MATH 4140/MATH 5140: Abstract Algebra II

Total Page:16

File Type:pdf, Size:1020Kb

MATH 4140/MATH 5140: Abstract Algebra II MATH 4140/MATH 5140: Abstract Algebra II Farid Aliniaeifard April 30, 2018 Contents 1 Rings and Isomorphism (See Chapter 3 of the textbook) 2 1.1 Definitions and examples . .2 1.2 Units and Zero-divisors . .6 1.3 Useful facts about fields and integral domains . .6 1.4 Homomorphism and isomorphism . .7 2 Polynomials Arithmetic and the Division algorithm 9 3 Ideals and Quotient Rings 11 3.1 Finitely Generated Ideals . 12 3.2 Congruence . 13 3.3 Quotient Ring . 13 4 The Structure of R=I When I Is Prime or Maximal 16 5 EPU 17 p 6 Z[ d], an integral domain which is not a UFD 22 7 The field of quotients of an integral domain 24 8 If R is a UDF, so is R[x] 26 9 Vector Spaces 28 10 Simple Extensions 30 11 Algebraic Extensions 33 12 Splitting Fields 35 13 Separability 38 14 Finite Fields 40 15 The Galois Group 43 1 16 The Fundamental Theorem of Galois Theory 45 16.1 Galois Extensions . 47 17 Solvability by Radicals 51 17.1 Solvable groups . 51 18 Roots of Unity 52 19 Representation Theory 53 19.1 G-modules and Group algebras . 54 19.2 Action of a group on a set yields a G-module . 54 20 Reducibility 57 21 Inner product space 58 22 Maschke's Theorem 59 1 Rings and Isomorphism (See Chapter 3 of the text- book) 1.1 Definitions and examples Definition. A ring is a nonempty set R equipped with two operations (usually written as addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.)) that satisfy the following axioms. For all a; b; c 2 R: (1) If a 2 R and b 2 R, then a + b 2 R. [Closure for addition] (2) a + (b + c) = (a + b) + c. [Associative addition] (3) a + b = b + a. [Commutative addition] (4) There is an element 0R in R such that a + 0R = a = 0R + a for every a 2 R. [Zero element] (5) For every a 2 R, there exists an element b 2 R such that a+b = 0 = b+a. [additive Inverse element] (6) If a 2 R and b 2 R, then a:b 2 R. [Closed for multiplication] (7) a:(b:c) = (a:b):c (8) a:(b + c) = a:b + a:c and (a + b):c = a:c + b:c [Distributive laws] Remark. Note that axioms 1; 2; 3; 4; and 5 shows that (R; +) is an abelian group. Example 1.1. Z, Zn, and M2(R) are rings. Definition. A commutative ring is a ring R that satisfies the axiom: (9) a:b = b:a for all a; b 2 R. [Commutative multiplication] 2 Definition. A ring with identity is a ring R that contains an element 1R satisfying this axiom: (10) a:1R = a = 1R:a for all a 2 R [Multiplicative identity] Definition. An integral domain is a commutative ring R with identity 1R 6= 0 that satisfies this axiom: (11) whenever a; b 2 R and a:b = 0, then a = 0R or b = 0R. The end of the lecture 1 3 Lecture 2, January 19, 2018 A ring is a nonempty set R together with two operations (+) and (.) such that (i) (R,+) is an abelian group. (ii) for all a; b 2 R, a:b 2 R. (iii) for all a; b; c 2 R, a:(b:c) = (a:b):c. (iv) for all a; b; c 2 R, we have a:(b + c) = a:b + a:c and (a + b):c = a:c + b:c. Then a ring is commutative if a:b = b:a for all a; b 2 R. It has an identity if there is an element 1 2 R such that a:1 = 1:a = a. An integral domain is a commutative ring with identity 1 that satisfy the axiom: if ab = 0, then a = 0 or b = 0. Example 1.2. Z; R; and Q are integral domains. Z6 is a ring but not an integral domain. The elements of Z6 are f0; 1; 2; 3; 4; 5g. In Z6, we have 2 + 3 = 5, 5 + 4 = 3 and 5 + 3 = 2. Also, if we compute 2:3 = 0 we see that Z6 is not an integral domain. Example 1.3. Let R be the ring of real numbers. Then R[x] is a ring with the following addition and multiplication: if 2 f(x) = 1 + 3x + x 2 R[x] and 3 g(x) = −3x + x 2 R[x]; then f(x) + g(x) = 1 + x2 + x3 and f(x)g(x) = −3x + x3 − 9x2 + 3x4 − 3x3 + x5 = −3x − 9x2 − 2x3 + 3x4 + x5: Also, the polynomial e(x) = 1 is the identity element and 0(x) = 0 is the zero element. Theorem 1.4. Let R and S be rings. Define the following addition and multiplication on the Cartisian Product R × S by (r; s) + (r0 ; s0 ) = (r + r0 ; s + s0 ) and (r; s):(r0 ; s0 ) = (r:r0 ; s:s0 ): Then R × S is a ring. If R and S are both commutative, so does R × S. If both R × S have identity then so does R × S. In the following proposition we will present some properties of the elements of a ring. Proposition 1.5. Let R be a ring and a; b 2 R. Then (i) 0:a = a:0 = 0. 