May-Aug 2015 MAPS Digest Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Publications (Published, in Press, Accepted, Or in Revision). * Indicates Undergraduate Mentee
Publications (published, in press, accepted, or in revision). * indicates undergraduate mentee 14. Scarpetta SG. Iguanian lizards from the Split Rock Formation, Wyoming: exploring the modernization of the North American lizard fauna. Journal of Systematic Palaeontology. In press. 13. Scarpetta SG, Ledesma DT, Llauger FO, White BA. 2020. Evolution of North American lizards. eLS 1(4), 705-717. https://doi.org/10.1002/9780470015902.a0029078. Invited submission. All authors contributed equally to this work. 12. Scarpetta SG. 2020. Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian. Scientific Reports 10(1), 1-10. https://doi.org/10.1038/s41598-020-72509-2 11. Scarpetta SG. 2020. Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards. Biology Letters 16(8), 20200356. https://doi.org/10.1098/rsbl.2020.0356 10. Scarpetta SG. 2020. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. Royal Society Open Science 7(8), 200317. http://dx.doi.org/10.1098/rsos.200317 9. Scarpetta SG, Bell CJ. 2020. Novel and bizarre abnormalities of the tooth row in side- blotched lizards (Uta) and rock lizards (Petrosaurus). The Anatomical Record 303, 2014-2025. https://doi.org/10.1002/ar.24279 8. Scarpetta SG. 2019. The first known fossil Uma: Ecological evolution and the origins of North American fringe-toed lizards. BMC Evolutionary Biology 19(178), 1-22. https://doi.org/10.1186/s12862-019-1501-5 7. Scarpetta SG. 2019. Aneides hardii (Sacramento Mountains Salamander). Catalogue of American Amphibians and Reptiles 921, 1-23. -
The Sclerotic Ring: Evolutionary Trends in Squamates
The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements .................................................................................................... -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
Tiago Rodrigues Simões
Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour. -
Microsoft Word
LIST OF EXTANT INGROUP TAXA: Agamidae: Agama agama, Pogona vitticeps, Calotes emma, Physignathus cocincinus. Chamaeleonidae: Brookesia brygooi, Chamaeleo calyptratus. Corytophanidae: Basiliscus basiliscus, Corytophanes cristatus. Crotaphytidae: Crotaphytus collaris, Gambelia wislizenii. Hoplocercidae: Enyalioides laticeps, Morunasaurus annularis. Iguanidae: Brachylophus fasciatus, Dipsosaurus dorsalis, Sauromalus ater. Leiolepidae: Leiolepis rubritaeniata, Uromastyx hardwicki. Leiosauridae: Leiosaurus catamarcensis, Pristidactylus torquatus, Urostrophus vautieri. Liolaemidae: Liolaemus elongatus, Phymaturus palluma. Opluridae: Chalarodon madagascariensis, Oplurus cyclurus. Phrynosomatidae: Petrosaurus mearnsi, Phrynosoma platyrhinos, Sceloporus variabilis, Uma scoparia, Uta stansburiana. Polychrotidae: Anolis carolinensis, Polychrus marmoratus. Tropiduridae: Leiocephalus barahonensis, Stenocercus guentheri, Tropidurus plica, Uranoscodon superciliosus. Anguidae: Ophisaurus apodus, Anniella pulchra, Diploglossus enneagrammus, Elgaria multicarinata. Cordylidae: Chamaesaura anguina, Cordylus mossambicus. Dibamidae: Anelytropsis papillosus, Dibamus novaeguineae. Eublepharidae: Aeluroscalobates felinus, Coleonyx variegatus, Eublepharis macularius. "Gekkonidae": Teratoscincus przewalski, Diplodactylus ciliaris, Phyllurus cornutus, Rhacodactylus auriculatus, Gekko gecko, Phelsuma lineata. Gonatodes albogularis. Gerrhosauridae: Cordylosaurus subtesselatus, Zonosaurus ornatus. Gymnophthalmidae: Colobosaura modesta, Pholidobolus montium. Helodermatidae: -
Afherzeanmuseum Ovitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK 24, N.Y
