Smithsonian Herpetological Information Services

Total Page:16

File Type:pdf, Size:1020Kb

Smithsonian Herpetological Information Services GIL INDEX TO THE SCIENTIFIC NAMES IN "CLASSIFICATION OF THE LIZARDS" by CHARLES LEWIS CAMP Bull. Amer. Mus. Nat. Hist. Vol. XLVIII, Art. XI, pp. 289-481 1923 Indexed by James A. Peters - SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICES , 1965 V Additional copies available from: Division of Reptiles and Amphibians U. S. National Museum Washington, D.C. 20560 MAY 3 0197b jUHrtArtitS \RlfS Acanthodactylus ; 361, Amblyrhynchus ; 307, 365, 406, 410. 371, 373, 395, 401, Acanthosaura; 367, 406. 405, 416. cristatus; 379, 406. Acontias; 340, 351, 369, Ameiva; 404, 408, 411. 375, 396. sur inamensis , 406. meleagris; 355, 380, vulgaris; 377, 406. 387. Amphibia; 369, 420. monodactylus; 355, 367, Amphibolurus; 339, 348, niger; 387. 362, 367, 372, 406, Acrosauria; 346. 416. Acteosaurus; 322. muricatus; 371, 380. Adriosaurus; 322. Amphisbaena; 339, 340, Aelurosaurus ; 305. 342, 343, 351, 356, A^tosaurus; 399. 360, 417, Fig. 18 Agama; 348, 363, 367, 416. (448). atra; 410. 412. alba; 342, 351, 361, colonorum; 371. 380, 399, 400, Fig. galliae; 309. 9 (438), Fig. 40 hispida; 362. (448). inermis; 402. caeca; Fig. F (342). pallida; 362. fuliginosa; 342, 361, y plica; 406. 399, 400. sanguinlenta; 362. occidentalis ; 352. stellio; 402, 410. Amphisbaenidae ; 299, 313, Agamidae; 298, 304, 307, 314, 316, 334, 342, 310, 311, 312, 334, 344, 351, 354, 356, 357, 359, 360, 361, 357, 361, 362, 363, 362, 363, 364, 365, 365, 369, 375, 379, 367, 369, 375, 379, 393, 394, 401, 415, 381, 393, 394, 395, 417, 419. 398, 401, 406, 409, Amphisbaenoidea; 299, 410, 417, 418, 421. 316 , 352, 372. Agamodon; 351, 361. Anelytropsidae, 299, 352, Aigialosauridae; 300, 365, 379, 396, 397. 321 , 324, 356, 361, Anelytropsis 365, 367, 418. papillosus, 352. Aigialosaurus ; 321. Anguidae; 300, 318, 325, Algiroides; 339, 361, 326, 328, 334, 355, 365, 406. 356, 361, 362, 365, 367, 369, 373, 374, LfHS&Rlt^ Anguidae (cont.); 377, carolinensis ; 410. 386, 396, 401, 406, cuvieri; 379. 418. sagrae; 308, 406, 410, Anguinimorpha; 299, 306, 414. 313, 314, 315, 318 , Anops ibaena 351, 358, 360, 361, kingii; 352, 399, 400. 365, 367, 369, 373, Aporosaura; 401. 374, 376, 386, 392, Aprasia; 330, 401. 401, 409, 411, 417, pulchella; 330. 419, 420, Figs. 13- Araeoscelis; 310, 337, 20 (440), 454, Figs. 344, 346, 347, 349, 90-98 (474). 356, 362, 363, 368, Anguioidea; 300, 315, 376, 394, 414, Fig. 326, 373, 420, Figs. 77 (472). 58-61 (456). Archaeopteryx; 392. Anguis; 327, 340, 345, Ardeosauridae ; 304, 306 , 348, 352, 353, 356, 356. 358, 360, 363, 367, Ardeosaurus; 306, 350, 374, 376, 394, 396, 361, 394, 418. 397, 398. brevipes; 306, Fig. C. fragilis; 353, 355, Aristelliger ; 339. 365, 367, 373, 380, Ascalabota; 297, 302, 409, 413, Fig. 92 303 , 305, 310, 312, (474). 331, 335, 341, 358, Anisolepis; 386. 