Abstract Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Algebra Abstract algebra Introduction to groups Set and operation Consider a set A = {a,b}, and a binary operation ∗ defined on the set: The rules / table define how two elements of the set combine under the operation. Example: What nine rules are given by the table shown below? We’re familiar with the set of real numbers (and its subsets, the rationals, the integers, and so on), and the operations of addition and multiplication. We know that various properties hold for the real numbers under these operations (commutative, associative, etc.). What we’re interested in with sets / operators in the abstract is whether or not they behave “nicely” like the reals - what properties do they satisfy? Work through the properties defined below and write down some notes / examples! • Closure: A set (A) is closed under a binary operation (∗) if for every x ∈ A, y ∈ A, we have x ∗ y ∈ A. Example: Does the set A = {a,b} with the operation ∗ defined by the table below satisfy the closure axiom? • Associative property: The associative property (axiom) holds for a set (A) with a binary operation (∗) if for every x ∈ A, y ∈ A, z ∈ A we have x ∗ (y ∗ z)=(x ∗ y) ∗ z. Example: Does the set A = {a,b} with the operation ∗ defined by the table below satisfy the associative axiom? • Identity element: An identity element (denoted e) for a set (A) with a binary operation (∗) is an element such that for every x ∈ A, e ∗ x = x ∗ e = x. e iteself must be an element of A. Example: Does the set A = {a,b} with the operation ∗ defined by the table below have an identity element? • Inverse: An element a ∈ A has an inverse a0 ∈ A under a binary operation (∗) if a ∗ a0 = a0 ∗ a = e, where e is the identity. If every x ∈ A has an inverse element, then A with ∗ satisfies the inverse property (axiom). Example: Does each element in the set A = {a,b} have an inverse under ∗ ? Give the inverse of each element that has one. Group The four properties you just examined are the group properties. A group < A, ∗ > is a set A with a binary operation ∗ defined on A that satisfies the four axioms below: • A is closed under ∗. • The operation ∗ is associative. • There is an identity element (e) in A . • Each x ∈ A has an inverse element x0 ∈ A. Examples: (group or not a group?) • < R, + > • < Q \{0}, × > • < Z, + > • < Z, × > • < A, ∗ > where ∗ is defined on A = {a,b} by Example: Is < A, ∗ > a group, where A = {a,b,c} and ∗ is defined by the table? Which properties hold, and which fail? • Commutative property: The commutative property (axiom) holds for a set (A) with a binary operation (∗) if for every x ∈ A, y ∈ A we have x ∗ y = y ∗ x. Example: Does the set A = {a,b} with the operation ∗ defined by the table below satisfy the commutative axiom? • A group is an Abelian group if it satisfies the commutative axiom (as well as the four essential group properties)..
Recommended publications
  • The Universal Property of Inverse Semigroup Equivariant KK-Theory
    KYUNGPOOK Math. J. 61(2021), 111-137 https://doi.org/10.5666/KMJ.2021.61.1.111 pISSN 1225-6951 eISSN 0454-8124 c Kyungpook Mathematical Journal The Universal Property of Inverse Semigroup Equivariant KK-theory Bernhard Burgstaller Departamento de Matematica, Universidade Federal de Santa Catarina, CEP 88.040-900 Florian´opolis-SC, Brasil e-mail : [email protected] Abstract. Higson proved that every homotopy invariant, stable and split exact func- tor from the category of C∗-algebras to an additive category factors through Kasparov's KK-theory. By adapting a group equivariant generalization of this result by Thomsen, we generalize Higson's result to the inverse semigroup and locally compact, not necessarily Hausdorff groupoid equivariant setting. 1. Introduction In [3], Cuntz noted that if F is a homotopy invariant, stable and split exact func- tor from the category of separable C∗-algebras to the category of abelian groups then Kasparov's KK-theory acts on F , that is, every element of KK(A; B) induces a natural map F (A) ! F (B). Higson [4], on the other hand, developed Cuntz' find- ings further and proved that every such functor F factorizes through the category K consisting of separable C∗-algebras as the object class and KK-theory together with the Kasparov product as the morphism class, that is, F is the composition F^ ◦ κ of a universal functor κ from the class of C∗-algebras to K and a functor F^ from K to abelian groups. In [12], Thomsen generalized Higson's findings to the group equivariant setting by replacing everywhere in the above statement algebras by equivariant algebras, ∗- homomorphisms by equivariant ∗-homomorphisms and KK-theory by equivariant KK-theory (the proof is however far from such a straightforward replacement).
