The World's Smallest Campanulaceae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook Publication.Pub
Table of Contents Maui County’s Landscape and Gardening Handbook Xeriscaping in Maui County ................................................................. 1 Planning and Design................................................................................................................. 1 Hydro-zones.............................................................................................................................. 1 Plant Selection and the Maui jkCounty Planting Zones............................................................ 2 Soil Preparation ........................................................................................................................ 4 Mulching.................................................................................................................................... 5 Irrigation .................................................................................................................................... 5 Maintenance ............................................................................................................................. 7 Other Interesting Techniques for the Ambitious ..................................... 8 Xeriscape Ponds....................................................................................................................... 8 Aquaponics in the Backyard ..................................................................................................... 9 Water Polymer Crystals ........................................................................................................... -
Systematic Studies of the South African Campanulaceae Sensu Stricto with an Emphasis on Generic Delimitations
Town The copyright of this thesis rests with the University of Cape Town. No quotation from it or information derivedCape from it is to be published without full acknowledgement of theof source. The thesis is to be used for private study or non-commercial research purposes only. University Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido Thesis presented for the degree of DOCTOR OF PHILOSOPHY in the Department of Botany Town UNIVERSITY OF CAPECape TOWN of September 2009 University Roella incurva Merciera eckloniana Microcodon glomeratus Prismatocarpus diffusus Town Wahlenbergia rubioides Cape of Wahlenbergia paniculata (blue), W. annularis (white) Siphocodon spartioides University Rhigiophyllum squarrosum Wahlenbergia procumbens Representatives of Campanulaceae diversity in South Africa ii Town Dedicated to Ursula, Denroy, Danielle and my parents Cape of University iii Town DECLARATION Cape I confirm that this is my ownof work and the use of all material from other sources has been properly and fully acknowledged. University Christopher N Cupido Cape Town, September 2009 iv Systematic studies of the South African Campanulaceae sensu stricto with an emphasis on generic delimitations Christopher Nelson Cupido September 2009 ABSTRACT The South African Campanulaceae sensu stricto, comprising 10 genera, represent the most diverse lineage of the family in the southern hemisphere. In this study two phylogenies are reconstructed using parsimony and Bayesian methods. A family-level phylogeny was estimated to test the monophyly and time of divergence of the South African lineage. This analysis, based on a published ITS phylogeny and an additional ten South African taxa, showed a strongly supported South African clade sister to the campanuloids. -
Campanulaceae) Based on ITS and Tranl-F Sequence Data: Implications for a Reclassification
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of the Western Cape Research Repository Cupido, C. N. et al. (2013). Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and tranL-F sequence data: implications for a reclassification. Systematic Botany, 38(2): 523 – 535 http:// doi.org/10.1600/036364413X666714 dx. Phylogeny of Southern African and Australasian Wahlenbergioids (Campanulaceae) based on ITS and trnL-F sequence data: implications for a reclassification Christopher N. Cupido , Jessica M. Prebble , and William M. M. Eddie Abstract The Campanulaceae: Wahlenbergioideae currently comprises 15 genera, one of which, Wahlenbergia, is widespread over the southern continents. Southern Africa is the region with maximum wahlenbergioid diversity with 12 genera and approximately 252 species. A second center is Australasia with 38 Wahlenbergia species. This study used a broad sample of wahlenbergioid diversity from South Africa, Australia, and New Zealand to reconstruct a phylogeny based on chloroplast trnL-F and nuclear ITS sequences. Data were analyzed separately and in combination using parsimony and Bayesian methods. The results suggest that for the wahlenbergioids to be monophyletic Wahlenbergia hederacea has to be excluded and that none of the South African, Australian or New Zealand lineages are strictly monophyletic. There are five species assemblages that are in some disagreement with current classification in the family. Wahlenbergia, Prismatocarpus and Roella are shown to be non-monophyletic and implications for a reclassification are presented. Careful consideration of morphological characters is suggested before the adjustment of generic circumscriptions can be accomplished. Recent family-wide molecular phylogenetic studies have supported the view that the Campanulaceae s.s. -