374, 376, 377, 380, Anniella; 314, 325, 334, 385, 386, 398, 400, 340, 350, 351, 352, 401, 403, 408, 414, 358, 375, 376, 386, 415, 416, 417, 418, 393, 394, 395, 456. 419, 420, Figs. 1- pulchra; 355, 400. 7 (436), Figs. 27- pulchra nigra; 373, 31 (444), Figs. 42- 380, Fig. 61 (456), 47 (450), 458. Figs. 70-72 (468). Ascalabotes; 396, 397. Anniellidae; 301, 325, Autarchoglossa; 298, 302, 326, 356, 365, 373, 312 , 335, 358, 378, 375, 396, 397, 401, 379, 380, 385, 387, 415, 418, 419, 420. 390, 398, 399, 400, Anolis; 311, 345, 360, 401, 408, 414, 415, 365, 366, 371, 376, 416, 417, 418, 419, 377, 386, 388, 416. Figs. 32-37 (446), 458. ) Aves, 392. Calotes (cont . Bachia, 345, 360, 367, mystaceus, 362. 377, 386, 400. versicolor, 350, 360, intermedia, 339, 362, 380, 394, 406, 380, 387, 400, 410, 410, 412, Fig. 5 4L3, Fig. 68 (464) (436), Fig. 30 Fig. 74 (468). (444), Fig. 46 (450). Basiliscus, 365, 369, Carsosaurus, 321, 413. 371, 394, 416. Celestus, 418. amboinensis, 406. costatus, 373, vittatus, 379. striatus , 411. Bipes, 317. Cephalopel t is Blanus, 399. scutigera, 3)2. cinerea, 351. Chalarodon, 308,339, cinereus, 375,399, 360,363,370,371, 400, 410, 454. 386,405,416,450. strauchii, 353. madagascarensis , 379, Brachylophus , 365, 371, 386, 400, 405, 409, 401, 416. 412. fasciatus, 386, 404, Chalcides, 339, 351, 406, Fig. 29 (444), 353, 357, 377, 391. Fig. 44 (450). mionecton, 386, 387, V Brevi lingues , 397. 410, 413. Brookesia, 311, 351, sepoides, 380, 387, 3a6, 357,358,362, 390, 391. 375, 394,405,408, tridactylus, 353, 410. 380, 386, 387, 391, superci 1 iar is , 412. 413. Cadurcosaurus simonyi, 361. sauvagei, 315. lineatus, 367, 410. Callisaurus, 307, 360, ocellatus, 377, 380, 366, 370, 371, 450. 387, 391. Callopistes, 401. Chamaeleo Calotes, 310, 311 348, pristinus, 309, 310 . 364, 367, 371, 372, Chamaeleolis, 307,311, 377, 404, 408, 417. 365,386. cristatel lus , 394. Chamaeleon, 303,340, jubatus, 355, 410, 351, 357, 360,364, 412. 372, 377, 381, 383, LIHRMUi-l . Chamaeleon (cont. ), Charasia, 367, 406. 384, 388, 390, 394, Chelonia, 302, 369, 373. 395, 404, 405, 408, Chelosania, 401 411, 419, 420. Chelydra brevicornis, 410. serpentina, Fig. 41 demaranus, 410 (448). dilepis, 405, 410. Chirotes, 339, 367, 409. gracilis, 310, 357, canaliculatus , 410, 360, 362, 372, 377, 413 380, 400, 410, 412, Chalamydosaurus , 339. Fig. 7 (436), Fig. Chondrodactylus 306. 47, (450). Cicigna, 394. lateralis, 410. Clidastes, 322, 351. pumilus, 357. dispar, 410. quilensis, 410. velox, 413. senegalensis , 377. westii, 413, Fig. 22 ventralis, 410. (442). vulgaris, 310, 357, Cnemidophorus , 360, 361, 360, 377, 380, 387, 369, 377, 380, 394, 393, 405, 409, 410, 411, 414. 412. sp. ? 400. Chamaeleontidae, 298. lemniscatus, 402 311 , 334, 344, 357, sexlineatus, 410. 359, 363, 364, 365, tessellatus, 410. 367, 375, 381, 386, Coleonyx, 305, 314, 339, 401, 415. 340, 350, 359, 360, Chamaesaura, 318, 330, 366, 376, 377, 394, 331, 339, 345, 373, 452. 376, 386, 400. variegatus, 344, 370, macrolepis, 380, 387, 379, 400, 404, 405, 400, 406, 410, Fig. 409, Fig. 4 (436), 36 (446), Fig. 57 Fig. 27 (444), Fig. (454). 