    [Show full text]
  • An Introduction to Inverse Semigroups and Their Connections to C*-Algebras
    CARLETON UNIVERSITY SCHOOL OF MATHEMATICS AND STATISTICS HONOURS PROJECT TITLE: An Introduction to Inverse Semigroups and Their Connections To C*-Algebras AUTHOR: Kyle Cheaney SUPERVISOR: Dr. Charles Starling DATE: August 24, 2020 AN INTRODUCTION TO INVERSE SEMIGROUPS AND THEIR CONNECTIONS TO C∗-ALGEBRAS KYLE CHEANEY: 101012022 Abstract. This paper sets out to provide the reader with a basic introduction to inverse semigroups, as well as a proof of the Wagner-Preston Representation Theorem. It then focuses on finite directed graphs, specifically the graph inverse semigroup and how properties of the semigroup correspond to properties of C∗ algebras associated to such graphs. 1. Introduction The study of inverse semigroups was founded in the 1950's by three mathematicians: Ehresmann, Preston, and Wagner, as a way to algebraically describe pseudogroups of trans- formations. The purpose of this paper is to introduce the topic of inverse semigroups and some of the basic properties and theorems. We use these basics to relate the inverse semi- group formed by a directed graph to the corresponding graph C∗ algebra. The study of such C∗ algebras is still an active topic of research in analysis, thus providing a connection between abstract algebraic objects and complex analysis. In section 2, we outline some preliminary definitions and results which will be our basic tools for working with inverse semigroups. Section 3 provides a more detailed introduction to inverse semigroups and contains a proof of the Wagner-Preston representation theorem, a cornerstone in the study of inverse semigroups. In section 4, we present some detailed examples of inverse semigroups, including proving said sets are in fact inverse semigroups and discussing what their idempotents look like.
    [Show full text]
  • Advanced Discrete Mathematics Mm-504 &
    1 ADVANCED DISCRETE MATHEMATICS M.A./M.Sc. Mathematics (Final) MM-504 & 505 (Option-P3) Directorate of Distance Education Maharshi Dayanand University ROHTAK – 124 001 2 Copyright © 2004, Maharshi Dayanand University, ROHTAK All Rights Reserved. No part of this publication may be reproduced or stored in a retrieval system or transmitted in any form or by any means; electronic, mechanical, photocopying, recording or otherwise, without the written permission of the copyright holder. Maharshi Dayanand University ROHTAK – 124 001 Developed & Produced by EXCEL BOOKS PVT. LTD., A-45 Naraina, Phase 1, New Delhi-110 028 3 Contents UNIT 1: Logic, Semigroups & Monoids and Lattices 5 Part A: Logic Part B: Semigroups & Monoids Part C: Lattices UNIT 2: Boolean Algebra 84 UNIT 3: Graph Theory 119 UNIT 4: Computability Theory 202 UNIT 5: Languages and Grammars 231 4 M.A./M.Sc. Mathematics (Final) ADVANCED DISCRETE MATHEMATICS MM- 504 & 505 (P3) Max. Marks : 100 Time : 3 Hours Note: Question paper will consist of three sections. Section I consisting of one question with ten parts covering whole of the syllabus of 2 marks each shall be compulsory. From Section II, 10 questions to be set selecting two questions from each unit. The candidate will be required to attempt any seven questions each of five marks. Section III, five questions to be set, one from each unit. The candidate will be required to attempt any three questions each of fifteen marks. Unit I Formal Logic: Statement, Symbolic representation, totologies, quantifiers, pradicates and validity, propositional logic. Semigroups and Monoids: Definitions and examples of semigroups and monoids (including those pertaining to concentration operations).
