Galois Theory of Cyclotomic Extensions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
QUARTIC CM FIELDS 1. Background the Study of Complex Multiplication
QUARTIC CM FIELDS WENHAN WANG Abstract. In the article, we describe the basic properties, general and specific properties of CM degree 4 fields, as well as illustrating their connection to the study of genus 2 curves with CM. 1. Background The study of complex multiplication is closely related to the study of curves over finite fields and their Jacobian. Basically speaking, for the case of non-supersingular elliptic curves over finite fields, the endomorphism ring is ring-isomorphic to an order in an imaginary quadratic extension K of Q. The structure of imaginary extensions of Q has beenp thoroughly studied, and the ringsq of integers are simply generated by f1; Dg if D ≡ 1 mod 4, f D g ≡ or by 1; 4 if D 0 mod 4, where D is the discriminant of the field K. The theory of complex multiplication can be carried from elliptic curves to the (Jacobians) of genus 2 (hyperelliptic) curves. More explicitly, the Jacobian of any non-supersingular genus 2 (and hence, hyperelliptic) curve defined over a finite field has CM by an order in a degree 4, or quartic extension over Q, where the extension field K has to be totally imaginary. Description of the endomorphism ring of the Jacobian of a genus 2 curve over a finite field largely depends on the field K for which the curve has CM by. Many articles in the area of the study of genus two curves lead to the study of many properties of the field K. Hence the main goal of this article is, based on the knowledge of the author in the study of the genus 2 curves over finite fields, to give a survey of various, general or specific, properties of degree 4 CM fields. -
The Kronecker-Weber Theorem
The Kronecker-Weber Theorem Lucas Culler Introduction The Kronecker-Weber theorem is one of the earliest known results in class field theory. It says: Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con- tained in a cyclotomic extension. Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q) th is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an n root of unity. This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved, but elementary, and uses the theory of higher ramification groups. The second is a simple application of the main results of class field theory, which classifies abelian extension of an arbitrary number field. An Elementary Proof Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s original proof. The particular strategy used here is given as a series of exercises in Marcus [1]. Minkowski’s Theorem We first prove a classical result due to Minkowski. Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such an extension is ramified at some prime p ∈ Z. Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider the embedding: r s A −→ R ⊕ C x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x)) where the σi are the real embeddings of K and the τi are the complex embeddings, with one embedding chosen from each conjugate pair, so that n = r + 2s. -
Section V.1. Field Extensions
V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K. -
Construction of Regular Polygons a Constructible Regular Polygon Is One That Can Be Constructed with Compass and (Unmarked) Straightedge
DynamicsOfPolygons.org Construction of regular polygons A constructible regular polygon is one that can be constructed with compass and (unmarked) straightedge. For example the construction on the right below consists of two circles of equal radii. The center of the second circle at B is chosen to lie anywhere on the first circle, so the triangle ABC is equilateral – and hence equiangular. Compass and straightedge constructions date back to Euclid of Alexandria who was born in about 300 B.C. The Greeks developed methods for constructing the regular triangle, square and pentagon, but these were the only „prime‟ regular polygons that they could construct. They also knew how to double the sides of a given polygon or combine two polygons together – as long as the sides were relatively prime, so a regular pentagon could be drawn together with a regular triangle to get a regular 15-gon. Therefore the polygons they could construct were of the form N = 2m3k5j where m is a nonnegative integer and j and k are either 0 or 1. The constructible regular polygons were 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, ... but the only odd polygons in this list are 3,5 and 15. The triangle, pentagon and 15-gon are the only regular polygons with odd sides which the Greeks could construct. If n = p1p2 …pk where the pi are odd primes then n is constructible iff each pi is constructible, so a regular 21-gon can be constructed iff both the triangle and regular 7-gon can be constructed. -
Section X.51. Separable Extensions
X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F . -
Math 545: Problem Set 6