42 (450). Chamaesauridae , 379. Coniasaurus , 302. Chamaesaurinae , 301, Conolophus, 350, 365, 401 386. Cordy losaurus , 394. Chamops, 309, Fig.D, Corythophanes , 36 5, 394. E, 363, 418. Cotylosauria, 324, 346, segnis, 309 347, 375, 392. Crocodilia, 302, 369, Dibamus, 313, 314, 340, 383, 384, 392. 353, 376, 390. Crocody lus novaeguineae , 353, americanus, Fig. 39 380, 400, Fig. 75 (448). (470). Didelphys, 408. Crotaphytus, 345, 360, Didosaurus, 315. mauritanicus , 315. 365, 371, 376, 377 : 409, 450. Dinosauria, 392. collaris, 309, 361, Diopeus 410, 412. leptocephalus , 349. collaris baileyi, Diploglossa, 300, 302, 350, 366, 379 325 , 251, 357, : 354, 358, 406. 374, 394, 397, 418. wislizenii, 379, 409, Diploglossus , 365 412. cadurcensis, 327. Cryptobranchus , 381, Diplolaemus, 366. 383, 384. Dipsosaurus, 345, 360, Cryptodelma , 401. 365, 371, 373, 376, Ctenoblepharis , 365, 377, 394, 416. 401. dorsalis, 379, 410. Ctenosaura, 351, 365, Dol ichosauridae, 300, V 371, 386, 387, 416. 321, 322, 345, 356, Cyclodus, 315. 359, 367, 418. [Tiliqua] nigro- Dolichosaurus, 303, 322, lineatus, 412. 413. Cyclura, 365, 371, 377, Dopasia 386,387,394,409, gracilis, 368. 412,416. smaragdinum, 405. Cymbospondy lus , 349. Dracaenosaurus petrinus, 348. croizeti, 315. Dasia, Draco, 336, 348, 362, smaragdinum, 380. 367, 371, 395, 417. Delma, 401. f ormosus , 360, 380, impar , 330. 406. fraseri, 410. viridis, 377. Diadophis, 302. Egernia, 335, 339, 340, sp.?, 400. 351, 359, 360, 365, Dibamidae, 299, 314, 368, 377, 394, 408, 317,353,365,386, 409, 410. 393,397,415,419. '^J'BtfWfS ) . ) Egernia, (cont . Gekko (cont . cunninghami , 405 vittatus, 355. whitei, 412. Gekkonidae, 297, 304, Elasmobranchs , 393. 334, 335, 336, 345, Enigmatosaurus , 303. 348, 356, 359, 362, Enyalioides, 365, 386, 365, 366, 370, 375, 401. 401, 404, 405, 411, heterolepis, 379. 413, 418, Figs. 1-4, Enyalius, 365, 385. (436), 458. rhombifer, 379, 400. Gekkota, 297, 303, 304 , Eremias, 361, 365, 410. 307, 315, 329, 332, Eublepharidae , 305. 358, 361, 362, 366, Eumeces, 339, 351. 370, 373, 374, 376, fasciatus, 410. 379, 394, 395, 409, obsoletus, 410 412. schneideri, 36 5, 377. Gerrhonotus, 325,328, Euposauridae , 310, 318 , 331, 340, 342, 351, 346, 363. 360, 364, 365, 373, Euposaurus, 319. 376, 377, 404, 418, thiollieri, 318. 420, Fig. 16 (440), Evesia, 367. 456. monodactyla, 410. imbricatus, 406, 413. Feylinia, 314, 353, liocephalus, Fig. 93, 390. (474). currori, 380, multicarinatus , 409. 387, 400; Fig. 73, scincicauda, 340, 400, (468). 409. Feyliniidae, 299, 340, scincicauda scinci- 356, 362,- 372, 375, cauda; Fig.H, Fig. 15, 386, 396-, 415. (440), Fig. 99, Geckolepis, 396, 400. (476), Fig. 108, polylepis, Fig. A, (480). 304. scincicauda webbii, Gehyra, 340, 343,350, 373, 380, 406; Fig. 359, 366, 405, 409. 33 (446), Fig. 59, Gekko, 404, 405, 408. (456). verticil latus , 34T, Gerrhosauridae, 299, 343, 355, 372, 379, 306, 314, 316, 334, 405, 412, Fig. 62, 356, 361, 362, 365, (458). a Gerrhosauridae (cont.) Gonocephalus (cont.) 369, 370, 371, 377, kuhlii, 394, 410, 412. 