Loricifera from the Deep Sea at the Galápagos Spreading Center, with a Description of Spinoloricus Turbatio Gen. Et Sp. Nov. (Nanaloricidae)

Total Page:16

File Type:pdf, Size:1020Kb

Loricifera from the Deep Sea at the Galápagos Spreading Center, with a Description of Spinoloricus Turbatio Gen. Et Sp. Nov. (Nanaloricidae) Helgol Mar Res (2007) 61:167–182 DOI 10.1007/s10152-007-0064-9 ORIGINAL ARTICLE Loricifera from the deep sea at the Galápagos Spreading Center, with a description of Spinoloricus turbatio gen. et sp. nov. (Nanaloricidae) Iben Heiner · Birger Neuhaus Received: 1 August 2006 / Revised: 26 January 2007 / Accepted: 29 January 2007 / Published online: 10 March 2007 © Springer-Verlag and AWI 2007 Abstract Specimens of a new species of Loricifera, nov. are characterized by six rectangular plates in the Spinoloricus turbatio gen. et sp. nov., have been col- seventh row with two teeth, an indistinct honeycomb lected at the Galápagos Spreading Center (GSC) dur- sculpture and long toes with little mucrones. The SO ing the cruise SO 158, which is a part of the 158 cruise has yielded a minimum of ten new species of MEGAPRINT project. The new genus is positioned in Loricifera out of only 42 specimens. These new species the family Nanaloricidae together with the three belong to two diVerent orders, where one being new to already described genera Nanaloricus, Armorloricus science, and three diVerent families. This result indi- and Phoeniciloricus. The postlarvae and adults of Spi- cates a high diversity of loriciferans at the GSC. Nearly noloricus turbatio gen. et sp. nov. are characterized by all the collected loriciferans are in a moulting stage, a mouth cone with eight oral ridges and basally with a hence there is a new stage inside the present stage. This cuticular reinforcement named mouth cone pleat; prolongation of life stages and the occurrence of multi- eighth row with 30 whip-like spinoscalids and 30 “alter- ple life stages inside each other are typical of deep-sea nating” plates; thorax with eight single and seven dou- loriciferans. Here exempliWed by the two postlarvae ble trichoscalids, where the single trichoscalids are with adults inside, which is observed for the Wrst time twice the length of the double ones, and the secondary in Nanaloricidae. appendage on the double trichoscalid is smooth whereas the others are serrated; lorica with eight cutic- Keywords Loricifera · Nanaloricidae · Spinoloricus ular plates with additional spikes in the anterior cor- turbatio gen. et sp. nov. · Galápagos · SO 158 ners and intercalary plicae between the plates. Some of these genus-speciWc characters such as the mouth cone pleat, the “alternating” plates and the intercalary pli- Introduction cae have not been observed in Nanaloricidae before. The Higgins-larvae of Spinoloricus turbatio gen. et sp. The coastal interstitial fauna of the Galápagos Islands has been extensively studied by Prof. Peter Ax and a Communicated by H.-D. Franke. large team of co-workers and was published in about 40 articles mainly in the series Mikrofauna des Meer- I. Heiner (&) esbodens and the successor Microfauna Marina starting Zoological Museum, with the introductory article by Ax and Schmidt The Natural History Museum of Denmark, University of Copenhagen, (1973). Westheide (1991) summarized this mostly Ger- Universitetsparken 15, man information in an English review, which included 2100 Copenhagen, Denmark more than 390 species of the Galápagos meiofauna and e-mail: [email protected] several new records. Otherwise, the meiofauna of the W B. Neuhaus Central American East Paci c is poorly known. Mielke Museum für Naturkunde der Humboldt-Universität zu (1995) described six species of Copepoda from the Berlin, Invalidenstr. 