    [Show full text]
  • An Elementary Approach to Boolean Algebra
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason­ able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved.
    [Show full text]
  • SOME ALGEBRAIC DEFINITIONS and CONSTRUCTIONS Definition
    SOME ALGEBRAIC DEFINITIONS AND CONSTRUCTIONS Definition 1. A monoid is a set M with an element e and an associative multipli- cation M M M for which e is a two-sided identity element: em = m = me for all m M×. A−→group is a monoid in which each element m has an inverse element m−1, so∈ that mm−1 = e = m−1m. A homomorphism f : M N of monoids is a function f such that f(mn) = −→ f(m)f(n) and f(eM )= eN . A “homomorphism” of any kind of algebraic structure is a function that preserves all of the structure that goes into the definition. When M is commutative, mn = nm for all m,n M, we often write the product as +, the identity element as 0, and the inverse of∈m as m. As a convention, it is convenient to say that a commutative monoid is “Abelian”− when we choose to think of its product as “addition”, but to use the word “commutative” when we choose to think of its product as “multiplication”; in the latter case, we write the identity element as 1. Definition 2. The Grothendieck construction on an Abelian monoid is an Abelian group G(M) together with a homomorphism of Abelian monoids i : M G(M) such that, for any Abelian group A and homomorphism of Abelian monoids−→ f : M A, there exists a unique homomorphism of Abelian groups f˜ : G(M) A −→ −→ such that f˜ i = f. ◦ We construct G(M) explicitly by taking equivalence classes of ordered pairs (m,n) of elements of M, thought of as “m n”, under the equivalence relation generated by (m,n) (m′,n′) if m + n′ = −n + m′.
    [Show full text]
  • MAS4107 Linear Algebra 2 Linear Maps And
    Introduction Groups and Fields Vector Spaces Subspaces, Linear . Bases and Coordinates MAS4107 Linear Algebra 2 Linear Maps and . Change of Basis Peter Sin More on Linear Maps University of Florida Linear Endomorphisms email: [email protected]fl.edu Quotient Spaces Spaces of Linear . General Prerequisites Direct Sums Minimal polynomial Familiarity with the notion of mathematical proof and some experience in read- Bilinear Forms ing and writing proofs. Familiarity with standard mathematical notation such as Hermitian Forms summations and notations of set theory. Euclidean and . Self-Adjoint Linear . Linear Algebra Prerequisites Notation Familiarity with the notion of linear independence. Gaussian elimination (reduction by row operations) to solve systems of equations. This is the most important algorithm and it will be assumed and used freely in the classes, for example to find JJ J I II coordinate vectors with respect to basis and to compute the matrix of a linear map, to test for linear dependence, etc. The determinant of a square matrix by cofactors Back and also by row operations. Full Screen Close Quit Introduction 0. Introduction Groups and Fields Vector Spaces These notes include some topics from MAS4105, which you should have seen in one Subspaces, Linear . form or another, but probably presented in a totally different way. They have been Bases and Coordinates written in a terse style, so you should read very slowly and with patience. Please Linear Maps and . feel free to email me with any questions or comments. The notes are in electronic Change of Basis form so sections can be changed very easily to incorporate improvements.
