MAS4107 Linear Algebra 2 Linear Maps And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Universal Property of Inverse Semigroup Equivariant KK-Theory
KYUNGPOOK Math. J. 61(2021), 111-137 https://doi.org/10.5666/KMJ.2021.61.1.111 pISSN 1225-6951 eISSN 0454-8124 c Kyungpook Mathematical Journal The Universal Property of Inverse Semigroup Equivariant KK-theory Bernhard Burgstaller Departamento de Matematica, Universidade Federal de Santa Catarina, CEP 88.040-900 Florian´opolis-SC, Brasil e-mail : [email protected] Abstract. Higson proved that every homotopy invariant, stable and split exact func- tor from the category of C∗-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting. 1. Introduction In [3], Cuntz noted that if F is a homotopy invariant, stable and split exact func- tor from the category of separable C∗-algebras to the category of abelian groups then Kasparov's KK-theory acts on F , that is, every element of KK(A; B) induces a natural map F (A) ! F (B). Higson [4], on the other hand, developed Cuntz' find- ings further and proved that every such functor F factorizes through the category K consisting of separable C∗-algebras as the object class and KK-theory together with the Kasparov product as the morphism class, that is, F is the composition F^ ◦ κ of a universal functor κ from the class of C∗-algebras to K and a functor F^ from K to abelian groups. In [12], Thomsen generalized Higson's findings to the group equivariant setting by replacing everywhere in the above statement algebras by equivariant algebras, ∗- homomorphisms by equivariant ∗-homomorphisms and KK-theory by equivariant KK-theory (the proof is however far from such a straightforward replacement). -
An Introduction to Inverse Semigroups and Their Connections to C*-Algebras
CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: An Introduction to Inverse Semigroups and Their Connections To C*-Algebras AUTHOR: Kyle Cheaney SUPERVISOR: Dr. Charles Starling DATE: August 24, 2020 AN INTRODUCTION TO INVERSE SEMIGROUPS AND THEIR CONNECTIONS TO C∗-ALGEBRAS KYLE CHEANEY: 101012022 Abstract. This paper sets out to provide the reader with a basic introduction to inverse semigroups, as well as a proof of the Wagner-Preston Representation Theorem. It then focuses on finite directed graphs, specifically the graph inverse semigroup and how properties of the semigroup correspond to properties of C∗ algebras associated to such graphs. 1. Introduction The study of inverse semigroups was founded in the 1950's by three mathematicians: Ehresmann, Preston, and Wagner, as a way to algebraically describe pseudogroups of trans- formations. The purpose of this paper is to introduce the topic of inverse semigroups and some of the basic properties and theorems. We use these basics to relate the inverse semi- group formed by a directed graph to the corresponding graph C∗ algebra. The study of such C∗ algebras is still an active topic of research in analysis, thus providing a connection between abstract algebraic objects and complex analysis. In section 2, we outline some preliminary definitions and results which will be our basic tools for working with inverse semigroups. Section 3 provides a more detailed introduction to inverse semigroups and contains a proof of the Wagner-Preston representation theorem, a cornerstone in the study of inverse semigroups. In section 4, we present some detailed examples of inverse semigroups, including proving said sets are in fact inverse semigroups and discussing what their idempotents look like. -
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′. -
OBJ (Application/Pdf)
GROUPOIDS WITH SEMIGROUP OPERATORS AND ADDITIVE ENDOMORPHISM A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS POR THE DEGREE OF MASTER OF SCIENCE BY FRED HENDRIX HUGHES DEPARTMENT OF MATHEMATICS ATLANTA, GEORGIA JUNE 1965 TABLE OF CONTENTS Chapter Page I' INTRODUCTION. 1 II GROUPOIDS WITH SEMIGROUP OPERATORS 6 - Ill GROUPOIDS WITH ADDITIVE ENDOMORPHISM 12 BIBLIOGRAPHY 17 ii 4 CHAPTER I INTRODUCTION A set is an undefined termj however, one can say a set is a collec¬ tion of objects according to our sight and perception. Several authors use this definition, a set is a collection of definite distinct objects called elements. This concept is the foundation for mathematics. How¬ ever, it was not until the latter part of the nineteenth century when the concept was formally introduced. From this concept of a set, mathematicians, by placing restrictions on a set, have developed the algebraic structures which we employ. The structures are closely related as the diagram below illustrates. Quasigroup Set The first structure is a groupoid which the writer will discuss the following properties: subgroupiod, antigroupoid, expansive set homor- phism of groupoids in semigroups, groupoid with semigroupoid operators and groupoids with additive endormorphism. Definition 1.1. — A set of elements G - f x,y,z } which is defined by a single-valued binary operation such that x o y ■ z é G (The only restriction is closure) is called a groupiod. Definition 1.2. — The binary operation will be a mapping of the set into itself (AA a direct product.) 1 2 Definition 1.3» — A non-void subset of a groupoid G is called a subgroupoid if and only if AA C A. -