AfherzeanMuseum ovitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 21 20 DECEMBER 28, 1962 Testudo amphithorax Cope Referred to Stylemysl By WALTER AUFFENBERG' The testudinine turtle fauna of the White River Formation is of con- siderable interest, since it marks the first appearance of several important New World tortoise genera (Geochelone, Stylemys, and Gopherus). Further- marc, a number of species of tortoises referred to these genera from these beds have been described on the basis of very fragmentary materials. Thus, additional information on shell architecture and the configuration of various elements that comprise the axial and peripheral portions of the skeleton may be helpful in the determination of the validity and relation- ships of the several described forms. One of the species for which such information is highly desirable is Testudo omphithorax Cope (1873). An almost complete specimen of fossil tortoise in the University of Colorado Museum (U.C.M. No. 20575) has been compared with the material on which Cope based amphithorax (A.M.N.H. Nos. 1139, 1145, 1147) and is referred to this species without any doubt. It was collected by James Mellinger, close to the type locality of the species (Weld County, Colorado, near the head of Horse Tail Creek, Horse Tail Creek Member, White River Formation, Lower Oligocene). It consists of a complete shell and almost all the postcranial skeleton of an adult male specimen. A poor skull, not articulated with the cervical vertebrae, but with the shell when the collection was donated to I The research for the present paper has been partially supported by the National Science Foundation (Grant GI7613)_ 2 Tbe University of Colorado. -
Depositional History of the Chadron Formation in North Dakota
Depositional History of the Chadron Formation in North Dakota by Clint A. Boyd1 and John R. Webster2 1North Dakota Geological Survey 2Geosciences, Minot State University REPORT OF INVESTIGATION NO. 120 NORTH DAKOTA GEOLOGICAL SURVEY Edward C. Murphy, State Geologist Lynn D. Helms, Director Dept. of Mineral Resources 2018 Table of Contents Abstract ........................................................................................................................................... v Acknowledgements ........................................................................................................................ vi Introduction ..................................................................................................................................... 1 Late Eocene Paleosols of North Dakota ......................................................................................... 3 Paleosols at White and Haystack Buttes (Stark County) ............................................................ 4 Description of Section 1 .......................................................................................................... 5 Description of Section 2 .......................................................................................................... 7 History of Paleosol Development ......................................................................................... 13 Interpretation ......................................................................................................................... 16 -
Page 1 100 100 Tachyglossus Homo Mus 100 Podocnemis 100 100