386, 396, 397, 401, subcristatus , 406. 406. Gramma tophor Gerrhosaurus , 316, 340, barbata, 410, 412. 348, 351, 360, 394, Gymnodactylus 395, 397, 406, 409. platurus, 355. flavigularis nigro- Gymnophthalmus , 398. lineatus, 413. Helocepnalus , 366. nigrolineatus , 365, Heloderma, 301, 328, 340, Fig.K, 397,410, 348, 349, 350, 355, Figs. 88-89, (474). 361, 362,365,376, zechi, 342,370, 380, 377, 394,396,397, 400, 404, Fig. 32, 404, 411, 418, Fig. (446), Fig. 52, (452). 21, (440), Fig. 100, Fig. 63, (458), Fig. (476), 480. 66 (462). horridum, 351, Fig. Glauconiidae , 302. 98, (474). Globidens, 323. suspectum, 380, 400, Glyptosauridae , 301, 406, 410, 413, Fig. 325, 326, 327, 351, 58, (456). 356, 361, 362, 364, Helodermatidae, 301, 318, y 365, 376, 397, 405, 325, 326, 328, 334, 418, 420, 474, 476, 345, 356, 363, 365, Fig. 112 (480). 377, 396, 401, 406, Glyptosaurus, 327, 328, 418, 420, 474.
Recommended publications
  • A New Early Cretaceous Lizard with Well-Preserved Scale Impressions from Western Liaoning , China*
    PROGRESS IN NATURAL SCIENCE Vol .15 , N o .2 , F ebruary 2005 A new Early Cretaceous lizard with well-preserved scale impressions from western Liaoning , China* JI Shu' an ** (S chool of Earth and S pace Sciences, Peking University , Beijing 100871 , China) Received May 14 , 2004 ;revised September 29 , 2004 Abstract A new small lizard , Liaoningolacerta brevirostra gen .et sp .nov ., from the Early Cretaceous Yixian Formation of w estern Liaoning is described in detail.The new specimen w as preserved not only by the skeleton , but also by the exceptionally clear scale impressions.This lizard can be included w ithin the taxon Scleroglossa based on its 26 or more presacrals, cruciform interclavicle with a large anterior p rocess, moderately elongated pubis, and slightly notched distal end of tibia .The scales vary evidently in size and shape at different parts of body :small and rhomboid ventral scales, tiny and round limb scales, and large and longitudinally rectangular caudal scales that constitute the caudal w horls.This new finding provides us with more information on the lepidosis of the Mesozoic lizards. Keywords: new genus, Squamata, skeleton, lepidosis, Early Cretaceous, western Liaoning . Lizards are majo r groups in the Late Mesozoic Etymology:Liaoning , the province where the Jehol Biota of w estern Liaoning and the adjacent holoty pe w as collected ;lacerta (Latin), lizard . regions, no rtheastern China .Several fossil lizards Brevi- (Latin), short ;rostra (Latin), snout . have been found from the Yixian Formation , the lower unit of the Early C retaceous Jehol G roup in Holotype :An articulated skeleton w ith its rig ht w hich the feathered theropods , primitive birds , early fo relimb and mid to posterior caudals missing (GM V mamm als and angiosperms were discovered in the past 1580 ; National Geological Museum of China , decade[ 1, 2] .