Semigroups and Monoids
S Luis Alonso-Ovalle // Contents Subgroups Semigroups and monoids Subgroups Groups. A group G is an algebra consisting of a set G and a single binary operation ◦ satisfying the following axioms: . ◦ is completely defined and G is closed under ◦. ◦ is associative. G contains an identity element. Each element in G has an inverse element. Subgroups. We define a subgroup G0 as a subalgebra of G which is itself a group. Examples: . The group of even integers with addition is a proper subgroup of the group of all integers with addition. The group of all rotations of the square h{I, R, R0, R00}, ◦i, where ◦ is the composition of the operations is a subgroup of the group of all symmetries of the square. Some non-subgroups: SEMIGROUPS AND MONOIDS . The system h{I, R, R0}, ◦i is not a subgroup (and not even a subalgebra) of the original group. Why? (Hint: ◦ closure). The set of all non-negative integers with addition is a subalgebra of the group of all integers with addition, because the non-negative integers are closed under addition. But it is not a subgroup because it is not itself a group: it is associative and has a zero, but . does any member (except for ) have an inverse? Order. The order of any group G is the number of members in the set G. The order of any subgroup exactly divides the order of the parental group. E.g.: only subgroups of order , , and are possible for a -member group. (The theorem does not guarantee that every subset having the proper number of members will give rise to a subgroup. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
Chapter IX. Tensors and Multilinear Forms
Notes c F.P. Greenleaf and S. Marques 2006-2016 LAII-s16-quadforms.tex version 4/25/2016 Chapter IX. Tensors and Multilinear Forms. IX.1. Basic Definitions and Examples. 1.1. Definition. A bilinear form is a map B : V V C that is linear in each entry when the other entry is held fixed, so that × → B(αx, y) = αB(x, y)= B(x, αy) B(x + x ,y) = B(x ,y)+ B(x ,y) for all α F, x V, y V 1 2 1 2 ∈ k ∈ k ∈ B(x, y1 + y2) = B(x, y1)+ B(x, y2) (This of course forces B(x, y)=0 if either input is zero.) We say B is symmetric if B(x, y)= B(y, x), for all x, y and antisymmetric if B(x, y)= B(y, x). Similarly a multilinear form (aka a k-linear form , or a tensor− of rank k) is a map B : V V F that is linear in each entry when the other entries are held fixed. ×···×(0,k) → We write V = V ∗ . V ∗ for the set of k-linear forms. The reason we use V ∗ here rather than V , and⊗ the⊗ rationale for the “tensor product” notation, will gradually become clear. The set V ∗ V ∗ of bilinear forms on V becomes a vector space over F if we define ⊗ 1. Zero element: B(x, y) = 0 for all x, y V ; ∈ 2. Scalar multiple: (αB)(x, y)= αB(x, y), for α F and x, y V ; ∈ ∈ 3. Addition: (B + B )(x, y)= B (x, y)+ B (x, y), for x, y V . -
MATH 421/510 Assignment 3
MATH 421/510 Assignment 3 Suggested Solutions February 2018 1. Let H be a Hilbert space. (a) Prove the polarization identity: 1 hx; yi = (kx + yk2 − kx − yk2 + ikx + iyk2 − ikx − iyk2): 4 Proof. By direct calculation, kx + yk2 − kx − yk2 = 2hx; yi + 2hy; xi: Similarly, kx + iyk2 − kx − iyk2 = 2hx; iyi − 2hy; ixi = −2ihx; yi + 2ihy; xi: Addition gives kx + yk2−kx − yk2+ikx + iyk2−ikx − iyk2 = 2hx; yi+2hy; xi+2hx; yi−2hy; xi = 4hx; yi: (b) If there is another Hilbert space H0, a linear map from H to H0 is unitary if and only if it is isometric and surjective. Proof. We take the definition from the book that an operator is unitary if and only if it is invertible and hT x; T yi = hx; yi for all x; y 2 H. A unitary operator T is isometric and surjective by definition. On the other hand, assume it is isometric and surjective. We first show that T preserves the inner product: If the scalar field is C, by the polarization identity, 1 hT x; T yi = (kT x + T yk2 − kT x − T yk2 + ikT x + iT yk2 − ikT x − iT yk2) 4 1 = (kx + yk2 − kx − yk2 + ikx + iyk2 − ikx − iyk2) = hx; yi; 4 where in the second equation we used the linearity of T and the assumption that T is isometric. 1 If the scalar field is R, then we use the real version of the polarization identity: 1 hx; yi = (kx + yk2 − kx − yk2) 4 The remaining computation is similar to the complex case. -