100 Tachyglossus 100 Homo Mus 100 Podocnemis 100 Chelydra 100 Dromaius 100 Gallus 100 Alligator Crocodylus 100 89 Gephyrosaurus bridensis † 99 Kallimodon pulchellus † Sphenodon Huehuecuetzpalli mixtecus † Eichstaettisaurus † 100 50 Sineoamphisbaena hexatabularis † 100 Dibamus Anelytropsis AMNH FR 21444 † 95 99 Aeluroscalobates 84 Eublepharis Coleonyx 93 100 Phelsuma 99 Gekko 99 Gonatodes Teratoscincus 57 Saltuarius 97 98 Strophurus 60 Rhacodactylus 100 Delma Lialis 71 Paramacellodus † Parmeosaurus scutatus † 100 Platysaurus 93 Cordylus 99 Zonosaurus 60 77 Cordylosaurus 93 Tepexisaurus tepexii † 87 Cricosaura 87 Xantusia 93 Palaeoxantusia sp. † Lepidophyma 100 Carusia intermedia † Myrmecodaptria microphagosa † 99 Eoxanta lacertifrons † 91 Hymenosaurus clarki † Globaura venusta † Acontias 100 Amphiglossus 89 65 Feylinia 67 Plestiodon 90 Scincus Brachymeles 57 100 Trachylepis 99 Tiliqua 100 Sphenomorphus Eugongylus 100 Colobosaura 100 Pholidobolus 100 Tupinambis 100 Callopistes 100 Aspidoscelis 72 Teius 100 Takydromus Lacerta 74 100 Rhineura 100 Dyticonastis rensbergeri † 100 Spathorhynchus fossorium † 100 Bipes biporus 100 Bipes canaliculatus 100 Amphisbaena 100 Geocalamus 100 Diplometopon Trogonophis Shinisaurus 74 Gobiderma pulchrum † 74 70 Aiolosaurus oriens † 53 Estesia mongoliensis † 84 Lanthanotus Saniwa † 98 83 99 Varanus exanthematicus 100 Varanus acanthurus Varanus salvator 100 Heloderma horridum Heloderma suspectum 73 100 Xenosaurus platyceps 92 Xenosaurus grandis 98 Peltosaurus granulosus † 100 Helodermoides tuberculatus † 57 -
Multiple Evolutionary Origins and Losses of Tooth Complexity
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multiple evolutionary origins and losses of tooth 2 complexity in squamates 3 4 Fabien Lafuma*a, Ian J. Corfe*a, Julien Clavelb,c, Nicolas Di-Poï*a 5 6 aDevelopmental Biology Program, Institute of Biotechnology, University of Helsinki, FIN- 7 00014 Helsinki, Finland 8 bDepartment of Life Sciences, The Natural History Museum, London SW7 5DB, United 9 Kingdom 10 cLaboratoire d’Écologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université 11 Claude Bernard Lyon 1 – UMR CNRS 5023, ENTPE, F-69622 Villeurbanne, France 12 13 *Mail: [email protected]; [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042796; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 14 Teeth act as tools for acquiring and processing food and so hold a prominent role in 15 vertebrate evolution1,2. In mammals, dental-dietary adaptations rely on tooth shape and 16 complexity variations controlled by cusp number and pattern – the main features of the 17 tooth surface3,4. -
Characteristics of Miniaturization in Squamates: A
CHARACTERISTICS OF MINIATURIZATION IN SQUAMATES: A PHYLOGENETIC PERSPECTIVE FROM CRANIAL MORPHOLOGY ___________ A Thesis Presented to The Faculty of the Department of Biological Sciences Sam Houston State University ___________ In Partial Fulfillment of the Requirements for the Degree of Master of Science ___________ by Maria Camila Vallejo Pareja August, 2018 CHARACTERISTICS OF MINIATURIZATION IN SQUAMATES: A PHYLOGENETIC PERSPECTIVE FROM CRANIAL MORPHOLOGY by Maria Camila Vallejo Pareja ___________ APPROVED: Juan Diego Daza, PhD Committee Director Christopher Randle, PhD Committee Co-Director Monte L. Thies, PhD Committee Member Jessica Anderson Maisano, PhD Committee Member John B. Pascarella, PhD Dean, College of Sciences and Engineering Technology DEDICATION A Mariana y Manuel, A Nacho y a Silvia, A Carito y Juanis. Con infinita gratitud. iii ABSTRACT Vallejo Pareja, Maria Camila, Characteristics of miniaturization in squamates: A phylogenetic perspective from cranial morphology. Master of Science (Biological Sciences), August, 2018, Sam Houston State University, Huntsville, Texas. Miniaturization is recurrent in tetrapods, and has been widely recognized to be an evolutionary process resulting from the occupation of previously unexploited niches (Hanken and Wake, 1993; Rieppel, 1984a, 1996). In this thesis I review the process of miniaturization and its effects on the skull of squamates (lizards, snakes, and amphisbaenians). I compiled a list of characteristics previously described for squamates and summarized the main differences among higher level groups (e.g., Iguania, Gekkota or Scincomorpha). I also investigated whether observed traits linked to miniaturization are the product of convergent evolution. I used a large published morphological data set that includes 204 species of which 54 are miniaturized. I coded characters for an additional species that represent the smallest known squamates (e.g., Sphaerodactylus ariasae and Brookesia micra) and belong to taxonomic groups with minor representation in the original dataset. -