    [Show full text]
  • Abstract Algebra: Monoids, Groups, Rings
    Notes on Abstract Algebra John Perry University of Southern Mississippi [email protected] http://www.math.usm.edu/perry/ Copyright 2009 John Perry www.math.usm.edu/perry/ Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States You are free: to Share—to copy, distribute and transmit the work • to Remix—to adapt the work Under• the following conditions: Attribution—You must attribute the work in the manner specified by the author or licen- • sor (but not in any way that suggests that they endorse you or your use of the work). Noncommercial—You may not use this work for commercial purposes. • Share Alike—If you alter, transform, or build upon this work, you may distribute the • resulting work only under the same or similar license to this one. With the understanding that: Waiver—Any of the above conditions can be waived if you get permission from the copy- • right holder. Other Rights—In no way are any of the following rights affected by the license: • Your fair dealing or fair use rights; ◦ Apart from the remix rights granted under this license, the author’s moral rights; ◦ Rights other persons may have either in the work itself or in how the work is used, ◦ such as publicity or privacy rights. Notice—For any reuse or distribution, you must make clear to others the license terms of • this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode Table of Contents Reference sheet for notation...........................................................iv A few acknowledgements..............................................................vi Preface ...............................................................................vii Overview ...........................................................................vii Three interesting problems ............................................................1 Part .
    [Show full text]
  • Semigroups and Monoids 
    S Luis Alonso-Ovalle // Contents Subgroups Semigroups and monoids Subgroups Groups. A group G is an algebra consisting of a set G and a single binary operation ◦ satisfying the following axioms: . ◦ is completely defined and G is closed under ◦. ◦ is associative. G contains an identity element. Each element in G has an inverse element. Subgroups. We define a subgroup G0 as a subalgebra of G which is itself a group. Examples: . The group of even integers with addition is a proper subgroup of the group of all integers with addition. The group of all rotations of the square h{I, R, R0, R00}, ◦i, where ◦ is the composition of the operations is a subgroup of the group of all symmetries of the square. Some non-subgroups: SEMIGROUPS AND MONOIDS . The system h{I, R, R0}, ◦i is not a subgroup (and not even a subalgebra) of the original group. Why? (Hint: ◦ closure). The set of all non-negative integers with addition is a subalgebra of the group of all integers with addition, because the non-negative integers are closed under addition. But it is not a subgroup because it is not itself a group: it is associative and has a zero, but . does any member (except for ) have an inverse? Order. The order of any group G is the number of members in the set G. The order of any subgroup exactly divides the order of the parental group. E.g.: only subgroups of order , , and are possible for a -member group. (The theorem does not guarantee that every subset having the proper number of members will give rise to a subgroup.
    [Show full text]
  • Properties & Multiplying a Polynomial by a Monomial Date
    Algebra I Block Name Unit #1: Linear Equations & Inequalities Period Lesson #2: Properties & Multiplying a Polynomial by a Monomial Date Properties In algebra, it is important to know certain properties. These properties are basically rules that allow us to manipulate and work with equations in order to solve for a given variable. We will be dealing with them all year, and you’ve probably actually been using them for awhile without even realizing it! The Commutative Property deals with the order of things. In other words, if I switch the order of two or more items, will my answer be the same? The Commutative Property of Addition states that when it comes to adding two different numbers, the order does . The Commutative Property of Multiplication states that when it comes to multiplying two different numbers, the order does . When it comes to subtracting and dividing numbers, the order matter, so there are no commutative properties for subtraction or division. The Associative Property deals with how things are grouped together. In other words, if I regroup two or more numbers, will my answer still be the same? Just like the commutative property, the associative property applies to addition and multiplication only. There are Identity Properties that apply all four basic operations. When it comes to identity properties, just ask yourself “What can I do to keep the answer the same?” The identity property of addition states that if I add to anything, it will stay the same. The same is true for subtraction. The identity property of multiplication states that if I multiply anything by _______, it will stay the same.
    [Show full text]
  • 5 Definition and Examples of Groups
    Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan 5 Definition and Examples of Groups In Section 3, properties of binary operations were emphasized-closure, iden- tity, inverses, associativity. Now these properties will be studied from a slightly different viewpoint by considering systems (S, ∗) that satisfy all four of the properties. Such mathematical systems are called groups. A group may be defined as follows. Definition 5.1 A set G is a group with respect to a binary operation ∗ if the following properties are satisfied: (i) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Asso- ciative Law); (ii) there exists an element e of G (the identity element of G) such that e ∗ x = x = x ∗ e, for all elements x of G; (iii) for each element x of G there exists an element x0 of G (the inverse of x) such that x ∗ x0 = e = x0 ∗ x (where e is the identity element of G). A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x and y of G. Remark 5.1 The phrase ”with respect” should be noted. For example, the set Z is a group with respect to addition but not with respect to multiplication (it has no inverses for elements other than ±1.) Example 5.1 We can obtain some simple examples of groups by considering appropriate subsets of the familiar number systems. (a) The set of even integers is an Abelian group with respect to addition. 1 (b) The set N of positive integers is not a group with respect to addition since it has no identity element.