43, 10115 Berlin, Germany coast of Costa Rica and provided evidence for the 123 168 Helgol Mar Res (2007) 61:167–182 repeated colonization of the Galápagos Islands and described from the Faroe Bank, North Atlantic possible speciation events in this taxon (Mielke 2003). (Heiner 2004). It was assumed for long that species of Guzmán et al. (1987) investigated coral reef meiofa- Nanaloricidae prefer shallow sandy waters (Gad 2004). una; Cruz and Vargas (1987) and Vargas (1988) However, this was recently disproved when a new reported meiofauna from mudXats at the Golf of genus and species, Phoeniciloricus simplidigitatus Gad, Nicoya in Costa Rica. All these studies mention meio- 2004 belonging to Nanaloricidae was described from fauna at group level. The kinorhynchs mentioned in the deep sea near the Kilinailau Trench close to Papua Cruz and Vargas (1987) and Vargas (1988) from the New Guinea (Gad 2004). Presently, only three other PaciWc coast of Costa Rica were assigned to Echino- Loricifera species are known from the deep sea; Plicil- deres and Kinorhynchus by the junior author (own oricus hadalis Kristensen and Shirayama, 1988 from unpublished results). Recently, a new genus of Kin- the Izu-Ogasawara Trench, Western PaciWc (Kristen- orhyncha, Fissuroderes has been collected and sen and Shirayama 1988), and Titaniloricus inexpecta- described from the continental shelf of Costa Rica and tovus Gad, 2005 as well as Pliciloricus pedicularis Gad, New Zealand (Neuhaus and Blasche 2006). 2005, both from the Angola Basin, Southeast Atlantic Concerning the deep-sea meiofauna in the Central (Gad 2005a, b). Very little is known about the life American East PaciWc area only one kinorhynch spe- cycles of deep-sea loriciferans, since most of the spe- cies has been identiWed to species level, Campyloderes cies are known from only a few specimens and com- cf. vanhoeVeni Zelinka, 1913 (Neuhaus 2004). The only plete series of instars are lacking. Hence, investigations other description of a deep-sea kinorhynch from the of these animals are highly desirable. American East PaciWc Deep Sea is Antygomonas oreas During the geological deep-sea expedition SO 158 Bauer-Nebelsick 1996 from a seamount at 500–700 m (MEGAPRINT = Multidisciplinary Examination of depth (Bauer-Nebelsick 1996). However, this record is Galápagos Plume Ridge Interaction), Dr Peter Götz from the northern, and not the central, part of the and the junior author had the opportunity to collect all American East PaciWc. Unpublished observations by biological material brought on board of R/V Sonne by the junior author based on material from the two Ger- petrological sampling and from Wve biological stations man deep-sea expeditions SO 144-3 and SO 158 with (Werner 2002). This paper is the third in a series about R/V Sonne in the Central American East PaciWc sug- the biological results of SO 144-3 and SO 158 to the gest a high diversity of Kinorhyncha and other meiofa- Galápagos area. una, such as Tardigrada and Gastrotricha in the deep sea, nearly all species being new to science. The phylum Loricifera consists of exclusively bilat- Materials and methods eral microscopic marine metazoans living either in the interstices of diVerent types of sand or in mud. The All specimens were collected with R/V Sonne during phylum including the type species Nanaloricus mysti- cruise SO 158 on and near the Galápagos Spreading cus Kristensen, 1983 was described in 1983 from shell Center (GSC) and in a transform fault zone in the Cen- gravel (Dentalium sand) oV the coast of RoscoV, tral American East PaciWc (Fig. 1; Werner 2002). Bio- France (Kristensen 1983). The type species belongs to logical material was obtained either by two sediment the family Nanaloricidae, which presently comprises traps (tube diameter 4 cm, tube length 21 cm) in a geo- three genera Nanaloricus, Phoeniciloricus and Armorl- logical chain sack dredge or by a meiofauna dredge. oricus (see Kristensen 1983; Gad 2004; Kristensen and Meiofauna was extracted by density gravity centrifuga- Gad 2004). In the genus Nanaloricus only two species tion with Levasil (Werner 2002). Sediment was imme- N. mysticus and Nanaloricus khaitatus Todaro and diately Wxed in 6–8% formaldehyde