Math 545: Problem Set 6 Due Wednesday, March 4 1. Suppose that K is an arbitrary field, and consider K(t), the rational function field in one variable over K. Show that if f(X) 2 K[t][X] is reducible over K(t), then in fact f(X) is reducible over K[t]. [Hint: Note that just as Q is the fraction field of Z, so is K(t) the fraction field of K[t]. Carefully adapt the proof given in class for the analogous statement concerning f(X) 2 Z[X]. You will need to define the notion of a primitive polynomial in this new context, and prove a version of Gauss's Lemma.] 2. (A Generalized Eisenstein Criterion) Let R be an integral domain, and p ⊂ R a prime ideal. Suppose that n n−1 p(X) = X + rn−1X + ··· + r1X + r0 2 R[X] 2 satisfies r0; r1; : : : ; rn−1 2 p, and r0 2= p (i.e. p(X) is Eisenstein for p). Prove that p(X) is irreducible in R[X]. 3. This problem is designed to convince you that the Primitive Element Theorem fails in characteristic p > 0. Let K = Fp(S; T ) be the field of rational functions in two variables S; T with coefficients in the finite field with p elements. a) Prove that Xp −S is irreducible in K[X]. [Hint: Use the previous two problems and the fact that K = Fp(T )(S).] Hence p p p Fp( S; T ) = K[X]=(X − S) pp is a field extension of K of degree p (here S denotes thep coset p p p X+(X −S)). -
MATH 4140/MATH 5140: Abstract Algebra II
MATH 4140/MATH 5140: Abstract Algebra II Farid Aliniaeifard April 30, 2018 Contents 1 Rings and Isomorphism (See Chapter 3 of the textbook) 2 1.1 Definitions and examples . .2 1.2 Units and Zero-divisors . .6 1.3 Useful facts about fields and integral domains . .6 1.4 Homomorphism and isomorphism . .7 2 Polynomials Arithmetic and the Division algorithm 9 3 Ideals and Quotient Rings 11 3.1 Finitely Generated Ideals . 12 3.2 Congruence . 13 3.3 Quotient Ring . 13 4 The Structure of R=I When I Is Prime or Maximal 16 5 EPU 17 p 6 Z[ d], an integral domain which is not a UFD 22 7 The field of quotients of an integral domain 24 8 If R is a UDF, so is R[x] 26 9 Vector Spaces 28 10 Simple Extensions 30 11 Algebraic Extensions 33 12 Splitting Fields 35 13 Separability 38 14 Finite Fields 40 15 The Galois Group 43 1 16 The Fundamental Theorem of Galois Theory 45 16.1 Galois Extensions . 47 17 Solvability by Radicals 51 17.1 Solvable groups . 51 18 Roots of Unity 52 19 Representation Theory 53 19.1 G-modules and Group algebras . 54 19.2 Action of a group on a set yields a G-module . 54 20 Reducibility 57 21 Inner product space 58 22 Maschke's Theorem 59 1 Rings and Isomorphism (See Chapter 3 of the text- book) 1.1 Definitions and examples Definition. A ring is a nonempty set R equipped with two operations (usually written as addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.)) that satisfy the following axioms. -
Finite Fields: Further Properties
Chapter 4 Finite fields: further properties 8 Roots of unity in finite fields In this section, we will generalize the concept of roots of unity (well-known for complex numbers) to the finite field setting, by considering the splitting field of the polynomial xn − 1. This has links with irreducible polynomials, and provides an effective way of obtaining primitive elements and hence representing finite fields. Definition 8.1 Let n ∈ N. The splitting field of xn − 1 over a field K is called the nth cyclotomic field over K and denoted by K(n). The roots of xn − 1 in K(n) are called the nth roots of unity over K and the set of all these roots is denoted by E(n). The following result, concerning the properties of E(n), holds for an arbitrary (not just a finite!) field K. Theorem 8.2 Let n ∈ N and K a field of characteristic p (where p may take the value 0 in this theorem). Then (i) If p ∤ n, then E(n) is a cyclic group of order n with respect to multiplication in K(n). (ii) If p | n, write n = mpe with positive integers m and e and p ∤ m. Then K(n) = K(m), E(n) = E(m) and the roots of xn − 1 are the m elements of E(m), each occurring with multiplicity pe. Proof. (i) The n = 1 case is trivial. For n ≥ 2, observe that xn − 1 and its derivative nxn−1 have no common roots; thus xn −1 cannot have multiple roots and hence E(n) has n elements. -
Cyclotomic Extensions
Chapter 7 Cyclotomic Extensions th A cyclotomic extension Q(ζn) of the rationals is formed by adjoining a primitive n root of unity ζn. In this chapter, we will find an integral basis and calculate the field discriminant. 7.1 Some Preliminary Calculations 7.1.1 The Cyclotomic Polynomial Recall that the cyclotomic polynomial Φn(X) is defined as the product of the terms X −ζ, where ζ ranges over all primitive nth roots of unity in C.Nowannth root of unity is a primitive dth root of unity for some divisor d of n,soXn − 1 is the product of all r cyclotomic polynomials Φd(X) with d a divisor of n. In particular, let n = p be a prime power. Since a divisor of pr is either pr or a divisor of pr−1, we have pr − p − X 1 t 1 p−1 Φ r (X)= − = =1+t + ···+ t p Xpr 1 − 1 t − 1 − pr 1 where t = X .IfX = 1 then t = 1, and it follows that Φpr (1) = p. Until otherwise specified, we assume that n is a prime power pr. 7.1.2 Lemma Let ζ and ζ be primitive (pr)th roots of unity. Then u =(1− ζ)/(1 − ζ) is a unit in Z[ζ], hence in the ring of algebraic integers. Proof. Since ζ is primitive, ζ = ζs for some s (not a multiple of p). It follows that u =(1−ζs)/(1−ζ)=1+ζ+···+ζs−1 ∈ Z[ζ]. By symmetry, (1−ζ)/(1−ζ) ∈ Z[ζ]=Z[ζ], and the result follows. -