4 (ii) (−a):b = a:(−b) = −(a:b). (iii) if R has identity 1, then the identity is unique and (−a) = (−1):a. Proof. 1. (i) 0:a = (0 + 0):a = 0:a + 0:a ) 0:a = 0a + 0a ) 0:a = 0: 2. (ii) a:b + (−a):b = (a + (−a)):b = 0:b = 0 ) a:b + (−a):b = 0 ) (−a):b = −(ab): The rest left to the reader. Definition. A subset S of a ring R is a subring of R if it is a ring with the same addition and multiplication as R. To show that a subset S of R is a subring of R, you only need to check that S is nonempty and (i) S is closed under multiplication. (ii) S is closed under subtraction, i.e., if a; b 2 R, then a − b 2 R. p p Example 1.6. Define Z[ 2] = fa + b 2 : a; b 2 Zg is a subring of R. p p p p Proof. Let a + b 2 2 Z[ 2] and c + d 2 2 Z[ 2]. Then p p p p (a + b 2)(c + d 2) = (ac + 2bd) + (ad + cb) 2 2 Z[ 2] and p p p p (a + b 2) − (c + d 2) = (a − c) + (b − d) 2 2 Z[ 2]: p Therefore Z[ 2] is a subring of R. Definition. A Field is a commutative ring R with identity 1R 6= 0 that satisfies this axiom: (12) For each a 6= 0R in R, there is an element b 2 R such that ab = 1 = ba. The element b is called the inverse of a and is denoted by a−1. Example 1.7. (i) Q, R and C are fields. (ii) Zp when p is a prime number is a field. 5 Week 2, Lecture 1 1.2 Units and Zero-divisors Definition. An element a in a ring R with identity is called a unit if there exists u 2 R such that au = 1R = ua. Example 1.8. (i) Units of Z are 1 and −1. (ii) Units of Z6 are 1 and 5. In general the set of units of Zn is fk : k and n are coprime g. (iii) Units of the rings of 2 × 2 matrices M2(R) are the invertible matrices. Definition. An element a in R is a zero-divisor provided that (i) a 6= 0R. (ii) There exists a nonzero element c 2 R such that ac = 0R or ca = 0R. Remark. An integral domain contains no zero-divisors. Example 1.9. (i) 2 and 3 are zero-divisors in Z6 since 2:3 = 0. (ii) zero-divisors of the rings of 2 × 2 matrices M2(R) are the non-invertible matrices. a b Because if is a non-invertible matrix we have det(A) = ad − bc = 0, and c d a b d −b 0 0 we multiply = c d −c a 0 0 A ring D with identity 1D in which every non-zero element is a unit is called a Division ring. Note that any field is a commutative division ring. 1.3 Useful facts about fields and integral domains Theorem 1.10. Every finite field F is an integral domain. Proof. Every field is a commutative ring with identity, so it is enough to show that if ab = 0, then a = 0 or b = 0. Assume that ab = 0 but a 6= 0 and b 6= 0. Then ab = 0 ) a−1(ab) = 0 ) 1:b = 0 ) b = 0; which is a contradiction. Theorem 1.11. Every finite integral domain R is a field. Proof. As every integral domain is a commutative ring with identity, it is enough to show that every non-zero element in R has an inverse in R. Let a1; : : : ; an be all of nonzero distinct elements of R. Let a be an arbitrary nonzero element in R. Then for any ai we have aai 6= 0 otherwise since R is in integral domain we have a = 0 or ai = 0 which is not possible. Therefore, aa1; : : : ; aan are nonzero elements in R. Moreover, they are distinct because if for some distinct i and j, aai = aaj, then aai − aaj = 0 ) a(ai − aj) = 0: 6 Since R is an integral domain and a 6= 0, we must have ai −aj = 0, and so ai = aj, which is not possible.