buVered with Kristensen, 1998 have been described (Kristensen buVer tablets for haematology at pH = 7.0 (Merck 1983; Todaro and Kristensen 1998), however, several 109468), carefully washed with plenty of tap water on a species are currently under description, e.g., a new spe- 40 m sieve about one day after Wxation, mixed with cies from Fort Pierce, USA (Kristensen et al. 2007) and Kaolin (Riedel de Haën 18616) centrifuged in a large- two new species from RoscoV, France (unpublished volume centrifuge Thermo Heraeus megafuge 3s with results by senior author). The genus Armorloricus, three times the amount of Levasil 200 A/40% (Bayer), including the two species Armorloricus elegans Kris- three times at 4,000 rpm, rinsed with tap water, stored tensen and Gad, 2004 and Armorloricus davidi Kris- in 75% ethanol, later transferred to an ethanol–glycer- tensen and Gad 2004 was described from RoscoV, ine mixture for 1–2 h, and the ethanol allowed to evap- France and shortly thereafter another species of this orate overnight. Individuals were placed in a tiny drop genus, Armorloricus kristenseni Heiner, 2004 was of pure glycerine on a cover slip, surrounded by paraYn, 123 Helgol Mar Res (2007) 61:167–182 169 Fig. 1 Map of study area of the deep-sea expedition SO 158. Land masses in dark grey, submarine ridges marked in light grey. Numbers next to black dots refer to sample sta- tions mentioned in the text. Map designed by courtesy of Reinhard Werner, IfM-GEO- MAR Kiel and carefully manipulated with a second coverslip after Table 1 Species list of the loriciferan fauna around Galápagos melting of the paraYne. Finally the coverslips were Spreading Center sealed with Glyceel prepared according to the recipe Nanaloricida by Bates (1997) and placed in a Cobb-aluminium slide Nanaloricidae for microscopic observation from both sides. For more Spinoloricus turbatio gen. et sp. nov. information concerning the density gravity centrifuga- Pliciloricidae Pliciloricus nov. sp. 1 tion method with Levasil (see Werner 2002; Neuhaus Pliciloricus nov. sp. 2 2004; Neuhaus and Blasche 2006). Pliciloricus nov. sp. 3 Rugiloricus nov. sp. 1 (cauliculus-type) Rugiloricus nov. sp. 2 (carolinensis-type) nov. gen. 1 et nov. sp. 1 Results nov. gen. 1 et nov. sp. 2 nov. gen.
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • New Zealand's Genetic Diversity
    1.13 NEW ZEALAND’S GENETIC DIVERSITY NEW ZEALAND’S GENETIC DIVERSITY Dennis P. Gordon National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington 6022, New Zealand ABSTRACT: The known genetic diversity represented by the New Zealand biota is reviewed and summarised, largely based on a recently published New Zealand inventory of biodiversity. All kingdoms and eukaryote phyla are covered, updated to refl ect the latest phylogenetic view of Eukaryota. The total known biota comprises a nominal 57 406 species (c. 48 640 described). Subtraction of the 4889 naturalised-alien species gives a biota of 52 517 native species. A minimum (the status of a number of the unnamed species is uncertain) of 27 380 (52%) of these species are endemic (cf. 26% for Fungi, 38% for all marine species, 46% for marine Animalia, 68% for all Animalia, 78% for vascular plants and 91% for terrestrial Animalia). In passing, examples are given both of the roles of the major taxa in providing ecosystem services and of the use of genetic resources in the New Zealand economy. Key words: Animalia, Chromista, freshwater, Fungi, genetic diversity, marine, New Zealand, Prokaryota, Protozoa, terrestrial. INTRODUCTION Article 10b of the CBD calls for signatories to ‘Adopt The original brief for this chapter was to review New Zealand’s measures relating to the use of biological resources [i.e. genetic genetic resources. The OECD defi nition of genetic resources resources] to avoid or minimize adverse impacts on biological is ‘genetic material of plants, animals or micro-organisms of diversity [e.g. genetic diversity]’ (my parentheses).