The Ladybells Adenophora Liliifolia (L.) Besser in Forests Near Kisielany (Siedlce Upland, E Poland)
BRC Biodiv. Res. Conserv. 3-4: 324-328, 2006 www.brc.amu.edu.pl The ladybells Adenophora liliifolia (L.) Besser in forests near Kisielany (Siedlce Upland, E Poland) Marek T. Ciosek Department of Botany, Institute of Biology, University of Podlasie, B. Prusa 12, 08-110 Siedlce, Poland, e-mail: [email protected] Abstract: The ladybells Adenophora liliifolia in Poland was found in only 8 sites after 1980, so it is now classified as critically endangered (E). Since 2001 the species has been strictly protected and enlisted in the Habitat Directive of the EU. In 1995 in Kisielany, northwest of Siedlce, a rich population of Adenophora liliifolia was found. This study was undertaken to characterize phytosociologically the patches with ladybells and to analyse the structure of this population. One hundred specimens were randomly selected for population analysis carried out in 2005. Measurements were done on live plants. Seven individual traits were measured or calculated, including plant height, number of flowers, leaf dimensions, etc. The analysed patches represent thermophilous oak forest Potentillo albae-Qurcetum. This is the largest Polish population of this species known so far, as it consists of several hundred flowering specimens. Adenophora liliifolia achieves greatest dimensions there and its mean height exceeds the data known from the literature. Quantitative contribution of ladybells to particular patches varies from ì+î to ì2î according to the Braun-Blanquet scale. The plant is accompanied by some protected species, like: Laserpitium latifolium, Cimicifuga europaea, Aquilegia vulgaris and Lilium martagon. A proposal has been submitted to protect the site as a nature reserve and the population will be studied further. -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Orchids: 2017 Global Ex Situ Collections Assessment
Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions. -
Plant Life MagillS Encyclopedia of Science
MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D. -
A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U. -
Characterization of Microsatellite Loci in Brighamia Insignis and Transferability to Other Genera in the Hawai‘Ian Lobelioid Group
PRIMER NOTE Characterization of microsatellite loci in Brighamia insignis and transferability to other genera in the Hawai‘ian lobelioid group Jeremie B. Fant1,2,4 , Mereida Fluckes1,3, Evana James1,3, Hilary Noble1, and Jordan Wood1,2 Manuscript received 20 August 2019; revision accepted PREMISE: Microsatellite markers were developed to measure genetic diversity and relatedness 22 September 2019. of ex situ collections of Brighamia insignis (Campanulaceae). 1 Plant Science and Conservation, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA METHODS AND RESULTS: Potential microsatellite markers were identified from two sources; 28 2 Plant Biology and Conservation, Northwestern University, O. T. were developed for B. insignis and an additional 12 markers from a previously published study Hogan Hall, 2205 Tech Drive, Evanston, Illinois 60208, USA of Lobelia villosa. Primer pairs were tested on 30 individuals of B. insignis and 24 individuals of 3 University of Illinois at Urbana-Champaign, Champaign, Illinois B. rockii to provide measures of genetic diversity and inbreeding. We assessed cross-species 61820, USA amplification in an additional 13 taxa that represented all six genera within the Hawai‘ian 4 Author for correspondence: [email protected] lobelioid group to determine the broader applicability of the markers. Citation: Fant, J. B., M. Fluckes, E. James, H. Noble, and J. Wood. CONCLUSIONS: Results indicate that these primers will provide useful estimates of genetic 2019. Characterization of microsatellite loci in Brighamia insignis and transferability to other genera in the Hawai‘ian lobelioid diversity and relatedness of ex situ collections of both Brighamia species. In addition, we group. Applications in Plant Sciences 7(11): e11303. -
List 01 Hawaiian Names 01 Plants