Recommended publications
  • The Universal Property of Inverse Semigroup Equivariant KK-Theory
    KYUNGPOOK Math. J. 61(2021), 111-137 https://doi.org/10.5666/KMJ.2021.61.1.111 pISSN 1225-6951 eISSN 0454-8124 c Kyungpook Mathematical Journal The Universal Property of Inverse Semigroup Equivariant KK-theory Bernhard Burgstaller Departamento de Matematica, Universidade Federal de Santa Catarina, CEP 88.040-900 Florian´opolis-SC, Brasil e-mail : [email protected] Abstract. Higson proved that every homotopy invariant, stable and split exact func- tor from the category of C∗-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting. 1. Introduction In [3], Cuntz noted that if F is a homotopy invariant, stable and split exact func- tor from the category of separable C∗-algebras to the category of abelian groups then Kasparov's KK-theory acts on F , that is, every element of KK(A; B) induces a natural map F (A) ! F (B). Higson [4], on the other hand, developed Cuntz' find- ings further and proved that every such functor F factorizes through the category K consisting of separable C∗-algebras as the object class and KK-theory together with the Kasparov product as the morphism class, that is, F is the composition F^ ◦ κ of a universal functor κ from the class of C∗-algebras to K and a functor F^ from K to abelian groups. In [12], Thomsen generalized Higson's findings to the group equivariant setting by replacing everywhere in the above statement algebras by equivariant algebras, ∗- homomorphisms by equivariant ∗-homomorphisms and KK-theory by equivariant KK-theory (the proof is however far from such a straightforward replacement).
    [Show full text]
  • An Introduction to Inverse Semigroups and Their Connections to C*-Algebras
    CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: An Introduction to Inverse Semigroups and Their Connections To C*-Algebras AUTHOR: Kyle Cheaney SUPERVISOR: Dr. Charles Starling DATE: August 24, 2020 AN INTRODUCTION TO INVERSE SEMIGROUPS AND THEIR CONNECTIONS TO C∗-ALGEBRAS KYLE CHEANEY: 101012022 Abstract. This paper sets out to provide the reader with a basic introduction to inverse semigroups, as well as a proof of the Wagner-Preston Representation Theorem. It then focuses on finite directed graphs, specifically the graph inverse semigroup and how properties of the semigroup correspond to properties of C∗ algebras associated to such graphs. 1. Introduction The study of inverse semigroups was founded in the 1950's by three mathematicians: Ehresmann, Preston, and Wagner, as a way to algebraically describe pseudogroups of trans- formations. The purpose of this paper is to introduce the topic of inverse semigroups and some of the basic properties and theorems. We use these basics to relate the inverse semi- group formed by a directed graph to the corresponding graph C∗ algebra. The study of such C∗ algebras is still an active topic of research in analysis, thus providing a connection between abstract algebraic objects and complex analysis. In section 2, we outline some preliminary definitions and results which will be our basic tools for working with inverse semigroups. Section 3 provides a more detailed introduction to inverse semigroups and contains a proof of the Wagner-Preston representation theorem, a cornerstone in the study of inverse semigroups. In section 4, we present some detailed examples of inverse semigroups, including proving said sets are in fact inverse semigroups and discussing what their idempotents look like.
    [Show full text]
  • Section V.1. Field Extensions
    V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K.
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • MAS4107 Linear Algebra 2 Linear Maps And
    Introduction Groups and Fields Vector Spaces Subspaces, Linear . Bases and Coordinates MAS4107 Linear Algebra 2 Linear Maps and . Change of Basis Peter Sin More on Linear Maps University of Florida Linear Endomorphisms email: [email protected]fl.edu Quotient Spaces Spaces of Linear . General Prerequisites Direct Sums Minimal polynomial Familiarity with the notion of mathematical proof and some experience in read- Bilinear Forms ing and writing proofs. Familiarity with standard mathematical notation such as Hermitian Forms summations and notations of set theory. Euclidean and . Self-Adjoint Linear . Linear Algebra Prerequisites Notation Familiarity with the notion of linear independence. Gaussian elimination (reduction by row operations) to solve systems of equations. This is the most important algorithm and it will be assumed and used freely in the classes, for example to find JJ J I II coordinate vectors with respect to basis and to compute the matrix of a linear map, to test for linear dependence, etc. The determinant of a square matrix by cofactors Back and also by row operations. Full Screen Close Quit Introduction 0. Introduction Groups and Fields Vector Spaces These notes include some topics from MAS4105, which you should have seen in one Subspaces, Linear . form or another, but probably presented in a totally different way. They have been Bases and Coordinates written in a terse style, so you should read very slowly and with patience. Please Linear Maps and . feel free to email me with any questions or comments. The notes are in electronic Change of Basis form so sections can be changed very easily to incorporate improvements.