    [Show full text]
  • Publications (Published, in Press, Accepted, Or in Revision). * Indicates Undergraduate Mentee
    Publications (published, in press, accepted, or in revision). * indicates undergraduate mentee 14. Scarpetta SG. Iguanian lizards from the Split Rock Formation, Wyoming: exploring the modernization of the North American lizard fauna. Journal of Systematic Palaeontology. In press. 13. Scarpetta SG, Ledesma DT, Llauger FO, White BA. 2020. Evolution of North American lizards. eLS 1(4), 705-717. https://doi.org/10.1002/9780470015902.a0029078. Invited submission. All authors contributed equally to this work. 12. Scarpetta SG. 2020. Effects of phylogenetic uncertainty on fossil identification illustrated by a new and enigmatic Eocene iguanian. Scientific Reports 10(1), 1-10. https://doi.org/10.1038/s41598-020-72509-2 11. Scarpetta SG. 2020. Combined-evidence analyses of ultraconserved elements and morphological data: an empirical example in iguanian lizards. Biology Letters 16(8), 20200356. https://doi.org/10.1098/rsbl.2020.0356 10. Scarpetta SG. 2020. Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids. Royal Society Open Science 7(8), 200317. http://dx.doi.org/10.1098/rsos.200317 9. Scarpetta SG, Bell CJ. 2020. Novel and bizarre abnormalities of the tooth row in side- blotched lizards (Uta) and rock lizards (Petrosaurus). The Anatomical Record 303, 2014-2025. https://doi.org/10.1002/ar.24279 8. Scarpetta SG. 2019. The first known fossil Uma: Ecological evolution and the origins of North American fringe-toed lizards. BMC Evolutionary Biology 19(178), 1-22. https://doi.org/10.1186/s12862-019-1501-5 7. Scarpetta SG. 2019. Aneides hardii (Sacramento Mountains Salamander). Catalogue of American Amphibians and Reptiles 921, 1-23.
    [Show full text]
  • A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
    A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • New Lizards and Rhynchocephalians from the Lower Cretaceous of Southern Italy
    New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy SUSAN. E. EVANS, PASQUALE RAIA, and CARMELA BARBERA Evans, S.E., Raia, P., and Barbera, C. 2004. New lizards and rhynchocephalians from the Lower Cretaceous of southern Italy. Acta Palaeontologica Polonica 49 (3): 393–408. The Lower Cretaceous (Albian age) locality of Pietraroia, near Benevento in southern Italy, has yielded a diverse assem− blage of fossil vertebrates, including at least one genus of rhynchocephalian (Derasmosaurus) and two named lizards (Costasaurus and Chometokadmon), as well as the exquisitely preserved small dinosaur, Scipionyx. Here we describe ma− terial pertaining to a new species of the fossil lizard genus Eichstaettisaurus (E. gouldi sp. nov.). Eichstaettisaurus was first recorded from the Upper Jurassic (Tithonian age) Solnhofen Limestones of Germany, and more recently from the basal Cretaceous (Berriasian) of Montsec, Spain. The new Italian specimen provides a significant extension to the tempo− ral range of Eichstaettisaurus while supporting the hypothesis that the Pietraroia assemblage may represent a relictual is− land fauna. The postcranial morphology of the new eichstaettisaur suggests it was predominantly ground−living. Further skull material of E. gouldi sp. nov. was identified within the abdominal cavity of a second new lepidosaurian skeleton from the same locality. This second partial skeleton is almost certainly rhynchocephalian, based primarily on foot and pelvic structure, but it is not Derasmosaurus and cannot be accommodated within any known genus due to the unusual morphology of the tail vertebrae. Key words: Lepidosauria, Squamata, Rhynchocephalia, palaeobiogeography, predation, Cretaceous, Italy. Susan E. Evans [[email protected]], Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, England; Pasquale Raia [[email protected]] and Carmela Barbera [[email protected]], Dipartimento di Paleontologia, Università di Napoli, Largo S.