Catalan's Conjecture: Another Old Diophantine
BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 41, Number 1, Pages 43{57 S 0273-0979(03)00993-5 Article electronically published on September 5, 2003 CATALAN'S CONJECTURE : ANOTHER OLD DIOPHANTINE PROBLEM SOLVED TAUNO METSANKYL¨ A¨ Abstract. Catalan's Conjecture predicts that 8 and 9 are the only consecu- tive perfect powers among positive integers. The conjecture, which dates back to 1844, was recently proven by the Swiss mathematician Preda Mih˘ailescu. A deep theorem about cyclotomic fields plays a crucial role in his proof. Like Fermat's problem, this problem has a rich history with some surprising turns. The present article surveys the main lines of this history and outlines Mih˘ailescu's brilliant proof. 1. Introduction Catalan's Conjecture in number theory is one of those mathematical problems that are very easy to formulate but extremely hard to solve. The conjecture predicts that 8 and 9 are the only consecutive perfect powers, in other words, that there are no solutions of the Diophantine equation (1.1) xu − yv =1 (x>0;y>0;u>1;v>1) other than xu =32;yv =23. This conjecture was received by the editor of the Journal f¨ur die Reine und Ange- wandte Mathematik from the Belgian mathematician Eug`ene Catalan (1814{1894). The journal published it in 1844 [CAT]. Catalan, at that time a teacher at l'Ecole´ Polytechnique de Paris, had won his reputation with a solution of a combinatorial problem. The term Catalan number, still in use, refers to that problem. As to the equation (1.1), Catalan wrote that he \could not prove it completely so far." He never published any serious partial result about it either. -
Analysis of the Classical Cyclotomic Approach to Fermat's Last Theorem
Analysis of the classical cyclotomic approach to fermat’s last theorem Georges Gras To cite this version: Georges Gras. Analysis of the classical cyclotomic approach to fermat’s last theorem. Publications Mathématiques UFR Sciences Techniques Besançon, 2010, 2010, pp.85-119. hal-00578969 HAL Id: hal-00578969 https://hal.archives-ouvertes.fr/hal-00578969 Submitted on 22 Mar 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANALYSIS OF THE CLASSICAL CYCLOTOMIC APPROACH TO FERMAT′S LAST THEOREM by Georges Gras Abstract. — We give again the proof of several classical results concerning the cyclotomic approach to Fermat ′s last theorem using exclusively class field theory (essentially the reflection theorems), without any calculations. The fact that this is possible suggests a part of the logical inefficiency of the historical investigations. We analyze the significance of the numerous computations of the literature, to show how they are probably too local to get any proof of the theorem. However we use the derivation method of Eichler as a prerequisite for our purpose, a method which is also local but more effective. Then we propose some modest ways of study in a more diophantine context using radicals; this point of view would require further nonalgebraic investigations. -
The Monogeneity of Kummer Extensions and Radical Extensions
The Monogeneity of Kummer Extensions and Radical Extensions HANSON SMITH Abstract. We give necessary and sufficient conditions for the Kummer exten- n n sion K := Q (ζn, √α) to be monogenic over Q(ζn) with √α as a generator, i.e., n for OK = Z [ζn] [ √α]. We generalize these ideas to radical extensions of an arbi- trary number field L and provide necessary and sufficient conditions for √n α to O O n generate a power L-basis for L( √α). We also give sufficient conditions for K to be non-monogenic over Q and establish a general criterion relating ramification and relative monogeneity. Using this criterion, we find a necessary and sufficient condition for a relative cyclotomic extension of degree φ(n) to have ζn as a monogenic generator. 1. Results and Previous Work Let L be a number field. We will always denote the ring of integers by OL. Suppose M is a finite extension of L. If O = O [θ] for an algebraic integer θ M, M L ∈ then we say M is monogenic over L or OM has a power OL-basis. We note that in general OM may not be free over OL; however, monogeneity implies freeness. When L is Q we will simply say M is monogenic or OM has a power integral basis. Suppose for the moment that L is a number field containing a primitive nth root n of unity, ζn. A Kummer extension of degree n is an extension of the form L ( √α), where xn α is irreducible over L.