A Bit About Hilbert Spaces
A Bit About Hilbert Spaces David Rosenberg New York University October 29, 2016 David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 1 / 9 Inner Product Space (or “Pre-Hilbert” Spaces) An inner product space (over reals) is a vector space V and an inner product, which is a mapping h·,·i : V × V ! R that has the following properties 8x,y,z 2 V and a,b 2 R: Symmetry: hx,yi = hy,xi Linearity: hax + by,zi = ahx,zi + b hy,zi Postive-definiteness: hx,xi > 0 and hx,xi = 0 () x = 0. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 2 / 9 Norm from Inner Product For an inner product space, we define a norm as p kxk = hx,xi. Example Rd with standard Euclidean inner product is an inner product space: hx,yi := xT y 8x,y 2 Rd . Norm is p kxk = xT y. David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 3 / 9 What norms can we get from an inner product? Theorem (Parallelogram Law) A norm kvk can be generated by an inner product on V iff 8x,y 2 V 2kxk2 + 2kyk2 = kx + yk2 + kx - yk2, and if it can, the inner product is given by the polarization identity jjxjj2 + jjyjj2 - jjx - yjj2 hx,yi = . 2 Example d `1 norm on R is NOT generated by an inner product. [Exercise] d Is `2 norm on R generated by an inner product? David Rosenberg (New York University ) DS-GA 1003 October 29, 2016 4 / 9 Pythagorean Theroem Definition Two vectors are orthogonal if hx,yi = 0. -
5 Definition and Examples of Groups
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 5 Definition and Examples of Groups In Section 3, properties of binary operations were emphasized-closure, iden- tity, inverses, associativity. Now these properties will be studied from a slightly different viewpoint by considering systems (S, ∗) that satisfy all four of the properties. Such mathematical systems are called groups. A group may be defined as follows. Definition 5.1 A set G is a group with respect to a binary operation ∗ if the following properties are satisfied: (i) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Asso- ciative Law); (ii) there exists an element e of G (the identity element of G) such that e ∗ x = x = x ∗ e, for all elements x of G; (iii) for each element x of G there exists an element x0 of G (the inverse of x) such that x ∗ x0 = e = x0 ∗ x (where e is the identity element of G). A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x and y of G. Remark 5.1 The phrase ”with respect” should be noted. For example, the set Z is a group with respect to addition but not with respect to multiplication (it has no inverses for elements other than ±1.) Example 5.1 We can obtain some simple examples of groups by considering appropriate subsets of the familiar number systems. (a) The set of even integers is an Abelian group with respect to addition. 1 (b) The set N of positive integers is not a group with respect to addition since it has no identity element. -
WOMP 2001: LINEAR ALGEBRA Reference Roman, S. Advanced
WOMP 2001: LINEAR ALGEBRA DAN GROSSMAN Reference Roman, S. Advanced Linear Algebra, GTM #135. (Not very good.) 1. Vector spaces Let k be a field, e.g., R, Q, C, Fq, K(t),. Definition. A vector space over k is a set V with two operations + : V × V → V and · : k × V → V satisfying some familiar axioms. A subspace of V is a subset W ⊂ V for which • 0 ∈ W , • If w1, w2 ∈ W , a ∈ k, then aw1 + w2 ∈ W . The quotient of V by the subspace W ⊂ V is the vector space whose elements are subsets of the form (“affine translates”) def v + W = {v + w : w ∈ W } (for which v + W = v0 + W iff v − v0 ∈ W , also written v ≡ v0 mod W ), and whose operations +, · are those naturally induced from the operations on V . Exercise 1. Verify that our definition of the vector space V/W makes sense. Given a finite collection of elements (“vectors”) v1, . , vm ∈ V , their span is the subspace def hv1, . , vmi = {a1v1 + ··· amvm : a1, . , am ∈ k}. Exercise 2. Verify that this is a subspace. There may sometimes be redundancy in a spanning set; this is expressed by the notion of linear dependence. The collection v1, . , vm ∈ V is said to be linearly dependent if there is a linear combination a1v1 + ··· + amvm = 0, some ai 6= 0. This is equivalent to being able to express at least one of the vi as a linear combination of the others. Exercise 3. Verify this equivalence. Theorem. Let V be a vector space over a field k.