    [Show full text]
  • Online Dictionary of Invertebrate Zoology Parasitology, Harold W
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Armand R. Maggenti Online Dictionary of Invertebrate Zoology Parasitology, Harold W. Manter Laboratory of September 2005 Online Dictionary of Invertebrate Zoology: S Mary Ann Basinger Maggenti University of California-Davis Armand R. Maggenti University of California, Davis Scott Gardner University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/onlinedictinvertzoology Part of the Zoology Commons Maggenti, Mary Ann Basinger; Maggenti, Armand R.; and Gardner, Scott, "Online Dictionary of Invertebrate Zoology: S" (2005). Armand R. Maggenti Online Dictionary of Invertebrate Zoology. 6. https://digitalcommons.unl.edu/onlinedictinvertzoology/6 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Armand R. Maggenti Online Dictionary of Invertebrate Zoology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Online Dictionary of Invertebrate Zoology 800 sagittal triact (PORIF) A three-rayed megasclere spicule hav- S ing one ray very unlike others, generally T-shaped. sagittal triradiates (PORIF) Tetraxon spicules with two equal angles and one dissimilar angle. see triradiate(s). sagittate a. [L. sagitta, arrow] Having the shape of an arrow- sabulous, sabulose a. [L. sabulum, sand] Sandy, gritty. head; sagittiform. sac n. [L. saccus, bag] A bladder, pouch or bag-like structure. sagittocysts n. [L. sagitta, arrow; Gr. kystis, bladder] (PLATY: saccate a. [L. saccus, bag] Sac-shaped; gibbous or inflated at Turbellaria) Pointed vesicles with a protrusible rod or nee- one end. dle. saccharobiose n.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Natura 2000 Sites for Reefs and Submerged Sandbanks Volume II: Northeast Atlantic and North Sea
    Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks Volume II: Northeast Atlantic and North Sea A report by WWF June 2001 Implementation of the EU Habitats Directive Offshore: Natura 2000 sites for reefs and submerged sandbanks A report by WWF based on: "Habitats Directive Implementation in Europe Offshore SACs for reefs" by A. D. Rogers Southampton Oceanographic Centre, UK; and "Submerged Sandbanks in European Shelf Waters" by Veligrakis, A., Collins, M.B., Owrid, G. and A. Houghton Southampton Oceanographic Centre, UK; commissioned by WWF For information please contact: Dr. Sarah Jones WWF UK Panda House Weyside Park Godalming Surrey GU7 1XR United Kingdom Tel +441483 412522 Fax +441483 426409 Email: [email protected] Cover page photo: Trawling smashes cold water coral reefs P.Buhl-Mortensen, University of Bergen, Norway Prepared by Sabine Christiansen and Sarah Jones IMPLEMENTATION OF THE EU HD OFFSHORE REEFS AND SUBMERGED SANDBANKS NE ATLANTIC AND NORTH SEA TABLE OF CONTENTS TABLE OF CONTENTS ACKNOWLEDGEMENTS I LIST OF MAPS II LIST OF TABLES III 1 INTRODUCTION 1 2 REEFS IN THE NORTHEAST ATLANTIC AND THE NORTH SEA (A.D. ROGERS, SOC) 3 2.1 Data inventory 3 2.2 Example cases for the type of information provided (full list see Vol. IV ) 9 2.2.1 "Darwin Mounds" East (UK) 9 2.2.2 Galicia Bank (Spain) 13 2.2.3 Gorringe Ridge (Portugal) 17 2.2.4 La Chapelle Bank (France) 22 2.3 Bibliography reefs 24 2.4 Analysis of Offshore Reefs Inventory (WWF)(overview maps and tables) 31 2.4.1 North Sea 31 2.4.2 UK and Ireland 32 2.4.3 France and Spain 39 2.4.4 Portugal 41 2.4.5 Conclusions 43 3 SUBMERGED SANDBANKS IN EUROPEAN SHELF WATERS (A.