    [Show full text]
  • Semigroups and Monoids 
    S Luis Alonso-Ovalle // Contents Subgroups Semigroups and monoids Subgroups Groups. A group G is an algebra consisting of a set G and a single binary operation ◦ satisfying the following axioms: . ◦ is completely defined and G is closed under ◦. ◦ is associative. G contains an identity element. Each element in G has an inverse element. Subgroups. We define a subgroup G0 as a subalgebra of G which is itself a group. Examples: . The group of even integers with addition is a proper subgroup of the group of all integers with addition. The group of all rotations of the square h{I, R, R0, R00}, ◦i, where ◦ is the composition of the operations is a subgroup of the group of all symmetries of the square. Some non-subgroups: SEMIGROUPS AND MONOIDS . The system h{I, R, R0}, ◦i is not a subgroup (and not even a subalgebra) of the original group. Why? (Hint: ◦ closure). The set of all non-negative integers with addition is a subalgebra of the group of all integers with addition, because the non-negative integers are closed under addition. But it is not a subgroup because it is not itself a group: it is associative and has a zero, but . does any member (except for ) have an inverse? Order. The order of any group G is the number of members in the set G. The order of any subgroup exactly divides the order of the parental group. E.g.: only subgroups of order , , and are possible for a -member group. (The theorem does not guarantee that every subset having the proper number of members will give rise to a subgroup.
    [Show full text]
  • Section X.51. Separable Extensions
    X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F .
    [Show full text]
  • Math 545: Problem Set 6
    Math 545: Problem Set 6 Due Wednesday, March 4 1. Suppose that K is an arbitrary field, and consider K(t), the rational function field in one variable over K. Show that if f(X) 2 K[t][X] is reducible over K(t), then in fact f(X) is reducible over K[t]. [Hint: Note that just as Q is the fraction field of Z, so is K(t) the fraction field of K[t]. Carefully adapt the proof given in class for the analogous statement concerning f(X) 2 Z[X]. You will need to define the notion of a primitive polynomial in this new context, and prove a version of Gauss's Lemma.] 2. (A Generalized Eisenstein Criterion) Let R be an integral domain, and p ⊂ R a prime ideal. Suppose that n n−1 p(X) = X + rn−1X + ··· + r1X + r0 2 R[X] 2 satisfies r0; r1; : : : ; rn−1 2 p, and r0 2= p (i.e. p(X) is Eisenstein for p). Prove that p(X) is irreducible in R[X]. 3. This problem is designed to convince you that the Primitive Element Theorem fails in characteristic p > 0. Let K = Fp(S; T ) be the field of rational functions in two variables S; T with coefficients in the finite field with p elements. a) Prove that Xp −S is irreducible in K[X]. [Hint: Use the previous two problems and the fact that K = Fp(T )(S).] Hence p p p Fp( S; T ) = K[X]=(X − S) pp is a field extension of K of degree p (here S denotes thep coset p p p X+(X −S)).
    [Show full text]
  • 5 Definition and Examples of Groups
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 5 Definition and Examples of Groups In Section 3, properties of binary operations were emphasized-closure, iden- tity, inverses, associativity. Now these properties will be studied from a slightly different viewpoint by considering systems (S, ∗) that satisfy all four of the properties. Such mathematical systems are called groups. A group may be defined as follows. Definition 5.1 A set G is a group with respect to a binary operation ∗ if the following properties are satisfied: (i) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Asso- ciative Law); (ii) there exists an element e of G (the identity element of G) such that e ∗ x = x = x ∗ e, for all elements x of G; (iii) for each element x of G there exists an element x0 of G (the inverse of x) such that x ∗ x0 = e = x0 ∗ x (where e is the identity element of G). A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x and y of G. Remark 5.1 The phrase ”with respect” should be noted. For example, the set Z is a group with respect to addition but not with respect to multiplication (it has no inverses for elements other than ±1.) Example 5.1 We can obtain some simple examples of groups by considering appropriate subsets of the familiar number systems. (a) The set of even integers is an Abelian group with respect to addition. 1 (b) The set N of positive integers is not a group with respect to addition since it has no identity element.