V\.{). 3 v BOTANICAL BULLETIN NO.2 JUNE. 1913 TERRITORY OF HAWAII BOARD OF AGRICULTURE AND FORESTRY List 01 Hawaiian Names 01 Plants BY JOSEPH F. ROCK Consulting Botanist, Board of Agriculture and Forestry HONOLULU: HAWAIIAN GAZETTE CO., LTD. 1913 ALPHABETICAL LIST OF HAWAIIAN NAMES OF PLANTS. The following list of Hawaiian plant-names has been compiled from various sources. Hillebrand in his valuable Flora of the Hawaiian Islands has given many Hawaiian names, especially of the more common species; these are incorporated in this list with a few corrections. Nearly all Hawaiian plant-names found in this list and not in Hillebrand's Flora were secured from Mr. Francis Gay of the Island of Kauai, an old resident in this Terri tory and well acquainted with its plants from a layman's stand point. It was the writer's privilege to camp with Mr. Gay in the mountains of Kauai collecting botanical material; for almost every species he could give the native name, which he had se cured in the early days from old and reliable natives. Mr. Gay had made spatter prints of many of the native plants in a large record book with their names and uses, as well as their symbolic meaning when occurring in mele (songs) or olioli (chants), at tached to them. For all this information the writer is indebted mainly to Mr. Francis Gay and also to Mr. Augustus F. Knudsen of the same Island. The writer also secured Hawaiian names from old na tives and Kahunas (priests) in the various islands of the group. -
University of Copenhagen, 1353 Copenhagen, Denmark
Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non- coding plastid DNA sequences Stefanovic, Sasa; Lakusic, Dmitar; Kuzmina, Maria; Mededovic, Safer; Tan, Kit; Stevanovic, Vladimir Published in: Taxon Publication date: 2008 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Stefanovic, S., Lakusic, D., Kuzmina, M., Mededovic, S., Tan, K., & Stevanovic, V. (2008). Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences. Taxon, 57(2), 452-475. Download date: 02. okt.. 2021 Stefanović & al. • Phylogeny of Edraianthus TAXON 57 (2) • May 2008: 452–475 Molecular phylogeny of Edraianthus (Grassy Bells; Campanulaceae) based on non-coding plastid DNA sequences Saša Stefanović1*, Dmitar Lakušić2, Maria Kuzmina1, Safer Međedović3, Kit Tan4 & Vladimir Stevanović2 1 Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6, Canada. *[email protected] (author for correspondence) 2 Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia 3 University of Sarajevo, Faculty of Forestry, 71000 Sarajevo, Bosnia and Herzegovina 4 Institute of Biology, University of Copenhagen, 1353 Copenhagen, Denmark The Balkan Peninsula is known as an ice-age refugium and an area with high rates of speciation and diversifi- cation. Only a few genera have their centers of distribution in the Balkans and the endemic genus Edraianthus is one of its most prominent groups. As such, Edraianthus is an excellent model not only for studying specia- tion processes and genetic diversity but also for testing hypotheses regarding biogeography, identification and characterization of refugia, as well as post-glacial colonization and migration dynamics in SE Europe. -
Uribe-Convers Et Al. 2017
Molecular Phylogenetics and Evolution 107 (2017) 551–563 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of Burmeistera (Campanulaceae: Lobelioideae): Combining whole plastome with targeted loci data in a recent radiation ⇑ Simon Uribe-Convers a, , Monica M. Carlsen a,1, Laura P. Lagomarsino a,b, Nathan Muchhala a a University of Missouri-St. Louis, Biology Department, One University Blvd., Research Building, St. Louis, MO 63121, USA b University of Gothenburg, Department of Biological and Environmental Sciences, Carl Skottsbergs gata 22B, P.O. Box 461, SE 405 30 Göteborg, Sweden article info abstract Article history: The field of molecular systematics has benefited greatly with the advent of high-throughput sequencing Received 23 September 2016 (HTS), making large genomic datasets commonplace. However, a large number of targeted Sanger Revised 6 December 2016 sequences produced by many studies over the last two decades are publicly available and should not Accepted 9 December 2016 be overlooked. In this study, we elucidate the phylogenetic relationships of the plant genus Available online 21 December 2016 Burmeistera (Campanulaceae: Lobelioideae), while investigating how to best combine targeted Sanger loci with HTS data. We sequence, annotate, and analyze complete to nearly complete plastomes for a subset Keywords: of the genus. We then combine these data with a much larger taxonomic dataset for which only Sanger Andes sequences are available, making this the most comprehensively sampled study in the genus to date. We Bellflowers Character evolution show that using a phylogeny inferred from the species with plastome data as a topological constraint for Genome skimming the larger dataset increases the resolution of our data and produces a more robust evolutionary hypoth- Plastome esis for the group.