National Park Service Paleontological Research
169 NPS Fossil National Park Service Resources Paleontological Research Edited by Vincent L. Santucci and Lindsay McClelland Technical Report NPS/NRGRD/GRDTR-98/01 United States Department of the Interior•National Park Service•Geological Resource Division 167 To the Volunteers and Interns of the National Park Service iii 168 TECHNICAL REPORT NPS/NRGRD/GRDTR-98/1 Copies of this report are available from the editors. Geological Resources Division 12795 West Alameda Parkway Academy Place, Room 480 Lakewood, CO 80227 Please refer to: National Park Service D-1308 (October 1998). Cover Illustration Life-reconstruction of Triassic bee nests in a conifer, Araucarioxylon arizonicum. NATIONAL PARK SERVICE PALEONTOLOGICAL RESEARCH EDITED BY VINCENT L. SANTUCCI FOSSIL BUTTE NATIONAL MONUMNET P.O. BOX 592 KEMMERER, WY 83101 AND LINDSAY MCCLELLAND NATIONAL PARK SERVICE ROOM 3229–MAIN INTERIOR 1849 C STREET, N.W. WASHINGTON, D.C. 20240–0001 Technical Report NPS/NRGRD/GRDTR-98/01 October 1998 FORMATTING AND TECHNICAL REVIEW BY ARVID AASE FOSSIL BUTTE NATIONAL MONUMENT P. O . B OX 592 KEMMERER, WY 83101 164 165 CONTENTS INTRODUCTION ...............................................................................................................................................................................iii AGATE FOSSIL BEDS NATIONAL MONUMENT Additions and Comments on the Fossil Birds of Agate Fossil Beds National Monument, Sioux County, Nebraska Robert M. Chandler .......................................................................................................................................................................... -
Smithsonian Herpetological Information Services
GIL INDEX TO THE SCIENTIFIC NAMES IN "CLASSIFICATION OF THE LIZARDS" by CHARLES LEWIS CAMP Bull. Amer. Mus. Nat. Hist. Vol. XLVIII, Art. XI, pp. 289-481 1923 Indexed by James A. Peters - SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICES , 1965 V Additional copies available from: Division of Reptiles and Amphibians U. S. National Museum Washington, D.C. 20560 MAY 3 0197b jUHrtArtitS \RlfS Acanthodactylus ; 361, Amblyrhynchus ; 307, 365, 406, 410. 371, 373, 395, 401, Acanthosaura; 367, 406. 405, 416. cristatus; 379, 406. Acontias; 340, 351, 369, Ameiva; 404, 408, 411. 375, 396. sur inamensis , 406. meleagris; 355, 380, vulgaris; 377, 406. 387. Amphibia; 369, 420. monodactylus; 355, 367, Amphibolurus; 339, 348, niger; 387. 362, 367, 372, 406, Acrosauria; 346. 416. Acteosaurus; 322. muricatus; 371, 380. Adriosaurus; 322. Amphisbaena; 339, 340, Aelurosaurus ; 305. 342, 343, 351, 356, A^tosaurus; 399. 360, 417, Fig. 18 Agama; 348, 363, 367, 416. (448). atra; 410. 412. alba; 342, 351, 361, colonorum; 371. 380, 399, 400, Fig. galliae; 309. 9 (438), Fig. 40 hispida; 362. (448). inermis; 402. caeca; Fig. F (342). pallida; 362. fuliginosa; 342, 361, y plica; 406. 399, 400. sanguinlenta; 362. occidentalis ; 352. stellio; 402, 410. Amphisbaenidae ; 299, 313, Agamidae; 298, 304, 307, 314, 316, 334, 342, 310, 311, 312, 334, 344, 351, 354, 356, 357, 359, 360, 361, 357, 361, 362, 363, 362, 363, 364, 365, 365, 369, 375, 379, 367, 369, 375, 379, 393, 394, 401, 415, 381, 393, 394, 395, 417, 419. 398, 401, 406, 409, Amphisbaenoidea; 299, 410, 417, 418, 421. 316 , 352, 372. Agamodon; 351, 361. Anelytropsidae, 299, 352, Aigialosauridae; 300, 365, 379, 396, 397.