision task.
    [Show full text]