    [Show full text]
  • MATH 4140/MATH 5140: Abstract Algebra II
    MATH 4140/MATH 5140: Abstract Algebra II Farid Aliniaeifard April 30, 2018 Contents 1 Rings and Isomorphism (See Chapter 3 of the textbook) 2 1.1 Definitions and examples . .2 1.2 Units and Zero-divisors . .6 1.3 Useful facts about fields and integral domains . .6 1.4 Homomorphism and isomorphism . .7 2 Polynomials Arithmetic and the Division algorithm 9 3 Ideals and Quotient Rings 11 3.1 Finitely Generated Ideals . 12 3.2 Congruence . 13 3.3 Quotient Ring . 13 4 The Structure of R=I When I Is Prime or Maximal 16 5 EPU 17 p 6 Z[ d], an integral domain which is not a UFD 22 7 The field of quotients of an integral domain 24 8 If R is a UDF, so is R[x] 26 9 Vector Spaces 28 10 Simple Extensions 30 11 Algebraic Extensions 33 12 Splitting Fields 35 13 Separability 38 14 Finite Fields 40 15 The Galois Group 43 1 16 The Fundamental Theorem of Galois Theory 45 16.1 Galois Extensions . 47 17 Solvability by Radicals 51 17.1 Solvable groups . 51 18 Roots of Unity 52 19 Representation Theory 53 19.1 G-modules and Group algebras . 54 19.2 Action of a group on a set yields a G-module . 54 20 Reducibility 57 21 Inner product space 58 22 Maschke's Theorem 59 1 Rings and Isomorphism (See Chapter 3 of the text- book) 1.1 Definitions and examples Definition. A ring is a nonempty set R equipped with two operations (usually written as addition (+) and multiplication(.) and we denote the ring with its operations by (R,+,.)) that satisfy the following axioms.
    [Show full text]
  • A Study of Some Properties of Generalized Groups
    OCTOGON MATHEMATICAL MAGAZINE Vol. 17, No.2, October 2009, pp 599-626 599 ISSN 1222-5657, ISBN 978-973-88255-5-0, www.hetfalu.ro/octogon A study of some properties of generalized groups Akinmoyewa, Joseph Toyin9 1. INTRODUCTION Generalized group is an algebraic structure which has a deep physical background in the unified gauge theory and has direct relation with isotopies. 1.1. THE IDEA OF UNIFIED THEORY The unified theory has a direct relation with the geometry of space. It describes particles and their interactions in a quantum mechanical manner and the geometry of the space time through which they are moving. For instance, the result of experiment at very high energies in accelerators such as the Large Electron Position Collider [LEP] at CERN (the European Laboratory for Nuclear Research) in general has led to the discovery of a wealth of so called ’elementary’ particles and that this variety of particles interact with each other via the weak electromagnetic and strong forces(the weak and electromagnetic having been unified). A simple application of Heisenberg’s on certainty principle-the embodiment of quantum mechanics-at credibly small distances leads to the conclusion that at distance scale of around 10−35 metres(the plank length) there are huge fluctuation of energy that sufficiently big to create tiny black holes. Space is not empty but full of these tiny black holes fluctuations that come and go on time scale of around 10−35 seconds(the plank time). The vacuum is full of space-time foam. Currently, the most promising is super-string theory in which the so called ’elementary’ particles are described as vibration of tiny(planck-length)closed loops of strings.
    [Show full text]