    [Show full text]
  • Tiago Rodrigues Simões
    Diapsid Phylogeny and the Origin and Early Evolution of Squamates by Tiago Rodrigues Simões A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in SYSTEMATICS AND EVOLUTION Department of Biological Sciences University of Alberta © Tiago Rodrigues Simões, 2018 ABSTRACT Squamate reptiles comprise over 10,000 living species and hundreds of fossil species of lizards, snakes and amphisbaenians, with their origins dating back at least as far back as the Middle Jurassic. Despite this enormous diversity and a long evolutionary history, numerous fundamental questions remain to be answered regarding the early evolution and origin of this major clade of tetrapods. Such long-standing issues include identifying the oldest fossil squamate, when exactly did squamates originate, and why morphological and molecular analyses of squamate evolution have strong disagreements on fundamental aspects of the squamate tree of life. Additionally, despite much debate, there is no existing consensus over the composition of the Lepidosauromorpha (the clade that includes squamates and their sister taxon, the Rhynchocephalia), making the squamate origin problem part of a broader and more complex reptile phylogeny issue. In this thesis, I provide a series of taxonomic, phylogenetic, biogeographic and morpho-functional contributions to shed light on these problems. I describe a new taxon that overwhelms previous hypothesis of iguanian biogeography and evolution in Gondwana (Gueragama sulamericana). I re-describe and assess the functional morphology of some of the oldest known articulated lizards in the world (Eichstaettisaurus schroederi and Ardeosaurus digitatellus), providing clues to the ancestry of geckoes, and the early evolution of their scansorial behaviour.
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]
  • Shifting Paradigms: Herbivory and Body Size in Lizards
    COMMENTARY Shifting paradigms: Herbivory and body size in lizards Laurie J. Vitt* Sam Noble Oklahoma Museum of Natural History and Zoology Department, University of Oklahoma, Norman, OK 73072 any lizards frequently eat fruits and flowers, but few are strictly herbivorous (1, 2). For Ͼ30 years, biolo- Mgists have perpetuated the notion that herbivory in lizards required large body size, based largely on a set of physiologi- cal arguments centered on thermal re- quirements for digestion of plants and the observation that the few studied herbivorous lizards were relatively large in body size (3). From the outset, the argument was fundamentally flawed, because most known large-bodied her- bivorous lizards are members of a strictly herbivorous clade, the Iguanidae. Consequently, a single origin of her- bivory from a large-bodied ancestor accounts for much of the association between herbivory and large size in liz- ards. Within other lizard clades, herbivo- rous species are not among the largest (e.g., Teiidae, Cnemidophorus murinus, Cnemidophorus arubensis, and Dicrodon guttulatum; and Varanidae, Varanus oli- vaceus). Even when the few noniguanian origins of herbivory are added, the num- ber of origins pales in comparison with those identified in this issue of PNAS by Espinoza et al. (4) in a single iguanian Fig. 1. Evolution of prey detection, prey prehension, and herbivory in squamate reptiles. Numbers of clade, the Liolaemidae. More impor- origins for herbivory are taken from Espinoza et al. [ref. 4; at least two more are known in Autarchoglossa; tantly, the multiple origins identified by one in the family Teiidae (Dicrodon) and at least one in Varanidae (V.
    [Show full text]
  • An Early Eocene Gecko from Baltic Amber and Its Implications for the Evolution of Gecko Adhesion
    J. Zool., Lond. (2005) 265, 327–332 C 2005 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904006259 An Early Eocene gecko from Baltic amber and its implications for the evolution of gecko adhesion Aaron M. Bauer1*, Wolfgang Bohme¨ 2 and Wolfgang Weitschat3 1 Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, U.S.A. 2 Zoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany 3 Geologisch-Palaontologisches¨ Institut und Museum der Universitat¨ Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany (Accepted 24 June 2004) Abstract A new genus and species of gecko from the Lower Eocene of north-western Russia is described from a superbly preserved specimen in Baltic amber. It is the oldest gekkonid lizard to be represented by more than fragmentary skeletal remains. The digits of the specimen are mostly intact and reveal a unique combination of characters not seen in any living form. Expanded sub-digital scansors on the toes, however, are essentially similar to those of modern climbing geckos and verify the existence of a complex adhesive system 20–30 million years earlier than supported by previously discovered fossil geckos. Key words: Yantarogekko, Gekkonidae, Early Eocene, amber, sub-digital scansors INTRODUCTION species from the Paleocene of Brazil (Estes, 1983b). Thereafter a greater diversity of gekkotans is reflected The fossil record of autarchoglossan lizards extends back in the fossil record, particularly that of Europe. Eocene at least to the mid-Jurassic (Evans, 1993, 1998a) and aut- material includes Rhodanogekko vireti Hoffstetter, 1946, archoglossans, particularly scincomorphs, are generally Cadurcogekko piveteaui Hoffstetter, 1946, and unidenti- well represented throughout the Late Jurassic and into fied material (Rage, 1978; Auge,´ 1990b), all from France.