    [Show full text]
  • The First Metazoa Living in Permanently Anoxic Conditions
    Danovaroet al. BMC Biology 2010,8:30 http://www.biomedcentral.eom/1741-7007/8/30 BMC Biology RESEARCH ARTICLE Open Access The first metazoa living in permanently anoxic conditions Roberto Danovaro*1, Antonio Dell'Anno1, Antonio Pusceddu1, Cristina G am bi1, Iben Heiner2 and Reinhardt Mobjerg Kristensen 2 A bstract Background:Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity. R esults:During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera(Spinoloricus nov. sp., Rugiloricus nov. sp. andPliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, guantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes. Conclusions:This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments.
    [Show full text]
  • Abstracts of the 5Th Annual Meeting of the Gesellschaft Für Biologische Systematik (Society for Biological Systematics)
    Org. Divers. Evol. 3, Electr. Suppl. 2: 1 - 31 (2003) © Gesellschaft für Biologische Systematik http://senckenberg.de/odes/03-02.htm Abstracts of the 5th Annual Meeting of the Gesellschaft für Biologische Systematik (Society for Biological Systematics) Roland Melzer & Michael Schrödl (eds) Electr. Suppl. 2. - to: Org. Divers. Evol. 3(1): 72. 2003 Preface In the following, 36 short communications are given that were presented as lectures or posters at the 5th Annual Meeting of the GfBS (see www.gfbs-home.de/) held in Munich, 18-20 September 2002. The meeting was organized by the Botanische Staatssammlung München (BSM), Zoologi- sche Staatssammlung München (ZSM), Department Biologie I of Ludwig-Maximilians-Universität München (LMU), and the GeoBio-CenterLMU. The main topics were (i) theory of systematics, mechanisms of evolution, molecular systematics; (ii) biodiversity and collection information systems; and (iii) special issues concerning various taxa, in particular Coniferales, Anthozoa, Brachiopoda, Mollusca, Acanthocephala, Nematoda, Arthropo- da and Vertebrata. An invited lecture was given by Bernd Schierwater ("Molecular development and molecule morphology in systematics: back to the future?"), and a public lecture by Ragnar Kinzelbach ("Der Seidenschwanz Bombycilla garrulus in Europa vor 1758"). In addition, a curators' meeting – organized by Marion Kotrba (ZSM) – and a meeting of the "Young Systematists" – organized by Sybille Seifried (Oldenburg) – were held in parallel sessions. The organizers thank all those persons who spent
    [Show full text]
  • Echinodermata
    Echinodermata Gr : spine skin 6500 spp all marine except for few estuarine, none freshwater 1) pentamerous radial symmetry (adults) *larvae bilateral symmetrical 2) spines 3) endoskeleton mesodermally-derived ossicles calcareous plates up to 95% CaCO3, up to 15% MgCO3, salts, trace metals, small amount of organic materials 4) water vascular system (WVS) 5) tube feet (podia) Unicellular (acellular) Multicellular (metazoa) protozoan protists Poorly defined Diploblastic tissue layers Triploblastic Cnidaria Porifera Ctenophora Placozoa Uncertain Acoelomate Coelomate Pseudocoelomate Priapulida Rotifera Chaetognatha Platyhelminthes Nematoda Gastrotricha Rhynchocoela (Nemertea) Kinorhyncha Entoprocta Mesozoa Acanthocephala Loricifera Gnathostomulida Nematomorpha Protostomes Uncertain (misfits) Deuterostomes Annelida Mollusca Echinodermata Brachiopoda Hemichordata Arthropoda Phoronida Onychophora Bryozoa Chordata Pentastomida Pogonophora Sipuncula Echiura 1 Chapter 14: Echinodermata Classes: 1) Asteroidea (Gr: characterized by star-like) 1600 spp 2) Ophiuroidea (Gr: snake-tail-like) 2100 spp 3) Echinoidea (Gr: hedgehog-form) 1000 spp 4) Holothuroidea (Gr: sea cucumber-like) 1200 spp 5) Crinoidea (Gr: lily-like) stalked – 100 spp nonstalked, motile comatulid (feather stars)- 600 spp Asteroidea sea stars/starfish arms not sharply marked off from central star shaped disc spines fixed pedicellariae ambulacral groove open tube feet with suckers on oral side anus/madreporite aboral 2 Figure 22.01 Pincushion star, Culcita navaeguineae, preys on coral