    [Show full text]
  • A Study of Some Properties of Generalized Groups
    OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No.2, October 2009, pp 599-626 599 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon A study of some properties of generalized groups Akinmoyewa, Joseph Toyin9 1. INTRODUCTION Generalized group is an algebraic structure which has a deep physical background in the unified gauge theory and has direct relation with isotopies. 1.1. THE IDEA OF UNIFIED THEORY The unified theory has a direct relation with the geometry of space. It describes particles and their interactions in a quantum mechanical manner and the geometry of the space time through which they are moving. For instance, the result of experiment at very high energies in accelerators such as the Large Electron Position Collider [LEP] at CERN (the European Laboratory for Nuclear Research) in general has led to the discovery of a wealth of so called ’elementary’ particles and that this variety of particles interact with each other via the weak electromagnetic and strong forces(the weak and electromagnetic having been unified). A simple application of Heisenberg’s on certainty principle-the embodiment of quantum mechanics-at credibly small distances leads to the conclusion that at distance scale of around 10−35 metres(the plank length) there are huge fluctuation of energy that sufficiently big to create tiny black holes. Space is not empty but full of these tiny black holes fluctuations that come and go on time scale of around 10−35 seconds(the plank time). The vacuum is full of space-time foam. Currently, the most promising is super-string theory in which the so called ’elementary’ particles are described as vibration of tiny(planck-length)closed loops of strings.
    [Show full text]
  • A STUDY on the ALGEBRAIC STRUCTURE of SL 2(Zpz)
    A STUDY ON THE ALGEBRAIC STRUCTURE OF SL2 Z pZ ( ~ ) A Thesis Presented to The Honors Tutorial College Ohio University In Partial Fulfillment of the Requirements for Graduation from the Honors Tutorial College with the degree of Bachelor of Science in Mathematics by Evan North April 2015 Contents 1 Introduction 1 2 Background 5 2.1 Group Theory . 5 2.2 Linear Algebra . 14 2.3 Matrix Group SL2 R Over a Ring . 22 ( ) 3 Conjugacy Classes of Matrix Groups 26 3.1 Order of the Matrix Groups . 26 3.2 Conjugacy Classes of GL2 Fp ....................... 28 3.2.1 Linear Case . .( . .) . 29 3.2.2 First Quadratic Case . 29 3.2.3 Second Quadratic Case . 30 3.2.4 Third Quadratic Case . 31 3.2.5 Classes in SL2 Fp ......................... 33 3.3 Splitting of Classes of(SL)2 Fp ....................... 35 3.4 Results of SL2 Fp ..............................( ) 40 ( ) 2 4 Toward Lifting to SL2 Z p Z 41 4.1 Reduction mod p ...............................( ~ ) 42 4.2 Exploring the Kernel . 43 i 4.3 Generalizing to SL2 Z p Z ........................ 46 ( ~ ) 5 Closing Remarks 48 5.1 Future Work . 48 5.2 Conclusion . 48 1 Introduction Symmetries are one of the most widely-known examples of pure mathematics. Symmetry is when an object can be rotated, flipped, or otherwise transformed in such a way that its appearance remains the same. Basic geometric figures should create familiar examples, take for instance the triangle. Figure 1: The symmetries of a triangle: 3 reflections, 2 rotations. The red lines represent the reflection symmetries, where the trianlge is flipped over, while the arrows represent the rotational symmetry of the triangle.
    [Show full text]
  • The Classical Matrix Groups 1 Groups
    The Classical Matrix Groups CDs 270, Spring 2010/2011 The notes provide a brief review of matrix groups. The primary goal is to motivate the lan- guage and symbols used to represent rotations (SO(2) and SO(3)) and spatial displacements (SE(2) and SE(3)). 1 Groups A group, G, is a mathematical structure with the following characteristics and properties: i. the group consists of a set of elements {gj} which can be indexed. The indices j may form a finite, countably infinite, or continous (uncountably infinite) set. ii. An associative binary group operation, denoted by 0 ∗0 , termed the group product. The product of two group elements is also a group element: ∀ gi, gj ∈ G gi ∗ gj = gk, where gk ∈ G. iii. A unique group identify element, e, with the property that: e ∗ gj = gj for all gj ∈ G. −1 iv. For every gj ∈ G, there must exist an inverse element, gj , such that −1 gj ∗ gj = e. Simple examples of groups include the integers, Z, with addition as the group operation, and the real numbers mod zero, R − {0}, with multiplication as the group operation. 1.1 The General Linear Group, GL(N) The set of all N × N invertible matrices with the group operation of matrix multiplication forms the General Linear Group of dimension N. This group is denoted by the symbol GL(N), or GL(N, K) where K is a field, such as R, C, etc. Generally, we will only consider the cases where K = R or K = C, which are respectively denoted by GL(N, R) and GL(N, C).
    [Show full text]