CALCULATING CYCLOTOMIC POLYNOMIALS 1. Introduction the Nth Cyclotomic Polynomial, Φn(Z), Is the Monic Polynomial Whose Φ(N) Di
MATHEMATICS OF COMPUTATION Volume 80, Number 276, October 2011, Pages 2359–2379 S 0025-5718(2011)02467-1 Article electronically published on February 17, 2011 CALCULATING CYCLOTOMIC POLYNOMIALS ANDREW ARNOLD AND MICHAEL MONAGAN Abstract. We present three algorithms to calculate Φn(z), the nth cyclo- tomic polynomial. The first algorithm calculates Φn(z)byaseriesofpolyno- mial divisions, which we perform using the fast Fourier transform. The second algorithm calculates Φn(z) as a quotient of products of sparse power series. These two algorithms, described in detail in the paper, were used to calcu- late cyclotomic polynomials of large height and length. In particular, we have 2 3 found the least n for which the height of Φn(z) is greater than n, n , n ,and n4, respectively. The third algorithm, the big prime algorithm, generates the terms of Φn(z) sequentially, in a manner which reduces the memory cost. We use the big prime algorithm to find the minimal known height of cyclotomic polynomials of order five. We include these results as well as other exam- ples of cyclotomic polynomials of unusually large height, and bounds on the coefficient of the term of degree k for all cyclotomic polynomials. 1. Introduction The nth cyclotomic polynomial,Φn(z), is the monic polynomial whose φ(n) distinct roots are exactly the nth primitive roots of unity. n 2πij/n (1) Φn(z)= z − e . j=1 gcd(j,n)=1 It is an irreducible polynomial over Z with degree φ(n), where φ(n) is Euler’s totient function. The nth inverse cyclotomic polynomial,Ψn(z), is the polynomial whose roots are the nth nonprimitive roots of unity.
[Show full text]