    [Show full text]
  • Microsoft Word
    LIST OF EXTANT INGROUP TAXA: Agamidae: Agama agama, Pogona vitticeps, Calotes emma, Physignathus cocincinus. Chamaeleonidae: Brookesia brygooi, Chamaeleo calyptratus. Corytophanidae: Basiliscus basiliscus, Corytophanes cristatus. Crotaphytidae: Crotaphytus collaris, Gambelia wislizenii. Hoplocercidae: Enyalioides laticeps, Morunasaurus annularis. Iguanidae: Brachylophus fasciatus, Dipsosaurus dorsalis, Sauromalus ater. Leiolepidae: Leiolepis rubritaeniata, Uromastyx hardwicki. Leiosauridae: Leiosaurus catamarcensis, Pristidactylus torquatus, Urostrophus vautieri. Liolaemidae: Liolaemus elongatus, Phymaturus palluma. Opluridae: Chalarodon madagascariensis, Oplurus cyclurus. Phrynosomatidae: Petrosaurus mearnsi, Phrynosoma platyrhinos, Sceloporus variabilis, Uma scoparia, Uta stansburiana. Polychrotidae: Anolis carolinensis, Polychrus marmoratus. Tropiduridae: Leiocephalus barahonensis, Stenocercus guentheri, Tropidurus plica, Uranoscodon superciliosus. Anguidae: Ophisaurus apodus, Anniella pulchra, Diploglossus enneagrammus, Elgaria multicarinata. Cordylidae: Chamaesaura anguina, Cordylus mossambicus. Dibamidae: Anelytropsis papillosus, Dibamus novaeguineae. Eublepharidae: Aeluroscalobates felinus, Coleonyx variegatus, Eublepharis macularius. "Gekkonidae": Teratoscincus przewalski, Diplodactylus ciliaris, Phyllurus cornutus, Rhacodactylus auriculatus, Gekko gecko, Phelsuma lineata. Gonatodes albogularis. Gerrhosauridae: Cordylosaurus subtesselatus, Zonosaurus ornatus. Gymnophthalmidae: Colobosaura modesta, Pholidobolus montium. Helodermatidae:
    [Show full text]
  • Sprint Performance of Phrynosomatid Lizards, Measured on a High-Speed Treadmill, Correlates with Hindlimb Length
    J. Zool., Lond. (1999) 248, 255±265 # 1999 The Zoological Society of London Printed in the United Kingdom Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length Kevin E. Bonine and Theodore Garland, Jr Department of Zoology, University of Wisconsin, 430 Lincoln Drive, Madison, WI 53706-1381, U.S.A. (Accepted 19 September 1998) Abstract We measured sprint performance of phrynosomatid lizards and selected outgroups (n = 27 species). Maximal sprint running speeds were obtained with a new measurement technique, a high-speed treadmill (H.S.T.). Animals were measured at their approximate ®eld-active body temperatures once on both of 2 consecutive days. Within species, individual variation in speed measurements was consistent between trial days and repeatabilities were similar to values reported previously for photocell-timed racetrack measure- ments. Multiple regression with phylogenetically independent contrasts indicates that interspeci®c variation in maximal speed is positively correlated with hindlimb span, but not signi®cantly related to either body mass or body temperature. Among the three phrynosomatid subclades, sand lizards (Uma, Callisaurus, Cophosaurus, Holbrookia) have the highest sprint speeds and longest hindlimbs, horned lizards (Phryno- soma) exhibit the lowest speeds and shortest limbs, and the Sceloporus group (including Uta and Urosaurus) is intermediate in both speed and hindlimb span. Key words: comparative method, lizard, locomotion, morphometrics, phrynosomatidae, sprint speed INTRODUCTION Fig. 1; Montanucci, 1987; de Queiroz, 1992; Wiens & Reeder, 1997) that exhibit large variation in locomotor Evolutionary physiologists and functional morpholo- morphology and performance, behaviour, and ecology gists emphasize the importance of direct measurements (Stebbins, 1985; Conant & Collins, 1991; Garland, 1994; of whole-animal performance (Arnold, 1983; Garland & Miles, 1994a).
    [Show full text]