    [Show full text]
  • Comparative Analysis of the Tardigrade Feeding Apparatus: Adaptive Convergence and Evolutionary Pattern of the Piercing Stylet System
    J. Limnol., 2013; 72(s1): 24-35 DOI: 10.4081/jlimnol.2013.e4 Comparative analysis of the tardigrade feeding apparatus: adaptive convergence and evolutionary pattern of the piercing stylet system Roberto GUIDETTI,1* Roberto BERTOLANI,2 Lorena REBECCHI1 1Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 213/D, 41125 Modena; 2Dipartimento di Educazione e Scienze Umane, Università di Modena e Reggio Emilia, Via A. Allegri 9, 42121 Reggio Emilia, Italy *Corresponding author: [email protected] ABSTRACT A thorough analysis of the cuticular parts of tardigrade feeding apparatuses was performed in order to provide a more complete understanding of their evolution and their potential homologies with other animal phyla (e.g. Cycloneuralia and Arthropoda). The buc- cal-pharyngeal apparatuses of eight species belonging to both Eutardigrada and Heterotardigrada were studied using light and scanning electron microscopy. This study supports and completes a previous study on the relationships between form and function in the buccal- pharyngeal apparatus of eutardigrades. The common sclerified structures of the tardigrade buccal-pharyngeal apparatus are: a buccal ring connected to a straight buccal tube, a buccal crown, longitudinal thickenings within the pharynx, and a stylet system composed of piercing stylets within stylet coats, and stylet supports. Specifically, heterotardigrades (Echiniscoidea) have a narrow buccal tube; long piercing stylets, each with a longitudinal groove, that cross one another before exiting the mouth; pharyngeal bars and secondary lon- gitudinal thickenings within the pharynx. In contrast, eutardigrades have stylets which are shorter than the buccal tube; Parachela have pharyngeal apophyses and placoids within the pharynx, while Apochela lack a buccal crown and cuticular thickenings within the pharynx, the buccal tube is very wide, and the short stylets are associated with triangular-shaped stylet supports.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • University of Copenhagen
    The first metazoa living in permanently anoxic conditions Danovaro, Roberto; Dell'Anno, Antonio; Pusceddu, Antonio; Gambi, Christina; Bang- Berthelsen, Iben Heiner; Kristensen, Reinhardt Møbjerg Published in: BMC Biology DOI: 10.1186/1741-7007-8-30 Publication date: 2010 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Danovaro, R., Dell'Anno, A., Pusceddu, A., Gambi, C., Bang-Berthelsen, I. H., & Kristensen, R. M. (2010). The first metazoa living in permanently anoxic conditions. BMC Biology, 8, [30]. https://doi.org/10.1186/1741-7007-8- 30 Download date: 27. Sep. 2021 Danovaro et al. BMC Biology 2010, 8:30 http://www.biomedcentral.com/1741-7007/8/30 RESEARCH ARTICLE Open Access TheResearch first article metazoa living in permanently anoxic conditions Roberto Danovaro*1, Antonio Dell'Anno1, Antonio Pusceddu1, Cristina Gambi1, Iben Heiner2 and Reinhardt Møbjerg Kristensen2 Abstract Background: Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity. Results: During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov.
    [Show full text]